xref: /openbmc/linux/arch/um/os-Linux/signal.c (revision 64c70b1c)
1 /*
2  * Copyright (C) 2004 PathScale, Inc
3  * Licensed under the GPL
4  */
5 
6 #include <signal.h>
7 #include <stdio.h>
8 #include <unistd.h>
9 #include <stdlib.h>
10 #include <errno.h>
11 #include <stdarg.h>
12 #include <string.h>
13 #include <sys/mman.h>
14 #include "user.h"
15 #include "signal_kern.h"
16 #include "sysdep/sigcontext.h"
17 #include "sysdep/barrier.h"
18 #include "sigcontext.h"
19 #include "mode.h"
20 #include "os.h"
21 
22 /* These are the asynchronous signals.  SIGVTALRM and SIGARLM are handled
23  * together under SIGVTALRM_BIT.  SIGPROF is excluded because we want to
24  * be able to profile all of UML, not just the non-critical sections.  If
25  * profiling is not thread-safe, then that is not my problem.  We can disable
26  * profiling when SMP is enabled in that case.
27  */
28 #define SIGIO_BIT 0
29 #define SIGIO_MASK (1 << SIGIO_BIT)
30 
31 #define SIGVTALRM_BIT 1
32 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
33 
34 #define SIGALRM_BIT 2
35 #define SIGALRM_MASK (1 << SIGALRM_BIT)
36 
37 /* These are used by both the signal handlers and
38  * block/unblock_signals.  I don't want modifications cached in a
39  * register - they must go straight to memory.
40  */
41 static volatile int signals_enabled = 1;
42 static volatile int pending = 0;
43 
44 void sig_handler(int sig, struct sigcontext *sc)
45 {
46 	int enabled;
47 
48 	enabled = signals_enabled;
49 	if(!enabled && (sig == SIGIO)){
50 		pending |= SIGIO_MASK;
51 		return;
52 	}
53 
54 	block_signals();
55 
56 	CHOOSE_MODE_PROC(sig_handler_common_tt, sig_handler_common_skas,
57 			 sig, sc);
58 
59 	set_signals(enabled);
60 }
61 
62 static void real_alarm_handler(int sig, struct sigcontext *sc)
63 {
64 	union uml_pt_regs regs;
65 
66 	if(sig == SIGALRM)
67 		switch_timers(0);
68 
69 	if(sc != NULL)
70 		copy_sc(&regs, sc);
71 	regs.skas.is_user = 0;
72 	unblock_signals();
73 	timer_handler(sig, &regs);
74 
75 	if(sig == SIGALRM)
76 		switch_timers(1);
77 }
78 
79 void alarm_handler(int sig, struct sigcontext *sc)
80 {
81 	int enabled;
82 
83 	enabled = signals_enabled;
84 	if(!signals_enabled){
85 		if(sig == SIGVTALRM)
86 			pending |= SIGVTALRM_MASK;
87 		else pending |= SIGALRM_MASK;
88 
89 		return;
90 	}
91 
92 	block_signals();
93 
94 	real_alarm_handler(sig, sc);
95 	set_signals(enabled);
96 }
97 
98 void set_sigstack(void *sig_stack, int size)
99 {
100 	stack_t stack = ((stack_t) { .ss_flags	= 0,
101 				     .ss_sp	= (__ptr_t) sig_stack,
102 				     .ss_size 	= size - sizeof(void *) });
103 
104 	if(sigaltstack(&stack, NULL) != 0)
105 		panic("enabling signal stack failed, errno = %d\n", errno);
106 }
107 
108 void remove_sigstack(void)
109 {
110 	stack_t stack = ((stack_t) { .ss_flags	= SS_DISABLE,
111 				     .ss_sp	= NULL,
112 				     .ss_size	= 0 });
113 
114 	if(sigaltstack(&stack, NULL) != 0)
115 		panic("disabling signal stack failed, errno = %d\n", errno);
116 }
117 
118 void (*handlers[_NSIG])(int sig, struct sigcontext *sc);
119 
120 void handle_signal(int sig, struct sigcontext *sc)
121 {
122 	unsigned long pending = 0;
123 
124 	do {
125 		int nested, bail;
126 
127 		/*
128 		 * pending comes back with one bit set for each
129 		 * interrupt that arrived while setting up the stack,
130 		 * plus a bit for this interrupt, plus the zero bit is
131 		 * set if this is a nested interrupt.
132 		 * If bail is true, then we interrupted another
133 		 * handler setting up the stack.  In this case, we
134 		 * have to return, and the upper handler will deal
135 		 * with this interrupt.
136 		 */
137 		bail = to_irq_stack(sig, &pending);
138 		if(bail)
139 			return;
140 
141 		nested = pending & 1;
142 		pending &= ~1;
143 
144 		while((sig = ffs(pending)) != 0){
145 			sig--;
146 			pending &= ~(1 << sig);
147 			(*handlers[sig])(sig, sc);
148 		}
149 
150 		/* Again, pending comes back with a mask of signals
151 		 * that arrived while tearing down the stack.  If this
152 		 * is non-zero, we just go back, set up the stack
153 		 * again, and handle the new interrupts.
154 		 */
155 		if(!nested)
156 			pending = from_irq_stack(nested);
157 	} while(pending);
158 }
159 
160 extern void hard_handler(int sig);
161 
162 void set_handler(int sig, void (*handler)(int), int flags, ...)
163 {
164 	struct sigaction action;
165 	va_list ap;
166 	sigset_t sig_mask;
167 	int mask;
168 
169 	handlers[sig] = (void (*)(int, struct sigcontext *)) handler;
170 	action.sa_handler = hard_handler;
171 
172 	sigemptyset(&action.sa_mask);
173 
174 	va_start(ap, flags);
175 	while((mask = va_arg(ap, int)) != -1)
176 		sigaddset(&action.sa_mask, mask);
177 	va_end(ap);
178 
179 	action.sa_flags = flags;
180 	action.sa_restorer = NULL;
181 	if(sigaction(sig, &action, NULL) < 0)
182 		panic("sigaction failed - errno = %d\n", errno);
183 
184 	sigemptyset(&sig_mask);
185 	sigaddset(&sig_mask, sig);
186 	if(sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
187 		panic("sigprocmask failed - errno = %d\n", errno);
188 }
189 
190 int change_sig(int signal, int on)
191 {
192 	sigset_t sigset, old;
193 
194 	sigemptyset(&sigset);
195 	sigaddset(&sigset, signal);
196 	sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, &old);
197 	return(!sigismember(&old, signal));
198 }
199 
200 void block_signals(void)
201 {
202 	signals_enabled = 0;
203 	/* This must return with signals disabled, so this barrier
204 	 * ensures that writes are flushed out before the return.
205 	 * This might matter if gcc figures out how to inline this and
206 	 * decides to shuffle this code into the caller.
207 	 */
208 	mb();
209 }
210 
211 void unblock_signals(void)
212 {
213 	int save_pending;
214 
215 	if(signals_enabled == 1)
216 		return;
217 
218 	/* We loop because the IRQ handler returns with interrupts off.  So,
219 	 * interrupts may have arrived and we need to re-enable them and
220 	 * recheck pending.
221 	 */
222 	while(1){
223 		/* Save and reset save_pending after enabling signals.  This
224 		 * way, pending won't be changed while we're reading it.
225 		 */
226 		signals_enabled = 1;
227 
228 		/* Setting signals_enabled and reading pending must
229 		 * happen in this order.
230 		 */
231 		mb();
232 
233 		save_pending = pending;
234 		if(save_pending == 0){
235 			/* This must return with signals enabled, so
236 			 * this barrier ensures that writes are
237 			 * flushed out before the return.  This might
238 			 * matter if gcc figures out how to inline
239 			 * this (unlikely, given its size) and decides
240 			 * to shuffle this code into the caller.
241 			 */
242 			mb();
243 			return;
244 		}
245 
246 		pending = 0;
247 
248 		/* We have pending interrupts, so disable signals, as the
249 		 * handlers expect them off when they are called.  They will
250 		 * be enabled again above.
251 		 */
252 
253 		signals_enabled = 0;
254 
255 		/* Deal with SIGIO first because the alarm handler might
256 		 * schedule, leaving the pending SIGIO stranded until we come
257 		 * back here.
258 		 */
259 		if(save_pending & SIGIO_MASK)
260 			CHOOSE_MODE_PROC(sig_handler_common_tt,
261 					 sig_handler_common_skas, SIGIO, NULL);
262 
263 		if(save_pending & SIGALRM_MASK)
264 			real_alarm_handler(SIGALRM, NULL);
265 
266 		if(save_pending & SIGVTALRM_MASK)
267 			real_alarm_handler(SIGVTALRM, NULL);
268 	}
269 }
270 
271 int get_signals(void)
272 {
273 	return signals_enabled;
274 }
275 
276 int set_signals(int enable)
277 {
278 	int ret;
279 	if(signals_enabled == enable)
280 		return enable;
281 
282 	ret = signals_enabled;
283 	if(enable)
284 		unblock_signals();
285 	else block_signals();
286 
287 	return ret;
288 }
289