1 /* 2 * Copyright (C) 2004 PathScale, Inc 3 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 4 * Licensed under the GPL 5 */ 6 7 #include <stdlib.h> 8 #include <stdarg.h> 9 #include <errno.h> 10 #include <signal.h> 11 #include <strings.h> 12 #include <as-layout.h> 13 #include <kern_util.h> 14 #include <os.h> 15 #include <sysdep/mcontext.h> 16 #include "internal.h" 17 18 void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = { 19 [SIGTRAP] = relay_signal, 20 [SIGFPE] = relay_signal, 21 [SIGILL] = relay_signal, 22 [SIGWINCH] = winch, 23 [SIGBUS] = bus_handler, 24 [SIGSEGV] = segv_handler, 25 [SIGIO] = sigio_handler, 26 [SIGVTALRM] = timer_handler }; 27 28 static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc) 29 { 30 struct uml_pt_regs r; 31 int save_errno = errno; 32 33 r.is_user = 0; 34 if (sig == SIGSEGV) { 35 /* For segfaults, we want the data from the sigcontext. */ 36 get_regs_from_mc(&r, mc); 37 GET_FAULTINFO_FROM_MC(r.faultinfo, mc); 38 } 39 40 /* enable signals if sig isn't IRQ signal */ 41 if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM)) 42 unblock_signals(); 43 44 (*sig_info[sig])(sig, si, &r); 45 46 errno = save_errno; 47 } 48 49 /* 50 * These are the asynchronous signals. SIGPROF is excluded because we want to 51 * be able to profile all of UML, not just the non-critical sections. If 52 * profiling is not thread-safe, then that is not my problem. We can disable 53 * profiling when SMP is enabled in that case. 54 */ 55 #define SIGIO_BIT 0 56 #define SIGIO_MASK (1 << SIGIO_BIT) 57 58 #define SIGVTALRM_BIT 1 59 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT) 60 61 static int signals_enabled; 62 static unsigned int signals_pending; 63 64 void sig_handler(int sig, struct siginfo *si, mcontext_t *mc) 65 { 66 int enabled; 67 68 enabled = signals_enabled; 69 if (!enabled && (sig == SIGIO)) { 70 signals_pending |= SIGIO_MASK; 71 return; 72 } 73 74 block_signals(); 75 76 sig_handler_common(sig, si, mc); 77 78 set_signals(enabled); 79 } 80 81 static void real_alarm_handler(mcontext_t *mc) 82 { 83 struct uml_pt_regs regs; 84 85 if (mc != NULL) 86 get_regs_from_mc(®s, mc); 87 regs.is_user = 0; 88 unblock_signals(); 89 timer_handler(SIGVTALRM, NULL, ®s); 90 } 91 92 void alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc) 93 { 94 int enabled; 95 96 enabled = signals_enabled; 97 if (!signals_enabled) { 98 signals_pending |= SIGVTALRM_MASK; 99 return; 100 } 101 102 block_signals(); 103 104 real_alarm_handler(mc); 105 set_signals(enabled); 106 } 107 108 void timer_init(void) 109 { 110 set_handler(SIGVTALRM); 111 } 112 113 void set_sigstack(void *sig_stack, int size) 114 { 115 stack_t stack = ((stack_t) { .ss_flags = 0, 116 .ss_sp = (__ptr_t) sig_stack, 117 .ss_size = size - sizeof(void *) }); 118 119 if (sigaltstack(&stack, NULL) != 0) 120 panic("enabling signal stack failed, errno = %d\n", errno); 121 } 122 123 static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = { 124 [SIGSEGV] = sig_handler, 125 [SIGBUS] = sig_handler, 126 [SIGILL] = sig_handler, 127 [SIGFPE] = sig_handler, 128 [SIGTRAP] = sig_handler, 129 130 [SIGIO] = sig_handler, 131 [SIGWINCH] = sig_handler, 132 [SIGVTALRM] = alarm_handler 133 }; 134 135 136 static void hard_handler(int sig, siginfo_t *si, void *p) 137 { 138 struct ucontext *uc = p; 139 mcontext_t *mc = &uc->uc_mcontext; 140 unsigned long pending = 1UL << sig; 141 142 do { 143 int nested, bail; 144 145 /* 146 * pending comes back with one bit set for each 147 * interrupt that arrived while setting up the stack, 148 * plus a bit for this interrupt, plus the zero bit is 149 * set if this is a nested interrupt. 150 * If bail is true, then we interrupted another 151 * handler setting up the stack. In this case, we 152 * have to return, and the upper handler will deal 153 * with this interrupt. 154 */ 155 bail = to_irq_stack(&pending); 156 if (bail) 157 return; 158 159 nested = pending & 1; 160 pending &= ~1; 161 162 while ((sig = ffs(pending)) != 0){ 163 sig--; 164 pending &= ~(1 << sig); 165 (*handlers[sig])(sig, (struct siginfo *)si, mc); 166 } 167 168 /* 169 * Again, pending comes back with a mask of signals 170 * that arrived while tearing down the stack. If this 171 * is non-zero, we just go back, set up the stack 172 * again, and handle the new interrupts. 173 */ 174 if (!nested) 175 pending = from_irq_stack(nested); 176 } while (pending); 177 } 178 179 void set_handler(int sig) 180 { 181 struct sigaction action; 182 int flags = SA_SIGINFO | SA_ONSTACK; 183 sigset_t sig_mask; 184 185 action.sa_sigaction = hard_handler; 186 187 /* block irq ones */ 188 sigemptyset(&action.sa_mask); 189 sigaddset(&action.sa_mask, SIGVTALRM); 190 sigaddset(&action.sa_mask, SIGIO); 191 sigaddset(&action.sa_mask, SIGWINCH); 192 193 if (sig == SIGSEGV) 194 flags |= SA_NODEFER; 195 196 if (sigismember(&action.sa_mask, sig)) 197 flags |= SA_RESTART; /* if it's an irq signal */ 198 199 action.sa_flags = flags; 200 action.sa_restorer = NULL; 201 if (sigaction(sig, &action, NULL) < 0) 202 panic("sigaction failed - errno = %d\n", errno); 203 204 sigemptyset(&sig_mask); 205 sigaddset(&sig_mask, sig); 206 if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0) 207 panic("sigprocmask failed - errno = %d\n", errno); 208 } 209 210 int change_sig(int signal, int on) 211 { 212 sigset_t sigset; 213 214 sigemptyset(&sigset); 215 sigaddset(&sigset, signal); 216 if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0) 217 return -errno; 218 219 return 0; 220 } 221 222 void block_signals(void) 223 { 224 signals_enabled = 0; 225 /* 226 * This must return with signals disabled, so this barrier 227 * ensures that writes are flushed out before the return. 228 * This might matter if gcc figures out how to inline this and 229 * decides to shuffle this code into the caller. 230 */ 231 barrier(); 232 } 233 234 void unblock_signals(void) 235 { 236 int save_pending; 237 238 if (signals_enabled == 1) 239 return; 240 241 /* 242 * We loop because the IRQ handler returns with interrupts off. So, 243 * interrupts may have arrived and we need to re-enable them and 244 * recheck signals_pending. 245 */ 246 while (1) { 247 /* 248 * Save and reset save_pending after enabling signals. This 249 * way, signals_pending won't be changed while we're reading it. 250 */ 251 signals_enabled = 1; 252 253 /* 254 * Setting signals_enabled and reading signals_pending must 255 * happen in this order. 256 */ 257 barrier(); 258 259 save_pending = signals_pending; 260 if (save_pending == 0) 261 return; 262 263 signals_pending = 0; 264 265 /* 266 * We have pending interrupts, so disable signals, as the 267 * handlers expect them off when they are called. They will 268 * be enabled again above. 269 */ 270 271 signals_enabled = 0; 272 273 /* 274 * Deal with SIGIO first because the alarm handler might 275 * schedule, leaving the pending SIGIO stranded until we come 276 * back here. 277 * 278 * SIGIO's handler doesn't use siginfo or mcontext, 279 * so they can be NULL. 280 */ 281 if (save_pending & SIGIO_MASK) 282 sig_handler_common(SIGIO, NULL, NULL); 283 284 if (save_pending & SIGVTALRM_MASK) 285 real_alarm_handler(NULL); 286 } 287 } 288 289 int get_signals(void) 290 { 291 return signals_enabled; 292 } 293 294 int set_signals(int enable) 295 { 296 int ret; 297 if (signals_enabled == enable) 298 return enable; 299 300 ret = signals_enabled; 301 if (enable) 302 unblock_signals(); 303 else block_signals(); 304 305 return ret; 306 } 307 308 int os_is_signal_stack(void) 309 { 310 stack_t ss; 311 sigaltstack(NULL, &ss); 312 313 return ss.ss_flags & SS_ONSTACK; 314 } 315