xref: /openbmc/linux/arch/um/kernel/trap.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/sched/signal.h>
8 #include <linux/hardirq.h>
9 #include <linux/module.h>
10 #include <linux/uaccess.h>
11 #include <linux/sched/debug.h>
12 #include <asm/current.h>
13 #include <asm/pgtable.h>
14 #include <asm/tlbflush.h>
15 #include <arch.h>
16 #include <as-layout.h>
17 #include <kern_util.h>
18 #include <os.h>
19 #include <skas.h>
20 
21 /*
22  * Note this is constrained to return 0, -EFAULT, -EACCES, -ENOMEM by
23  * segv().
24  */
25 int handle_page_fault(unsigned long address, unsigned long ip,
26 		      int is_write, int is_user, int *code_out)
27 {
28 	struct mm_struct *mm = current->mm;
29 	struct vm_area_struct *vma;
30 	pgd_t *pgd;
31 	p4d_t *p4d;
32 	pud_t *pud;
33 	pmd_t *pmd;
34 	pte_t *pte;
35 	int err = -EFAULT;
36 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
37 
38 	*code_out = SEGV_MAPERR;
39 
40 	/*
41 	 * If the fault was with pagefaults disabled, don't take the fault, just
42 	 * fail.
43 	 */
44 	if (faulthandler_disabled())
45 		goto out_nosemaphore;
46 
47 	if (is_user)
48 		flags |= FAULT_FLAG_USER;
49 retry:
50 	down_read(&mm->mmap_sem);
51 	vma = find_vma(mm, address);
52 	if (!vma)
53 		goto out;
54 	else if (vma->vm_start <= address)
55 		goto good_area;
56 	else if (!(vma->vm_flags & VM_GROWSDOWN))
57 		goto out;
58 	else if (is_user && !ARCH_IS_STACKGROW(address))
59 		goto out;
60 	else if (expand_stack(vma, address))
61 		goto out;
62 
63 good_area:
64 	*code_out = SEGV_ACCERR;
65 	if (is_write) {
66 		if (!(vma->vm_flags & VM_WRITE))
67 			goto out;
68 		flags |= FAULT_FLAG_WRITE;
69 	} else {
70 		/* Don't require VM_READ|VM_EXEC for write faults! */
71 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
72 			goto out;
73 	}
74 
75 	do {
76 		vm_fault_t fault;
77 
78 		fault = handle_mm_fault(vma, address, flags);
79 
80 		if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
81 			goto out_nosemaphore;
82 
83 		if (unlikely(fault & VM_FAULT_ERROR)) {
84 			if (fault & VM_FAULT_OOM) {
85 				goto out_of_memory;
86 			} else if (fault & VM_FAULT_SIGSEGV) {
87 				goto out;
88 			} else if (fault & VM_FAULT_SIGBUS) {
89 				err = -EACCES;
90 				goto out;
91 			}
92 			BUG();
93 		}
94 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
95 			if (fault & VM_FAULT_MAJOR)
96 				current->maj_flt++;
97 			else
98 				current->min_flt++;
99 			if (fault & VM_FAULT_RETRY) {
100 				flags &= ~FAULT_FLAG_ALLOW_RETRY;
101 				flags |= FAULT_FLAG_TRIED;
102 
103 				goto retry;
104 			}
105 		}
106 
107 		pgd = pgd_offset(mm, address);
108 		p4d = p4d_offset(pgd, address);
109 		pud = pud_offset(p4d, address);
110 		pmd = pmd_offset(pud, address);
111 		pte = pte_offset_kernel(pmd, address);
112 	} while (!pte_present(*pte));
113 	err = 0;
114 	/*
115 	 * The below warning was added in place of
116 	 *	pte_mkyoung(); if (is_write) pte_mkdirty();
117 	 * If it's triggered, we'd see normally a hang here (a clean pte is
118 	 * marked read-only to emulate the dirty bit).
119 	 * However, the generic code can mark a PTE writable but clean on a
120 	 * concurrent read fault, triggering this harmlessly. So comment it out.
121 	 */
122 #if 0
123 	WARN_ON(!pte_young(*pte) || (is_write && !pte_dirty(*pte)));
124 #endif
125 	flush_tlb_page(vma, address);
126 out:
127 	up_read(&mm->mmap_sem);
128 out_nosemaphore:
129 	return err;
130 
131 out_of_memory:
132 	/*
133 	 * We ran out of memory, call the OOM killer, and return the userspace
134 	 * (which will retry the fault, or kill us if we got oom-killed).
135 	 */
136 	up_read(&mm->mmap_sem);
137 	if (!is_user)
138 		goto out_nosemaphore;
139 	pagefault_out_of_memory();
140 	return 0;
141 }
142 EXPORT_SYMBOL(handle_page_fault);
143 
144 static void show_segv_info(struct uml_pt_regs *regs)
145 {
146 	struct task_struct *tsk = current;
147 	struct faultinfo *fi = UPT_FAULTINFO(regs);
148 
149 	if (!unhandled_signal(tsk, SIGSEGV))
150 		return;
151 
152 	if (!printk_ratelimit())
153 		return;
154 
155 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %x",
156 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
157 		tsk->comm, task_pid_nr(tsk), FAULT_ADDRESS(*fi),
158 		(void *)UPT_IP(regs), (void *)UPT_SP(regs),
159 		fi->error_code);
160 
161 	print_vma_addr(KERN_CONT " in ", UPT_IP(regs));
162 	printk(KERN_CONT "\n");
163 }
164 
165 static void bad_segv(struct faultinfo fi, unsigned long ip)
166 {
167 	current->thread.arch.faultinfo = fi;
168 	force_sig_fault(SIGSEGV, SEGV_ACCERR, (void __user *) FAULT_ADDRESS(fi));
169 }
170 
171 void fatal_sigsegv(void)
172 {
173 	force_sigsegv(SIGSEGV);
174 	do_signal(&current->thread.regs);
175 	/*
176 	 * This is to tell gcc that we're not returning - do_signal
177 	 * can, in general, return, but in this case, it's not, since
178 	 * we just got a fatal SIGSEGV queued.
179 	 */
180 	os_dump_core();
181 }
182 
183 /**
184  * segv_handler() - the SIGSEGV handler
185  * @sig:	the signal number
186  * @unused_si:	the signal info struct; unused in this handler
187  * @regs:	the ptrace register information
188  *
189  * The handler first extracts the faultinfo from the UML ptrace regs struct.
190  * If the userfault did not happen in an UML userspace process, bad_segv is called.
191  * Otherwise the signal did happen in a cloned userspace process, handle it.
192  */
193 void segv_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
194 {
195 	struct faultinfo * fi = UPT_FAULTINFO(regs);
196 
197 	if (UPT_IS_USER(regs) && !SEGV_IS_FIXABLE(fi)) {
198 		show_segv_info(regs);
199 		bad_segv(*fi, UPT_IP(regs));
200 		return;
201 	}
202 	segv(*fi, UPT_IP(regs), UPT_IS_USER(regs), regs);
203 }
204 
205 /*
206  * We give a *copy* of the faultinfo in the regs to segv.
207  * This must be done, since nesting SEGVs could overwrite
208  * the info in the regs. A pointer to the info then would
209  * give us bad data!
210  */
211 unsigned long segv(struct faultinfo fi, unsigned long ip, int is_user,
212 		   struct uml_pt_regs *regs)
213 {
214 	jmp_buf *catcher;
215 	int si_code;
216 	int err;
217 	int is_write = FAULT_WRITE(fi);
218 	unsigned long address = FAULT_ADDRESS(fi);
219 
220 	if (!is_user && regs)
221 		current->thread.segv_regs = container_of(regs, struct pt_regs, regs);
222 
223 	if (!is_user && (address >= start_vm) && (address < end_vm)) {
224 		flush_tlb_kernel_vm();
225 		goto out;
226 	}
227 	else if (current->mm == NULL) {
228 		show_regs(container_of(regs, struct pt_regs, regs));
229 		panic("Segfault with no mm");
230 	}
231 	else if (!is_user && address > PAGE_SIZE && address < TASK_SIZE) {
232 		show_regs(container_of(regs, struct pt_regs, regs));
233 		panic("Kernel tried to access user memory at addr 0x%lx, ip 0x%lx",
234 		       address, ip);
235 	}
236 
237 	if (SEGV_IS_FIXABLE(&fi))
238 		err = handle_page_fault(address, ip, is_write, is_user,
239 					&si_code);
240 	else {
241 		err = -EFAULT;
242 		/*
243 		 * A thread accessed NULL, we get a fault, but CR2 is invalid.
244 		 * This code is used in __do_copy_from_user() of TT mode.
245 		 * XXX tt mode is gone, so maybe this isn't needed any more
246 		 */
247 		address = 0;
248 	}
249 
250 	catcher = current->thread.fault_catcher;
251 	if (!err)
252 		goto out;
253 	else if (catcher != NULL) {
254 		current->thread.fault_addr = (void *) address;
255 		UML_LONGJMP(catcher, 1);
256 	}
257 	else if (current->thread.fault_addr != NULL)
258 		panic("fault_addr set but no fault catcher");
259 	else if (!is_user && arch_fixup(ip, regs))
260 		goto out;
261 
262 	if (!is_user) {
263 		show_regs(container_of(regs, struct pt_regs, regs));
264 		panic("Kernel mode fault at addr 0x%lx, ip 0x%lx",
265 		      address, ip);
266 	}
267 
268 	show_segv_info(regs);
269 
270 	if (err == -EACCES) {
271 		current->thread.arch.faultinfo = fi;
272 		force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
273 	} else {
274 		BUG_ON(err != -EFAULT);
275 		current->thread.arch.faultinfo = fi;
276 		force_sig_fault(SIGSEGV, si_code, (void __user *) address);
277 	}
278 
279 out:
280 	if (regs)
281 		current->thread.segv_regs = NULL;
282 
283 	return 0;
284 }
285 
286 void relay_signal(int sig, struct siginfo *si, struct uml_pt_regs *regs)
287 {
288 	int code, err;
289 	if (!UPT_IS_USER(regs)) {
290 		if (sig == SIGBUS)
291 			printk(KERN_ERR "Bus error - the host /dev/shm or /tmp "
292 			       "mount likely just ran out of space\n");
293 		panic("Kernel mode signal %d", sig);
294 	}
295 
296 	arch_examine_signal(sig, regs);
297 
298 	/* Is the signal layout for the signal known?
299 	 * Signal data must be scrubbed to prevent information leaks.
300 	 */
301 	code = si->si_code;
302 	err = si->si_errno;
303 	if ((err == 0) && (siginfo_layout(sig, code) == SIL_FAULT)) {
304 		struct faultinfo *fi = UPT_FAULTINFO(regs);
305 		current->thread.arch.faultinfo = *fi;
306 		force_sig_fault(sig, code, (void __user *)FAULT_ADDRESS(*fi));
307 	} else {
308 		printk(KERN_ERR "Attempted to relay unknown signal %d (si_code = %d) with errno %d\n",
309 		       sig, code, err);
310 		force_sig(sig);
311 	}
312 }
313 
314 void bus_handler(int sig, struct siginfo *si, struct uml_pt_regs *regs)
315 {
316 	if (current->thread.fault_catcher != NULL)
317 		UML_LONGJMP(current->thread.fault_catcher, 1);
318 	else
319 		relay_signal(sig, si, regs);
320 }
321 
322 void winch(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
323 {
324 	do_IRQ(WINCH_IRQ, regs);
325 }
326 
327 void trap_init(void)
328 {
329 }
330