xref: /openbmc/linux/arch/um/kernel/process.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
3  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5  * Copyright 2003 PathScale, Inc.
6  * Licensed under the GPL
7  */
8 
9 #include <linux/stddef.h>
10 #include <linux/err.h>
11 #include <linux/hardirq.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/personality.h>
15 #include <linux/proc_fs.h>
16 #include <linux/ptrace.h>
17 #include <linux/random.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/seq_file.h>
21 #include <linux/tick.h>
22 #include <linux/threads.h>
23 #include <linux/tracehook.h>
24 #include <asm/current.h>
25 #include <asm/pgtable.h>
26 #include <asm/mmu_context.h>
27 #include <asm/uaccess.h>
28 #include <as-layout.h>
29 #include <kern_util.h>
30 #include <os.h>
31 #include <skas.h>
32 #include <timer-internal.h>
33 
34 /*
35  * This is a per-cpu array.  A processor only modifies its entry and it only
36  * cares about its entry, so it's OK if another processor is modifying its
37  * entry.
38  */
39 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
40 
41 static inline int external_pid(void)
42 {
43 	/* FIXME: Need to look up userspace_pid by cpu */
44 	return userspace_pid[0];
45 }
46 
47 int pid_to_processor_id(int pid)
48 {
49 	int i;
50 
51 	for (i = 0; i < ncpus; i++) {
52 		if (cpu_tasks[i].pid == pid)
53 			return i;
54 	}
55 	return -1;
56 }
57 
58 void free_stack(unsigned long stack, int order)
59 {
60 	free_pages(stack, order);
61 }
62 
63 unsigned long alloc_stack(int order, int atomic)
64 {
65 	unsigned long page;
66 	gfp_t flags = GFP_KERNEL;
67 
68 	if (atomic)
69 		flags = GFP_ATOMIC;
70 	page = __get_free_pages(flags, order);
71 
72 	return page;
73 }
74 
75 static inline void set_current(struct task_struct *task)
76 {
77 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
78 		{ external_pid(), task });
79 }
80 
81 extern void arch_switch_to(struct task_struct *to);
82 
83 void *__switch_to(struct task_struct *from, struct task_struct *to)
84 {
85 	to->thread.prev_sched = from;
86 	set_current(to);
87 
88 	switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
89 	arch_switch_to(current);
90 
91 	return current->thread.prev_sched;
92 }
93 
94 void interrupt_end(void)
95 {
96 	struct pt_regs *regs = &current->thread.regs;
97 
98 	if (need_resched())
99 		schedule();
100 	if (test_thread_flag(TIF_SIGPENDING))
101 		do_signal(regs);
102 	if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
103 		tracehook_notify_resume(regs);
104 }
105 
106 int get_current_pid(void)
107 {
108 	return task_pid_nr(current);
109 }
110 
111 /*
112  * This is called magically, by its address being stuffed in a jmp_buf
113  * and being longjmp-d to.
114  */
115 void new_thread_handler(void)
116 {
117 	int (*fn)(void *), n;
118 	void *arg;
119 
120 	if (current->thread.prev_sched != NULL)
121 		schedule_tail(current->thread.prev_sched);
122 	current->thread.prev_sched = NULL;
123 
124 	fn = current->thread.request.u.thread.proc;
125 	arg = current->thread.request.u.thread.arg;
126 
127 	/*
128 	 * callback returns only if the kernel thread execs a process
129 	 */
130 	n = fn(arg);
131 	userspace(&current->thread.regs.regs);
132 }
133 
134 /* Called magically, see new_thread_handler above */
135 void fork_handler(void)
136 {
137 	force_flush_all();
138 
139 	schedule_tail(current->thread.prev_sched);
140 
141 	/*
142 	 * XXX: if interrupt_end() calls schedule, this call to
143 	 * arch_switch_to isn't needed. We could want to apply this to
144 	 * improve performance. -bb
145 	 */
146 	arch_switch_to(current);
147 
148 	current->thread.prev_sched = NULL;
149 
150 	userspace(&current->thread.regs.regs);
151 }
152 
153 int copy_thread(unsigned long clone_flags, unsigned long sp,
154 		unsigned long arg, struct task_struct * p)
155 {
156 	void (*handler)(void);
157 	int kthread = current->flags & PF_KTHREAD;
158 	int ret = 0;
159 
160 	p->thread = (struct thread_struct) INIT_THREAD;
161 
162 	if (!kthread) {
163 	  	memcpy(&p->thread.regs.regs, current_pt_regs(),
164 		       sizeof(p->thread.regs.regs));
165 		PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
166 		if (sp != 0)
167 			REGS_SP(p->thread.regs.regs.gp) = sp;
168 
169 		handler = fork_handler;
170 
171 		arch_copy_thread(&current->thread.arch, &p->thread.arch);
172 	} else {
173 		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
174 		p->thread.request.u.thread.proc = (int (*)(void *))sp;
175 		p->thread.request.u.thread.arg = (void *)arg;
176 		handler = new_thread_handler;
177 	}
178 
179 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
180 
181 	if (!kthread) {
182 		clear_flushed_tls(p);
183 
184 		/*
185 		 * Set a new TLS for the child thread?
186 		 */
187 		if (clone_flags & CLONE_SETTLS)
188 			ret = arch_copy_tls(p);
189 	}
190 
191 	return ret;
192 }
193 
194 void initial_thread_cb(void (*proc)(void *), void *arg)
195 {
196 	int save_kmalloc_ok = kmalloc_ok;
197 
198 	kmalloc_ok = 0;
199 	initial_thread_cb_skas(proc, arg);
200 	kmalloc_ok = save_kmalloc_ok;
201 }
202 
203 void arch_cpu_idle(void)
204 {
205 	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
206 	os_idle_sleep(UM_NSEC_PER_SEC);
207 	local_irq_enable();
208 }
209 
210 int __cant_sleep(void) {
211 	return in_atomic() || irqs_disabled() || in_interrupt();
212 	/* Is in_interrupt() really needed? */
213 }
214 
215 int user_context(unsigned long sp)
216 {
217 	unsigned long stack;
218 
219 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
220 	return stack != (unsigned long) current_thread_info();
221 }
222 
223 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
224 
225 void do_uml_exitcalls(void)
226 {
227 	exitcall_t *call;
228 
229 	call = &__uml_exitcall_end;
230 	while (--call >= &__uml_exitcall_begin)
231 		(*call)();
232 }
233 
234 char *uml_strdup(const char *string)
235 {
236 	return kstrdup(string, GFP_KERNEL);
237 }
238 EXPORT_SYMBOL(uml_strdup);
239 
240 int copy_to_user_proc(void __user *to, void *from, int size)
241 {
242 	return copy_to_user(to, from, size);
243 }
244 
245 int copy_from_user_proc(void *to, void __user *from, int size)
246 {
247 	return copy_from_user(to, from, size);
248 }
249 
250 int clear_user_proc(void __user *buf, int size)
251 {
252 	return clear_user(buf, size);
253 }
254 
255 int strlen_user_proc(char __user *str)
256 {
257 	return strlen_user(str);
258 }
259 
260 int cpu(void)
261 {
262 	return current_thread_info()->cpu;
263 }
264 
265 static atomic_t using_sysemu = ATOMIC_INIT(0);
266 int sysemu_supported;
267 
268 void set_using_sysemu(int value)
269 {
270 	if (value > sysemu_supported)
271 		return;
272 	atomic_set(&using_sysemu, value);
273 }
274 
275 int get_using_sysemu(void)
276 {
277 	return atomic_read(&using_sysemu);
278 }
279 
280 static int sysemu_proc_show(struct seq_file *m, void *v)
281 {
282 	seq_printf(m, "%d\n", get_using_sysemu());
283 	return 0;
284 }
285 
286 static int sysemu_proc_open(struct inode *inode, struct file *file)
287 {
288 	return single_open(file, sysemu_proc_show, NULL);
289 }
290 
291 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
292 				 size_t count, loff_t *pos)
293 {
294 	char tmp[2];
295 
296 	if (copy_from_user(tmp, buf, 1))
297 		return -EFAULT;
298 
299 	if (tmp[0] >= '0' && tmp[0] <= '2')
300 		set_using_sysemu(tmp[0] - '0');
301 	/* We use the first char, but pretend to write everything */
302 	return count;
303 }
304 
305 static const struct file_operations sysemu_proc_fops = {
306 	.owner		= THIS_MODULE,
307 	.open		= sysemu_proc_open,
308 	.read		= seq_read,
309 	.llseek		= seq_lseek,
310 	.release	= single_release,
311 	.write		= sysemu_proc_write,
312 };
313 
314 int __init make_proc_sysemu(void)
315 {
316 	struct proc_dir_entry *ent;
317 	if (!sysemu_supported)
318 		return 0;
319 
320 	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
321 
322 	if (ent == NULL)
323 	{
324 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
325 		return 0;
326 	}
327 
328 	return 0;
329 }
330 
331 late_initcall(make_proc_sysemu);
332 
333 int singlestepping(void * t)
334 {
335 	struct task_struct *task = t ? t : current;
336 
337 	if (!(task->ptrace & PT_DTRACE))
338 		return 0;
339 
340 	if (task->thread.singlestep_syscall)
341 		return 1;
342 
343 	return 2;
344 }
345 
346 /*
347  * Only x86 and x86_64 have an arch_align_stack().
348  * All other arches have "#define arch_align_stack(x) (x)"
349  * in their asm/exec.h
350  * As this is included in UML from asm-um/system-generic.h,
351  * we can use it to behave as the subarch does.
352  */
353 #ifndef arch_align_stack
354 unsigned long arch_align_stack(unsigned long sp)
355 {
356 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
357 		sp -= get_random_int() % 8192;
358 	return sp & ~0xf;
359 }
360 #endif
361 
362 unsigned long get_wchan(struct task_struct *p)
363 {
364 	unsigned long stack_page, sp, ip;
365 	bool seen_sched = 0;
366 
367 	if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
368 		return 0;
369 
370 	stack_page = (unsigned long) task_stack_page(p);
371 	/* Bail if the process has no kernel stack for some reason */
372 	if (stack_page == 0)
373 		return 0;
374 
375 	sp = p->thread.switch_buf->JB_SP;
376 	/*
377 	 * Bail if the stack pointer is below the bottom of the kernel
378 	 * stack for some reason
379 	 */
380 	if (sp < stack_page)
381 		return 0;
382 
383 	while (sp < stack_page + THREAD_SIZE) {
384 		ip = *((unsigned long *) sp);
385 		if (in_sched_functions(ip))
386 			/* Ignore everything until we're above the scheduler */
387 			seen_sched = 1;
388 		else if (kernel_text_address(ip) && seen_sched)
389 			return ip;
390 
391 		sp += sizeof(unsigned long);
392 	}
393 
394 	return 0;
395 }
396 
397 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
398 {
399 	int cpu = current_thread_info()->cpu;
400 
401 	return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
402 }
403 
404