xref: /openbmc/linux/arch/um/os-Linux/signal.c (revision a1e58bbd)
1 /*
2  * Copyright (C) 2004 PathScale, Inc
3  * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4  * Licensed under the GPL
5  */
6 
7 #include <stdlib.h>
8 #include <stdarg.h>
9 #include <errno.h>
10 #include <signal.h>
11 #include <strings.h>
12 #include "as-layout.h"
13 #include "kern_util.h"
14 #include "os.h"
15 #include "sysdep/barrier.h"
16 #include "sysdep/sigcontext.h"
17 #include "user.h"
18 
19 /* Copied from linux/compiler-gcc.h since we can't include it directly */
20 #define barrier() __asm__ __volatile__("": : :"memory")
21 
22 void (*sig_info[NSIG])(int, struct uml_pt_regs *) = {
23 	[SIGTRAP]	= relay_signal,
24 	[SIGFPE]	= relay_signal,
25 	[SIGILL]	= relay_signal,
26 	[SIGWINCH]	= winch,
27 	[SIGBUS]	= bus_handler,
28 	[SIGSEGV]	= segv_handler,
29 	[SIGIO]		= sigio_handler,
30 	[SIGVTALRM]	= timer_handler };
31 
32 static void sig_handler_common(int sig, struct sigcontext *sc)
33 {
34 	struct uml_pt_regs r;
35 	int save_errno = errno;
36 
37 	r.is_user = 0;
38 	if (sig == SIGSEGV) {
39 		/* For segfaults, we want the data from the sigcontext. */
40 		copy_sc(&r, sc);
41 		GET_FAULTINFO_FROM_SC(r.faultinfo, sc);
42 	}
43 
44 	/* enable signals if sig isn't IRQ signal */
45 	if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM))
46 		unblock_signals();
47 
48 	(*sig_info[sig])(sig, &r);
49 
50 	errno = save_errno;
51 }
52 
53 /*
54  * These are the asynchronous signals.  SIGPROF is excluded because we want to
55  * be able to profile all of UML, not just the non-critical sections.  If
56  * profiling is not thread-safe, then that is not my problem.  We can disable
57  * profiling when SMP is enabled in that case.
58  */
59 #define SIGIO_BIT 0
60 #define SIGIO_MASK (1 << SIGIO_BIT)
61 
62 #define SIGVTALRM_BIT 1
63 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
64 
65 static int signals_enabled;
66 static unsigned int signals_pending;
67 
68 void sig_handler(int sig, struct sigcontext *sc)
69 {
70 	int enabled;
71 
72 	enabled = signals_enabled;
73 	if (!enabled && (sig == SIGIO)) {
74 		signals_pending |= SIGIO_MASK;
75 		return;
76 	}
77 
78 	block_signals();
79 
80 	sig_handler_common(sig, sc);
81 
82 	set_signals(enabled);
83 }
84 
85 static void real_alarm_handler(struct sigcontext *sc)
86 {
87 	struct uml_pt_regs regs;
88 
89 	if (sc != NULL)
90 		copy_sc(&regs, sc);
91 	regs.is_user = 0;
92 	unblock_signals();
93 	timer_handler(SIGVTALRM, &regs);
94 }
95 
96 void alarm_handler(int sig, struct sigcontext *sc)
97 {
98 	int enabled;
99 
100 	enabled = signals_enabled;
101 	if (!signals_enabled) {
102 		signals_pending |= SIGVTALRM_MASK;
103 		return;
104 	}
105 
106 	block_signals();
107 
108 	real_alarm_handler(sc);
109 	set_signals(enabled);
110 }
111 
112 void timer_init(void)
113 {
114 	set_handler(SIGVTALRM, (__sighandler_t) alarm_handler,
115 		    SA_ONSTACK | SA_RESTART, SIGUSR1, SIGIO, SIGWINCH, -1);
116 }
117 
118 void set_sigstack(void *sig_stack, int size)
119 {
120 	stack_t stack = ((stack_t) { .ss_flags	= 0,
121 				     .ss_sp	= (__ptr_t) sig_stack,
122 				     .ss_size 	= size - sizeof(void *) });
123 
124 	if (sigaltstack(&stack, NULL) != 0)
125 		panic("enabling signal stack failed, errno = %d\n", errno);
126 }
127 
128 void (*handlers[_NSIG])(int sig, struct sigcontext *sc);
129 
130 void handle_signal(int sig, struct sigcontext *sc)
131 {
132 	unsigned long pending = 1UL << sig;
133 
134 	do {
135 		int nested, bail;
136 
137 		/*
138 		 * pending comes back with one bit set for each
139 		 * interrupt that arrived while setting up the stack,
140 		 * plus a bit for this interrupt, plus the zero bit is
141 		 * set if this is a nested interrupt.
142 		 * If bail is true, then we interrupted another
143 		 * handler setting up the stack.  In this case, we
144 		 * have to return, and the upper handler will deal
145 		 * with this interrupt.
146 		 */
147 		bail = to_irq_stack(&pending);
148 		if (bail)
149 			return;
150 
151 		nested = pending & 1;
152 		pending &= ~1;
153 
154 		while ((sig = ffs(pending)) != 0){
155 			sig--;
156 			pending &= ~(1 << sig);
157 			(*handlers[sig])(sig, sc);
158 		}
159 
160 		/*
161 		 * Again, pending comes back with a mask of signals
162 		 * that arrived while tearing down the stack.  If this
163 		 * is non-zero, we just go back, set up the stack
164 		 * again, and handle the new interrupts.
165 		 */
166 		if (!nested)
167 			pending = from_irq_stack(nested);
168 	} while (pending);
169 }
170 
171 extern void hard_handler(int sig);
172 
173 void set_handler(int sig, void (*handler)(int), int flags, ...)
174 {
175 	struct sigaction action;
176 	va_list ap;
177 	sigset_t sig_mask;
178 	int mask;
179 
180 	handlers[sig] = (void (*)(int, struct sigcontext *)) handler;
181 	action.sa_handler = hard_handler;
182 
183 	sigemptyset(&action.sa_mask);
184 
185 	va_start(ap, flags);
186 	while ((mask = va_arg(ap, int)) != -1)
187 		sigaddset(&action.sa_mask, mask);
188 	va_end(ap);
189 
190 	if (sig == SIGSEGV)
191 		flags |= SA_NODEFER;
192 
193 	action.sa_flags = flags;
194 	action.sa_restorer = NULL;
195 	if (sigaction(sig, &action, NULL) < 0)
196 		panic("sigaction failed - errno = %d\n", errno);
197 
198 	sigemptyset(&sig_mask);
199 	sigaddset(&sig_mask, sig);
200 	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
201 		panic("sigprocmask failed - errno = %d\n", errno);
202 }
203 
204 int change_sig(int signal, int on)
205 {
206 	sigset_t sigset;
207 
208 	sigemptyset(&sigset);
209 	sigaddset(&sigset, signal);
210 	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
211 		return -errno;
212 
213 	return 0;
214 }
215 
216 void block_signals(void)
217 {
218 	signals_enabled = 0;
219 	/*
220 	 * This must return with signals disabled, so this barrier
221 	 * ensures that writes are flushed out before the return.
222 	 * This might matter if gcc figures out how to inline this and
223 	 * decides to shuffle this code into the caller.
224 	 */
225 	barrier();
226 }
227 
228 void unblock_signals(void)
229 {
230 	int save_pending;
231 
232 	if (signals_enabled == 1)
233 		return;
234 
235 	/*
236 	 * We loop because the IRQ handler returns with interrupts off.  So,
237 	 * interrupts may have arrived and we need to re-enable them and
238 	 * recheck signals_pending.
239 	 */
240 	while (1) {
241 		/*
242 		 * Save and reset save_pending after enabling signals.  This
243 		 * way, signals_pending won't be changed while we're reading it.
244 		 */
245 		signals_enabled = 1;
246 
247 		/*
248 		 * Setting signals_enabled and reading signals_pending must
249 		 * happen in this order.
250 		 */
251 		barrier();
252 
253 		save_pending = signals_pending;
254 		if (save_pending == 0)
255 			return;
256 
257 		signals_pending = 0;
258 
259 		/*
260 		 * We have pending interrupts, so disable signals, as the
261 		 * handlers expect them off when they are called.  They will
262 		 * be enabled again above.
263 		 */
264 
265 		signals_enabled = 0;
266 
267 		/*
268 		 * Deal with SIGIO first because the alarm handler might
269 		 * schedule, leaving the pending SIGIO stranded until we come
270 		 * back here.
271 		 */
272 		if (save_pending & SIGIO_MASK)
273 			sig_handler_common(SIGIO, NULL);
274 
275 		if (save_pending & SIGVTALRM_MASK)
276 			real_alarm_handler(NULL);
277 	}
278 }
279 
280 int get_signals(void)
281 {
282 	return signals_enabled;
283 }
284 
285 int set_signals(int enable)
286 {
287 	int ret;
288 	if (signals_enabled == enable)
289 		return enable;
290 
291 	ret = signals_enabled;
292 	if (enable)
293 		unblock_signals();
294 	else block_signals();
295 
296 	return ret;
297 }
298