xref: /openbmc/linux/arch/um/os-Linux/signal.c (revision 36acd5e2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
4  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
5  * Copyright (C) 2004 PathScale, Inc
6  * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
7  */
8 
9 #include <stdlib.h>
10 #include <stdarg.h>
11 #include <errno.h>
12 #include <signal.h>
13 #include <string.h>
14 #include <strings.h>
15 #include <as-layout.h>
16 #include <kern_util.h>
17 #include <os.h>
18 #include <sysdep/mcontext.h>
19 #include <um_malloc.h>
20 #include <sys/ucontext.h>
21 
22 void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
23 	[SIGTRAP]	= relay_signal,
24 	[SIGFPE]	= relay_signal,
25 	[SIGILL]	= relay_signal,
26 	[SIGWINCH]	= winch,
27 	[SIGBUS]	= bus_handler,
28 	[SIGSEGV]	= segv_handler,
29 	[SIGIO]		= sigio_handler,
30 };
31 
32 static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
33 {
34 	struct uml_pt_regs r;
35 	int save_errno = errno;
36 
37 	r.is_user = 0;
38 	if (sig == SIGSEGV) {
39 		/* For segfaults, we want the data from the sigcontext. */
40 		get_regs_from_mc(&r, mc);
41 		GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
42 	}
43 
44 	/* enable signals if sig isn't IRQ signal */
45 	if ((sig != SIGIO) && (sig != SIGWINCH))
46 		unblock_signals_trace();
47 
48 	(*sig_info[sig])(sig, si, &r);
49 
50 	errno = save_errno;
51 }
52 
53 /*
54  * These are the asynchronous signals.  SIGPROF is excluded because we want to
55  * be able to profile all of UML, not just the non-critical sections.  If
56  * profiling is not thread-safe, then that is not my problem.  We can disable
57  * profiling when SMP is enabled in that case.
58  */
59 #define SIGIO_BIT 0
60 #define SIGIO_MASK (1 << SIGIO_BIT)
61 
62 #define SIGALRM_BIT 1
63 #define SIGALRM_MASK (1 << SIGALRM_BIT)
64 
65 static int signals_enabled;
66 static unsigned int signals_pending;
67 static unsigned int signals_active = 0;
68 
69 void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
70 {
71 	int enabled;
72 
73 	enabled = signals_enabled;
74 	if (!enabled && (sig == SIGIO)) {
75 		signals_pending |= SIGIO_MASK;
76 		return;
77 	}
78 
79 	block_signals_trace();
80 
81 	sig_handler_common(sig, si, mc);
82 
83 	set_signals_trace(enabled);
84 }
85 
86 static void timer_real_alarm_handler(mcontext_t *mc)
87 {
88 	struct uml_pt_regs regs;
89 
90 	if (mc != NULL)
91 		get_regs_from_mc(&regs, mc);
92 	else
93 		memset(&regs, 0, sizeof(regs));
94 	timer_handler(SIGALRM, NULL, &regs);
95 }
96 
97 void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
98 {
99 	int enabled;
100 
101 	enabled = signals_enabled;
102 	if (!signals_enabled) {
103 		signals_pending |= SIGALRM_MASK;
104 		return;
105 	}
106 
107 	block_signals_trace();
108 
109 	signals_active |= SIGALRM_MASK;
110 
111 	timer_real_alarm_handler(mc);
112 
113 	signals_active &= ~SIGALRM_MASK;
114 
115 	set_signals_trace(enabled);
116 }
117 
118 void deliver_alarm(void) {
119     timer_alarm_handler(SIGALRM, NULL, NULL);
120 }
121 
122 void timer_set_signal_handler(void)
123 {
124 	set_handler(SIGALRM);
125 }
126 
127 void set_sigstack(void *sig_stack, int size)
128 {
129 	stack_t stack = {
130 		.ss_flags = 0,
131 		.ss_sp = sig_stack,
132 		.ss_size = size - sizeof(void *)
133 	};
134 
135 	if (sigaltstack(&stack, NULL) != 0)
136 		panic("enabling signal stack failed, errno = %d\n", errno);
137 }
138 
139 static void sigusr1_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
140 {
141 	uml_pm_wake();
142 }
143 
144 void register_pm_wake_signal(void)
145 {
146 	set_handler(SIGUSR1);
147 }
148 
149 static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
150 	[SIGSEGV] = sig_handler,
151 	[SIGBUS] = sig_handler,
152 	[SIGILL] = sig_handler,
153 	[SIGFPE] = sig_handler,
154 	[SIGTRAP] = sig_handler,
155 
156 	[SIGIO] = sig_handler,
157 	[SIGWINCH] = sig_handler,
158 	[SIGALRM] = timer_alarm_handler,
159 
160 	[SIGUSR1] = sigusr1_handler,
161 };
162 
163 static void hard_handler(int sig, siginfo_t *si, void *p)
164 {
165 	ucontext_t *uc = p;
166 	mcontext_t *mc = &uc->uc_mcontext;
167 	unsigned long pending = 1UL << sig;
168 
169 	do {
170 		int nested, bail;
171 
172 		/*
173 		 * pending comes back with one bit set for each
174 		 * interrupt that arrived while setting up the stack,
175 		 * plus a bit for this interrupt, plus the zero bit is
176 		 * set if this is a nested interrupt.
177 		 * If bail is true, then we interrupted another
178 		 * handler setting up the stack.  In this case, we
179 		 * have to return, and the upper handler will deal
180 		 * with this interrupt.
181 		 */
182 		bail = to_irq_stack(&pending);
183 		if (bail)
184 			return;
185 
186 		nested = pending & 1;
187 		pending &= ~1;
188 
189 		while ((sig = ffs(pending)) != 0){
190 			sig--;
191 			pending &= ~(1 << sig);
192 			(*handlers[sig])(sig, (struct siginfo *)si, mc);
193 		}
194 
195 		/*
196 		 * Again, pending comes back with a mask of signals
197 		 * that arrived while tearing down the stack.  If this
198 		 * is non-zero, we just go back, set up the stack
199 		 * again, and handle the new interrupts.
200 		 */
201 		if (!nested)
202 			pending = from_irq_stack(nested);
203 	} while (pending);
204 }
205 
206 void set_handler(int sig)
207 {
208 	struct sigaction action;
209 	int flags = SA_SIGINFO | SA_ONSTACK;
210 	sigset_t sig_mask;
211 
212 	action.sa_sigaction = hard_handler;
213 
214 	/* block irq ones */
215 	sigemptyset(&action.sa_mask);
216 	sigaddset(&action.sa_mask, SIGIO);
217 	sigaddset(&action.sa_mask, SIGWINCH);
218 	sigaddset(&action.sa_mask, SIGALRM);
219 
220 	if (sig == SIGSEGV)
221 		flags |= SA_NODEFER;
222 
223 	if (sigismember(&action.sa_mask, sig))
224 		flags |= SA_RESTART; /* if it's an irq signal */
225 
226 	action.sa_flags = flags;
227 	action.sa_restorer = NULL;
228 	if (sigaction(sig, &action, NULL) < 0)
229 		panic("sigaction failed - errno = %d\n", errno);
230 
231 	sigemptyset(&sig_mask);
232 	sigaddset(&sig_mask, sig);
233 	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
234 		panic("sigprocmask failed - errno = %d\n", errno);
235 }
236 
237 void send_sigio_to_self(void)
238 {
239 	kill(os_getpid(), SIGIO);
240 }
241 
242 int change_sig(int signal, int on)
243 {
244 	sigset_t sigset;
245 
246 	sigemptyset(&sigset);
247 	sigaddset(&sigset, signal);
248 	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
249 		return -errno;
250 
251 	return 0;
252 }
253 
254 void block_signals(void)
255 {
256 	signals_enabled = 0;
257 	/*
258 	 * This must return with signals disabled, so this barrier
259 	 * ensures that writes are flushed out before the return.
260 	 * This might matter if gcc figures out how to inline this and
261 	 * decides to shuffle this code into the caller.
262 	 */
263 	barrier();
264 }
265 
266 void unblock_signals(void)
267 {
268 	int save_pending;
269 
270 	if (signals_enabled == 1)
271 		return;
272 
273 	signals_enabled = 1;
274 #ifdef UML_CONFIG_UML_TIME_TRAVEL_SUPPORT
275 	deliver_time_travel_irqs();
276 #endif
277 
278 	/*
279 	 * We loop because the IRQ handler returns with interrupts off.  So,
280 	 * interrupts may have arrived and we need to re-enable them and
281 	 * recheck signals_pending.
282 	 */
283 	while (1) {
284 		/*
285 		 * Save and reset save_pending after enabling signals.  This
286 		 * way, signals_pending won't be changed while we're reading it.
287 		 *
288 		 * Setting signals_enabled and reading signals_pending must
289 		 * happen in this order, so have the barrier here.
290 		 */
291 		barrier();
292 
293 		save_pending = signals_pending;
294 		if (save_pending == 0)
295 			return;
296 
297 		signals_pending = 0;
298 
299 		/*
300 		 * We have pending interrupts, so disable signals, as the
301 		 * handlers expect them off when they are called.  They will
302 		 * be enabled again above. We need to trace this, as we're
303 		 * expected to be enabling interrupts already, but any more
304 		 * tracing that happens inside the handlers we call for the
305 		 * pending signals will mess up the tracing state.
306 		 */
307 		signals_enabled = 0;
308 		um_trace_signals_off();
309 
310 		/*
311 		 * Deal with SIGIO first because the alarm handler might
312 		 * schedule, leaving the pending SIGIO stranded until we come
313 		 * back here.
314 		 *
315 		 * SIGIO's handler doesn't use siginfo or mcontext,
316 		 * so they can be NULL.
317 		 */
318 		if (save_pending & SIGIO_MASK)
319 			sig_handler_common(SIGIO, NULL, NULL);
320 
321 		/* Do not reenter the handler */
322 
323 		if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK)))
324 			timer_real_alarm_handler(NULL);
325 
326 		/* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */
327 
328 		if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK))
329 			return;
330 
331 		/* Re-enable signals and trace that we're doing so. */
332 		um_trace_signals_on();
333 		signals_enabled = 1;
334 	}
335 }
336 
337 int get_signals(void)
338 {
339 	return signals_enabled;
340 }
341 
342 int set_signals(int enable)
343 {
344 	int ret;
345 	if (signals_enabled == enable)
346 		return enable;
347 
348 	ret = signals_enabled;
349 	if (enable)
350 		unblock_signals();
351 	else block_signals();
352 
353 	return ret;
354 }
355 
356 int set_signals_trace(int enable)
357 {
358 	int ret;
359 	if (signals_enabled == enable)
360 		return enable;
361 
362 	ret = signals_enabled;
363 	if (enable)
364 		unblock_signals_trace();
365 	else
366 		block_signals_trace();
367 
368 	return ret;
369 }
370 
371 int os_is_signal_stack(void)
372 {
373 	stack_t ss;
374 	sigaltstack(NULL, &ss);
375 
376 	return ss.ss_flags & SS_ONSTACK;
377 }
378