xref: /openbmc/linux/arch/um/kernel/trap.c (revision 93d90ad7)
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Licensed under the GPL
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/sched.h>
8 #include <linux/hardirq.h>
9 #include <linux/module.h>
10 #include <asm/current.h>
11 #include <asm/pgtable.h>
12 #include <asm/tlbflush.h>
13 #include <arch.h>
14 #include <as-layout.h>
15 #include <kern_util.h>
16 #include <os.h>
17 #include <skas.h>
18 
19 /*
20  * Note this is constrained to return 0, -EFAULT, -EACCESS, -ENOMEM by
21  * segv().
22  */
23 int handle_page_fault(unsigned long address, unsigned long ip,
24 		      int is_write, int is_user, int *code_out)
25 {
26 	struct mm_struct *mm = current->mm;
27 	struct vm_area_struct *vma;
28 	pgd_t *pgd;
29 	pud_t *pud;
30 	pmd_t *pmd;
31 	pte_t *pte;
32 	int err = -EFAULT;
33 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
34 
35 	*code_out = SEGV_MAPERR;
36 
37 	/*
38 	 * If the fault was during atomic operation, don't take the fault, just
39 	 * fail.
40 	 */
41 	if (in_atomic())
42 		goto out_nosemaphore;
43 
44 	if (is_user)
45 		flags |= FAULT_FLAG_USER;
46 retry:
47 	down_read(&mm->mmap_sem);
48 	vma = find_vma(mm, address);
49 	if (!vma)
50 		goto out;
51 	else if (vma->vm_start <= address)
52 		goto good_area;
53 	else if (!(vma->vm_flags & VM_GROWSDOWN))
54 		goto out;
55 	else if (is_user && !ARCH_IS_STACKGROW(address))
56 		goto out;
57 	else if (expand_stack(vma, address))
58 		goto out;
59 
60 good_area:
61 	*code_out = SEGV_ACCERR;
62 	if (is_write) {
63 		if (!(vma->vm_flags & VM_WRITE))
64 			goto out;
65 		flags |= FAULT_FLAG_WRITE;
66 	} else {
67 		/* Don't require VM_READ|VM_EXEC for write faults! */
68 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
69 			goto out;
70 	}
71 
72 	do {
73 		int fault;
74 
75 		fault = handle_mm_fault(mm, vma, address, flags);
76 
77 		if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
78 			goto out_nosemaphore;
79 
80 		if (unlikely(fault & VM_FAULT_ERROR)) {
81 			if (fault & VM_FAULT_OOM) {
82 				goto out_of_memory;
83 			} else if (fault & VM_FAULT_SIGBUS) {
84 				err = -EACCES;
85 				goto out;
86 			}
87 			BUG();
88 		}
89 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
90 			if (fault & VM_FAULT_MAJOR)
91 				current->maj_flt++;
92 			else
93 				current->min_flt++;
94 			if (fault & VM_FAULT_RETRY) {
95 				flags &= ~FAULT_FLAG_ALLOW_RETRY;
96 				flags |= FAULT_FLAG_TRIED;
97 
98 				goto retry;
99 			}
100 		}
101 
102 		pgd = pgd_offset(mm, address);
103 		pud = pud_offset(pgd, address);
104 		pmd = pmd_offset(pud, address);
105 		pte = pte_offset_kernel(pmd, address);
106 	} while (!pte_present(*pte));
107 	err = 0;
108 	/*
109 	 * The below warning was added in place of
110 	 *	pte_mkyoung(); if (is_write) pte_mkdirty();
111 	 * If it's triggered, we'd see normally a hang here (a clean pte is
112 	 * marked read-only to emulate the dirty bit).
113 	 * However, the generic code can mark a PTE writable but clean on a
114 	 * concurrent read fault, triggering this harmlessly. So comment it out.
115 	 */
116 #if 0
117 	WARN_ON(!pte_young(*pte) || (is_write && !pte_dirty(*pte)));
118 #endif
119 	flush_tlb_page(vma, address);
120 out:
121 	up_read(&mm->mmap_sem);
122 out_nosemaphore:
123 	return err;
124 
125 out_of_memory:
126 	/*
127 	 * We ran out of memory, call the OOM killer, and return the userspace
128 	 * (which will retry the fault, or kill us if we got oom-killed).
129 	 */
130 	up_read(&mm->mmap_sem);
131 	if (!is_user)
132 		goto out_nosemaphore;
133 	pagefault_out_of_memory();
134 	return 0;
135 }
136 EXPORT_SYMBOL(handle_page_fault);
137 
138 static void show_segv_info(struct uml_pt_regs *regs)
139 {
140 	struct task_struct *tsk = current;
141 	struct faultinfo *fi = UPT_FAULTINFO(regs);
142 
143 	if (!unhandled_signal(tsk, SIGSEGV))
144 		return;
145 
146 	if (!printk_ratelimit())
147 		return;
148 
149 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %x",
150 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
151 		tsk->comm, task_pid_nr(tsk), FAULT_ADDRESS(*fi),
152 		(void *)UPT_IP(regs), (void *)UPT_SP(regs),
153 		fi->error_code);
154 
155 	print_vma_addr(KERN_CONT " in ", UPT_IP(regs));
156 	printk(KERN_CONT "\n");
157 }
158 
159 static void bad_segv(struct faultinfo fi, unsigned long ip)
160 {
161 	struct siginfo si;
162 
163 	si.si_signo = SIGSEGV;
164 	si.si_code = SEGV_ACCERR;
165 	si.si_addr = (void __user *) FAULT_ADDRESS(fi);
166 	current->thread.arch.faultinfo = fi;
167 	force_sig_info(SIGSEGV, &si, current);
168 }
169 
170 void fatal_sigsegv(void)
171 {
172 	force_sigsegv(SIGSEGV, current);
173 	do_signal();
174 	/*
175 	 * This is to tell gcc that we're not returning - do_signal
176 	 * can, in general, return, but in this case, it's not, since
177 	 * we just got a fatal SIGSEGV queued.
178 	 */
179 	os_dump_core();
180 }
181 
182 void segv_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
183 {
184 	struct faultinfo * fi = UPT_FAULTINFO(regs);
185 
186 	if (UPT_IS_USER(regs) && !SEGV_IS_FIXABLE(fi)) {
187 		show_segv_info(regs);
188 		bad_segv(*fi, UPT_IP(regs));
189 		return;
190 	}
191 	segv(*fi, UPT_IP(regs), UPT_IS_USER(regs), regs);
192 }
193 
194 /*
195  * We give a *copy* of the faultinfo in the regs to segv.
196  * This must be done, since nesting SEGVs could overwrite
197  * the info in the regs. A pointer to the info then would
198  * give us bad data!
199  */
200 unsigned long segv(struct faultinfo fi, unsigned long ip, int is_user,
201 		   struct uml_pt_regs *regs)
202 {
203 	struct siginfo si;
204 	jmp_buf *catcher;
205 	int err;
206 	int is_write = FAULT_WRITE(fi);
207 	unsigned long address = FAULT_ADDRESS(fi);
208 
209 	if (!is_user && regs)
210 		current->thread.segv_regs = container_of(regs, struct pt_regs, regs);
211 
212 	if (!is_user && (address >= start_vm) && (address < end_vm)) {
213 		flush_tlb_kernel_vm();
214 		goto out;
215 	}
216 	else if (current->mm == NULL) {
217 		show_regs(container_of(regs, struct pt_regs, regs));
218 		panic("Segfault with no mm");
219 	}
220 
221 	if (SEGV_IS_FIXABLE(&fi) || SEGV_MAYBE_FIXABLE(&fi))
222 		err = handle_page_fault(address, ip, is_write, is_user,
223 					&si.si_code);
224 	else {
225 		err = -EFAULT;
226 		/*
227 		 * A thread accessed NULL, we get a fault, but CR2 is invalid.
228 		 * This code is used in __do_copy_from_user() of TT mode.
229 		 * XXX tt mode is gone, so maybe this isn't needed any more
230 		 */
231 		address = 0;
232 	}
233 
234 	catcher = current->thread.fault_catcher;
235 	if (!err)
236 		goto out;
237 	else if (catcher != NULL) {
238 		current->thread.fault_addr = (void *) address;
239 		UML_LONGJMP(catcher, 1);
240 	}
241 	else if (current->thread.fault_addr != NULL)
242 		panic("fault_addr set but no fault catcher");
243 	else if (!is_user && arch_fixup(ip, regs))
244 		goto out;
245 
246 	if (!is_user) {
247 		show_regs(container_of(regs, struct pt_regs, regs));
248 		panic("Kernel mode fault at addr 0x%lx, ip 0x%lx",
249 		      address, ip);
250 	}
251 
252 	show_segv_info(regs);
253 
254 	if (err == -EACCES) {
255 		si.si_signo = SIGBUS;
256 		si.si_errno = 0;
257 		si.si_code = BUS_ADRERR;
258 		si.si_addr = (void __user *)address;
259 		current->thread.arch.faultinfo = fi;
260 		force_sig_info(SIGBUS, &si, current);
261 	} else {
262 		BUG_ON(err != -EFAULT);
263 		si.si_signo = SIGSEGV;
264 		si.si_addr = (void __user *) address;
265 		current->thread.arch.faultinfo = fi;
266 		force_sig_info(SIGSEGV, &si, current);
267 	}
268 
269 out:
270 	if (regs)
271 		current->thread.segv_regs = NULL;
272 
273 	return 0;
274 }
275 
276 void relay_signal(int sig, struct siginfo *si, struct uml_pt_regs *regs)
277 {
278 	struct faultinfo *fi;
279 	struct siginfo clean_si;
280 
281 	if (!UPT_IS_USER(regs)) {
282 		if (sig == SIGBUS)
283 			printk(KERN_ERR "Bus error - the host /dev/shm or /tmp "
284 			       "mount likely just ran out of space\n");
285 		panic("Kernel mode signal %d", sig);
286 	}
287 
288 	arch_examine_signal(sig, regs);
289 
290 	memset(&clean_si, 0, sizeof(clean_si));
291 	clean_si.si_signo = si->si_signo;
292 	clean_si.si_errno = si->si_errno;
293 	clean_si.si_code = si->si_code;
294 	switch (sig) {
295 	case SIGILL:
296 	case SIGFPE:
297 	case SIGSEGV:
298 	case SIGBUS:
299 	case SIGTRAP:
300 		fi = UPT_FAULTINFO(regs);
301 		clean_si.si_addr = (void __user *) FAULT_ADDRESS(*fi);
302 		current->thread.arch.faultinfo = *fi;
303 #ifdef __ARCH_SI_TRAPNO
304 		clean_si.si_trapno = si->si_trapno;
305 #endif
306 		break;
307 	default:
308 		printk(KERN_ERR "Attempted to relay unknown signal %d (si_code = %d)\n",
309 			sig, si->si_code);
310 	}
311 
312 	force_sig_info(sig, &clean_si, current);
313 }
314 
315 void bus_handler(int sig, struct siginfo *si, struct uml_pt_regs *regs)
316 {
317 	if (current->thread.fault_catcher != NULL)
318 		UML_LONGJMP(current->thread.fault_catcher, 1);
319 	else
320 		relay_signal(sig, si, regs);
321 }
322 
323 void winch(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
324 {
325 	do_IRQ(WINCH_IRQ, regs);
326 }
327 
328 void trap_init(void)
329 {
330 }
331