xref: /openbmc/linux/arch/um/os-Linux/signal.c (revision 9c6d26df1fae6ad4718d51c48e6517913304ed27)
1 /*
2  * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
3  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4  * Copyright (C) 2004 PathScale, Inc
5  * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6  * Licensed under the GPL
7  */
8 
9 #include <stdlib.h>
10 #include <stdarg.h>
11 #include <errno.h>
12 #include <signal.h>
13 #include <strings.h>
14 #include <as-layout.h>
15 #include <kern_util.h>
16 #include <os.h>
17 #include <sysdep/mcontext.h>
18 #include <um_malloc.h>
19 #include <sys/ucontext.h>
20 
21 void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
22 	[SIGTRAP]	= relay_signal,
23 	[SIGFPE]	= relay_signal,
24 	[SIGILL]	= relay_signal,
25 	[SIGWINCH]	= winch,
26 	[SIGBUS]	= bus_handler,
27 	[SIGSEGV]	= segv_handler,
28 	[SIGIO]		= sigio_handler,
29 	[SIGALRM]	= timer_handler
30 };
31 
32 static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
33 {
34 	struct uml_pt_regs *r;
35 	int save_errno = errno;
36 
37 	r = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC);
38 	if (!r)
39 		panic("out of memory");
40 
41 	r->is_user = 0;
42 	if (sig == SIGSEGV) {
43 		/* For segfaults, we want the data from the sigcontext. */
44 		get_regs_from_mc(r, mc);
45 		GET_FAULTINFO_FROM_MC(r->faultinfo, mc);
46 	}
47 
48 	/* enable signals if sig isn't IRQ signal */
49 	if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGALRM))
50 		unblock_signals();
51 
52 	(*sig_info[sig])(sig, si, r);
53 
54 	errno = save_errno;
55 
56 	free(r);
57 }
58 
59 /*
60  * These are the asynchronous signals.  SIGPROF is excluded because we want to
61  * be able to profile all of UML, not just the non-critical sections.  If
62  * profiling is not thread-safe, then that is not my problem.  We can disable
63  * profiling when SMP is enabled in that case.
64  */
65 #define SIGIO_BIT 0
66 #define SIGIO_MASK (1 << SIGIO_BIT)
67 
68 #define SIGALRM_BIT 1
69 #define SIGALRM_MASK (1 << SIGALRM_BIT)
70 
71 static int signals_enabled;
72 static unsigned int signals_pending;
73 static unsigned int signals_active = 0;
74 
75 void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
76 {
77 	int enabled;
78 
79 	enabled = signals_enabled;
80 	if (!enabled && (sig == SIGIO)) {
81 		signals_pending |= SIGIO_MASK;
82 		return;
83 	}
84 
85 	block_signals();
86 
87 	sig_handler_common(sig, si, mc);
88 
89 	set_signals(enabled);
90 }
91 
92 static void timer_real_alarm_handler(mcontext_t *mc)
93 {
94 	struct uml_pt_regs *regs;
95 
96 	regs = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC);
97 	if (!regs)
98 		panic("out of memory");
99 
100 	if (mc != NULL)
101 		get_regs_from_mc(regs, mc);
102 	timer_handler(SIGALRM, NULL, regs);
103 
104 	free(regs);
105 }
106 
107 void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
108 {
109 	int enabled;
110 
111 	enabled = signals_enabled;
112 	if (!signals_enabled) {
113 		signals_pending |= SIGALRM_MASK;
114 		return;
115 	}
116 
117 	block_signals();
118 
119 	signals_active |= SIGALRM_MASK;
120 
121 	timer_real_alarm_handler(mc);
122 
123 	signals_active &= ~SIGALRM_MASK;
124 
125 	set_signals(enabled);
126 }
127 
128 void deliver_alarm(void) {
129     timer_alarm_handler(SIGALRM, NULL, NULL);
130 }
131 
132 void timer_set_signal_handler(void)
133 {
134 	set_handler(SIGALRM);
135 }
136 
137 void set_sigstack(void *sig_stack, int size)
138 {
139 	stack_t stack = {
140 		.ss_flags = 0,
141 		.ss_sp = sig_stack,
142 		.ss_size = size - sizeof(void *)
143 	};
144 
145 	if (sigaltstack(&stack, NULL) != 0)
146 		panic("enabling signal stack failed, errno = %d\n", errno);
147 }
148 
149 static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
150 	[SIGSEGV] = sig_handler,
151 	[SIGBUS] = sig_handler,
152 	[SIGILL] = sig_handler,
153 	[SIGFPE] = sig_handler,
154 	[SIGTRAP] = sig_handler,
155 
156 	[SIGIO] = sig_handler,
157 	[SIGWINCH] = sig_handler,
158 	[SIGALRM] = timer_alarm_handler
159 };
160 
161 static void hard_handler(int sig, siginfo_t *si, void *p)
162 {
163 	ucontext_t *uc = p;
164 	mcontext_t *mc = &uc->uc_mcontext;
165 	unsigned long pending = 1UL << sig;
166 
167 	do {
168 		int nested, bail;
169 
170 		/*
171 		 * pending comes back with one bit set for each
172 		 * interrupt that arrived while setting up the stack,
173 		 * plus a bit for this interrupt, plus the zero bit is
174 		 * set if this is a nested interrupt.
175 		 * If bail is true, then we interrupted another
176 		 * handler setting up the stack.  In this case, we
177 		 * have to return, and the upper handler will deal
178 		 * with this interrupt.
179 		 */
180 		bail = to_irq_stack(&pending);
181 		if (bail)
182 			return;
183 
184 		nested = pending & 1;
185 		pending &= ~1;
186 
187 		while ((sig = ffs(pending)) != 0){
188 			sig--;
189 			pending &= ~(1 << sig);
190 			(*handlers[sig])(sig, (struct siginfo *)si, mc);
191 		}
192 
193 		/*
194 		 * Again, pending comes back with a mask of signals
195 		 * that arrived while tearing down the stack.  If this
196 		 * is non-zero, we just go back, set up the stack
197 		 * again, and handle the new interrupts.
198 		 */
199 		if (!nested)
200 			pending = from_irq_stack(nested);
201 	} while (pending);
202 }
203 
204 void set_handler(int sig)
205 {
206 	struct sigaction action;
207 	int flags = SA_SIGINFO | SA_ONSTACK;
208 	sigset_t sig_mask;
209 
210 	action.sa_sigaction = hard_handler;
211 
212 	/* block irq ones */
213 	sigemptyset(&action.sa_mask);
214 	sigaddset(&action.sa_mask, SIGIO);
215 	sigaddset(&action.sa_mask, SIGWINCH);
216 	sigaddset(&action.sa_mask, SIGALRM);
217 
218 	if (sig == SIGSEGV)
219 		flags |= SA_NODEFER;
220 
221 	if (sigismember(&action.sa_mask, sig))
222 		flags |= SA_RESTART; /* if it's an irq signal */
223 
224 	action.sa_flags = flags;
225 	action.sa_restorer = NULL;
226 	if (sigaction(sig, &action, NULL) < 0)
227 		panic("sigaction failed - errno = %d\n", errno);
228 
229 	sigemptyset(&sig_mask);
230 	sigaddset(&sig_mask, sig);
231 	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
232 		panic("sigprocmask failed - errno = %d\n", errno);
233 }
234 
235 int change_sig(int signal, int on)
236 {
237 	sigset_t sigset;
238 
239 	sigemptyset(&sigset);
240 	sigaddset(&sigset, signal);
241 	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
242 		return -errno;
243 
244 	return 0;
245 }
246 
247 void block_signals(void)
248 {
249 	signals_enabled = 0;
250 	/*
251 	 * This must return with signals disabled, so this barrier
252 	 * ensures that writes are flushed out before the return.
253 	 * This might matter if gcc figures out how to inline this and
254 	 * decides to shuffle this code into the caller.
255 	 */
256 	barrier();
257 }
258 
259 void unblock_signals(void)
260 {
261 	int save_pending;
262 
263 	if (signals_enabled == 1)
264 		return;
265 
266 	/*
267 	 * We loop because the IRQ handler returns with interrupts off.  So,
268 	 * interrupts may have arrived and we need to re-enable them and
269 	 * recheck signals_pending.
270 	 */
271 	while (1) {
272 		/*
273 		 * Save and reset save_pending after enabling signals.  This
274 		 * way, signals_pending won't be changed while we're reading it.
275 		 */
276 		signals_enabled = 1;
277 
278 		/*
279 		 * Setting signals_enabled and reading signals_pending must
280 		 * happen in this order.
281 		 */
282 		barrier();
283 
284 		save_pending = signals_pending;
285 		if (save_pending == 0)
286 			return;
287 
288 		signals_pending = 0;
289 
290 		/*
291 		 * We have pending interrupts, so disable signals, as the
292 		 * handlers expect them off when they are called.  They will
293 		 * be enabled again above.
294 		 */
295 
296 		signals_enabled = 0;
297 
298 		/*
299 		 * Deal with SIGIO first because the alarm handler might
300 		 * schedule, leaving the pending SIGIO stranded until we come
301 		 * back here.
302 		 *
303 		 * SIGIO's handler doesn't use siginfo or mcontext,
304 		 * so they can be NULL.
305 		 */
306 		if (save_pending & SIGIO_MASK)
307 			sig_handler_common(SIGIO, NULL, NULL);
308 
309 		/* Do not reenter the handler */
310 
311 		if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK)))
312 			timer_real_alarm_handler(NULL);
313 
314 		/* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */
315 
316 		if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK))
317 			return;
318 
319 	}
320 }
321 
322 int get_signals(void)
323 {
324 	return signals_enabled;
325 }
326 
327 int set_signals(int enable)
328 {
329 	int ret;
330 	if (signals_enabled == enable)
331 		return enable;
332 
333 	ret = signals_enabled;
334 	if (enable)
335 		unblock_signals();
336 	else block_signals();
337 
338 	return ret;
339 }
340 
341 int os_is_signal_stack(void)
342 {
343 	stack_t ss;
344 	sigaltstack(NULL, &ss);
345 
346 	return ss.ss_flags & SS_ONSTACK;
347 }
348