xref: /openbmc/linux/arch/um/os-Linux/signal.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
3  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4  * Copyright (C) 2004 PathScale, Inc
5  * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6  * Licensed under the GPL
7  */
8 
9 #include <stdlib.h>
10 #include <stdarg.h>
11 #include <errno.h>
12 #include <signal.h>
13 #include <strings.h>
14 #include <as-layout.h>
15 #include <kern_util.h>
16 #include <os.h>
17 #include <sysdep/mcontext.h>
18 #include <um_malloc.h>
19 
20 void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
21 	[SIGTRAP]	= relay_signal,
22 	[SIGFPE]	= relay_signal,
23 	[SIGILL]	= relay_signal,
24 	[SIGWINCH]	= winch,
25 	[SIGBUS]	= bus_handler,
26 	[SIGSEGV]	= segv_handler,
27 	[SIGIO]		= sigio_handler,
28 	[SIGALRM]	= timer_handler
29 };
30 
31 static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
32 {
33 	struct uml_pt_regs *r;
34 	int save_errno = errno;
35 
36 	r = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC);
37 	if (!r)
38 		panic("out of memory");
39 
40 	r->is_user = 0;
41 	if (sig == SIGSEGV) {
42 		/* For segfaults, we want the data from the sigcontext. */
43 		get_regs_from_mc(r, mc);
44 		GET_FAULTINFO_FROM_MC(r->faultinfo, mc);
45 	}
46 
47 	/* enable signals if sig isn't IRQ signal */
48 	if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGALRM))
49 		unblock_signals();
50 
51 	(*sig_info[sig])(sig, si, r);
52 
53 	errno = save_errno;
54 
55 	free(r);
56 }
57 
58 /*
59  * These are the asynchronous signals.  SIGPROF is excluded because we want to
60  * be able to profile all of UML, not just the non-critical sections.  If
61  * profiling is not thread-safe, then that is not my problem.  We can disable
62  * profiling when SMP is enabled in that case.
63  */
64 #define SIGIO_BIT 0
65 #define SIGIO_MASK (1 << SIGIO_BIT)
66 
67 #define SIGALRM_BIT 1
68 #define SIGALRM_MASK (1 << SIGALRM_BIT)
69 
70 static int signals_enabled;
71 static unsigned int signals_pending;
72 static unsigned int signals_active = 0;
73 
74 void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
75 {
76 	int enabled;
77 
78 	enabled = signals_enabled;
79 	if (!enabled && (sig == SIGIO)) {
80 		signals_pending |= SIGIO_MASK;
81 		return;
82 	}
83 
84 	block_signals();
85 
86 	sig_handler_common(sig, si, mc);
87 
88 	set_signals(enabled);
89 }
90 
91 static void timer_real_alarm_handler(mcontext_t *mc)
92 {
93 	struct uml_pt_regs *regs;
94 
95 	regs = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC);
96 	if (!regs)
97 		panic("out of memory");
98 
99 	if (mc != NULL)
100 		get_regs_from_mc(regs, mc);
101 	timer_handler(SIGALRM, NULL, regs);
102 
103 	free(regs);
104 }
105 
106 void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
107 {
108 	int enabled;
109 
110 	enabled = signals_enabled;
111 	if (!signals_enabled) {
112 		signals_pending |= SIGALRM_MASK;
113 		return;
114 	}
115 
116 	block_signals();
117 
118 	signals_active |= SIGALRM_MASK;
119 
120 	timer_real_alarm_handler(mc);
121 
122 	signals_active &= ~SIGALRM_MASK;
123 
124 	set_signals(enabled);
125 }
126 
127 void deliver_alarm(void) {
128     timer_alarm_handler(SIGALRM, NULL, NULL);
129 }
130 
131 void timer_set_signal_handler(void)
132 {
133 	set_handler(SIGALRM);
134 }
135 
136 void set_sigstack(void *sig_stack, int size)
137 {
138 	stack_t stack = {
139 		.ss_flags = 0,
140 		.ss_sp = sig_stack,
141 		.ss_size = size - sizeof(void *)
142 	};
143 
144 	if (sigaltstack(&stack, NULL) != 0)
145 		panic("enabling signal stack failed, errno = %d\n", errno);
146 }
147 
148 static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
149 	[SIGSEGV] = sig_handler,
150 	[SIGBUS] = sig_handler,
151 	[SIGILL] = sig_handler,
152 	[SIGFPE] = sig_handler,
153 	[SIGTRAP] = sig_handler,
154 
155 	[SIGIO] = sig_handler,
156 	[SIGWINCH] = sig_handler,
157 	[SIGALRM] = timer_alarm_handler
158 };
159 
160 static void hard_handler(int sig, siginfo_t *si, void *p)
161 {
162 	struct ucontext *uc = p;
163 	mcontext_t *mc = &uc->uc_mcontext;
164 	unsigned long pending = 1UL << sig;
165 
166 	do {
167 		int nested, bail;
168 
169 		/*
170 		 * pending comes back with one bit set for each
171 		 * interrupt that arrived while setting up the stack,
172 		 * plus a bit for this interrupt, plus the zero bit is
173 		 * set if this is a nested interrupt.
174 		 * If bail is true, then we interrupted another
175 		 * handler setting up the stack.  In this case, we
176 		 * have to return, and the upper handler will deal
177 		 * with this interrupt.
178 		 */
179 		bail = to_irq_stack(&pending);
180 		if (bail)
181 			return;
182 
183 		nested = pending & 1;
184 		pending &= ~1;
185 
186 		while ((sig = ffs(pending)) != 0){
187 			sig--;
188 			pending &= ~(1 << sig);
189 			(*handlers[sig])(sig, (struct siginfo *)si, mc);
190 		}
191 
192 		/*
193 		 * Again, pending comes back with a mask of signals
194 		 * that arrived while tearing down the stack.  If this
195 		 * is non-zero, we just go back, set up the stack
196 		 * again, and handle the new interrupts.
197 		 */
198 		if (!nested)
199 			pending = from_irq_stack(nested);
200 	} while (pending);
201 }
202 
203 void set_handler(int sig)
204 {
205 	struct sigaction action;
206 	int flags = SA_SIGINFO | SA_ONSTACK;
207 	sigset_t sig_mask;
208 
209 	action.sa_sigaction = hard_handler;
210 
211 	/* block irq ones */
212 	sigemptyset(&action.sa_mask);
213 	sigaddset(&action.sa_mask, SIGIO);
214 	sigaddset(&action.sa_mask, SIGWINCH);
215 	sigaddset(&action.sa_mask, SIGALRM);
216 
217 	if (sig == SIGSEGV)
218 		flags |= SA_NODEFER;
219 
220 	if (sigismember(&action.sa_mask, sig))
221 		flags |= SA_RESTART; /* if it's an irq signal */
222 
223 	action.sa_flags = flags;
224 	action.sa_restorer = NULL;
225 	if (sigaction(sig, &action, NULL) < 0)
226 		panic("sigaction failed - errno = %d\n", errno);
227 
228 	sigemptyset(&sig_mask);
229 	sigaddset(&sig_mask, sig);
230 	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
231 		panic("sigprocmask failed - errno = %d\n", errno);
232 }
233 
234 int change_sig(int signal, int on)
235 {
236 	sigset_t sigset;
237 
238 	sigemptyset(&sigset);
239 	sigaddset(&sigset, signal);
240 	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
241 		return -errno;
242 
243 	return 0;
244 }
245 
246 void block_signals(void)
247 {
248 	signals_enabled = 0;
249 	/*
250 	 * This must return with signals disabled, so this barrier
251 	 * ensures that writes are flushed out before the return.
252 	 * This might matter if gcc figures out how to inline this and
253 	 * decides to shuffle this code into the caller.
254 	 */
255 	barrier();
256 }
257 
258 void unblock_signals(void)
259 {
260 	int save_pending;
261 
262 	if (signals_enabled == 1)
263 		return;
264 
265 	/*
266 	 * We loop because the IRQ handler returns with interrupts off.  So,
267 	 * interrupts may have arrived and we need to re-enable them and
268 	 * recheck signals_pending.
269 	 */
270 	while (1) {
271 		/*
272 		 * Save and reset save_pending after enabling signals.  This
273 		 * way, signals_pending won't be changed while we're reading it.
274 		 */
275 		signals_enabled = 1;
276 
277 		/*
278 		 * Setting signals_enabled and reading signals_pending must
279 		 * happen in this order.
280 		 */
281 		barrier();
282 
283 		save_pending = signals_pending;
284 		if (save_pending == 0)
285 			return;
286 
287 		signals_pending = 0;
288 
289 		/*
290 		 * We have pending interrupts, so disable signals, as the
291 		 * handlers expect them off when they are called.  They will
292 		 * be enabled again above.
293 		 */
294 
295 		signals_enabled = 0;
296 
297 		/*
298 		 * Deal with SIGIO first because the alarm handler might
299 		 * schedule, leaving the pending SIGIO stranded until we come
300 		 * back here.
301 		 *
302 		 * SIGIO's handler doesn't use siginfo or mcontext,
303 		 * so they can be NULL.
304 		 */
305 		if (save_pending & SIGIO_MASK)
306 			sig_handler_common(SIGIO, NULL, NULL);
307 
308 		/* Do not reenter the handler */
309 
310 		if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK)))
311 			timer_real_alarm_handler(NULL);
312 
313 		/* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */
314 
315 		if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK))
316 			return;
317 
318 	}
319 }
320 
321 int get_signals(void)
322 {
323 	return signals_enabled;
324 }
325 
326 int set_signals(int enable)
327 {
328 	int ret;
329 	if (signals_enabled == enable)
330 		return enable;
331 
332 	ret = signals_enabled;
333 	if (enable)
334 		unblock_signals();
335 	else block_signals();
336 
337 	return ret;
338 }
339 
340 int os_is_signal_stack(void)
341 {
342 	stack_t ss;
343 	sigaltstack(NULL, &ss);
344 
345 	return ss.ss_flags & SS_ONSTACK;
346 }
347