1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Copyright 2003 PathScale, Inc. 4 * Licensed under the GPL 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/err.h> 9 #include <linux/hardirq.h> 10 #include <linux/gfp.h> 11 #include <linux/mm.h> 12 #include <linux/personality.h> 13 #include <linux/proc_fs.h> 14 #include <linux/ptrace.h> 15 #include <linux/random.h> 16 #include <linux/sched.h> 17 #include <linux/tick.h> 18 #include <linux/threads.h> 19 #include <asm/current.h> 20 #include <asm/pgtable.h> 21 #include <asm/uaccess.h> 22 #include "as-layout.h" 23 #include "kern_util.h" 24 #include "os.h" 25 #include "skas.h" 26 #include "tlb.h" 27 28 /* 29 * This is a per-cpu array. A processor only modifies its entry and it only 30 * cares about its entry, so it's OK if another processor is modifying its 31 * entry. 32 */ 33 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } }; 34 35 static inline int external_pid(void) 36 { 37 /* FIXME: Need to look up userspace_pid by cpu */ 38 return userspace_pid[0]; 39 } 40 41 int pid_to_processor_id(int pid) 42 { 43 int i; 44 45 for (i = 0; i < ncpus; i++) { 46 if (cpu_tasks[i].pid == pid) 47 return i; 48 } 49 return -1; 50 } 51 52 void free_stack(unsigned long stack, int order) 53 { 54 free_pages(stack, order); 55 } 56 57 unsigned long alloc_stack(int order, int atomic) 58 { 59 unsigned long page; 60 gfp_t flags = GFP_KERNEL; 61 62 if (atomic) 63 flags = GFP_ATOMIC; 64 page = __get_free_pages(flags, order); 65 66 return page; 67 } 68 69 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 70 { 71 int pid; 72 73 current->thread.request.u.thread.proc = fn; 74 current->thread.request.u.thread.arg = arg; 75 pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0, 76 ¤t->thread.regs, 0, NULL, NULL); 77 return pid; 78 } 79 80 static inline void set_current(struct task_struct *task) 81 { 82 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task) 83 { external_pid(), task }); 84 } 85 86 extern void arch_switch_to(struct task_struct *to); 87 88 void *_switch_to(void *prev, void *next, void *last) 89 { 90 struct task_struct *from = prev; 91 struct task_struct *to = next; 92 93 to->thread.prev_sched = from; 94 set_current(to); 95 96 do { 97 current->thread.saved_task = NULL; 98 99 switch_threads(&from->thread.switch_buf, 100 &to->thread.switch_buf); 101 102 arch_switch_to(current); 103 104 if (current->thread.saved_task) 105 show_regs(&(current->thread.regs)); 106 to = current->thread.saved_task; 107 from = current; 108 } while (current->thread.saved_task); 109 110 return current->thread.prev_sched; 111 112 } 113 114 void interrupt_end(void) 115 { 116 if (need_resched()) 117 schedule(); 118 if (test_tsk_thread_flag(current, TIF_SIGPENDING)) 119 do_signal(); 120 } 121 122 void exit_thread(void) 123 { 124 } 125 126 void *get_current(void) 127 { 128 return current; 129 } 130 131 /* 132 * This is called magically, by its address being stuffed in a jmp_buf 133 * and being longjmp-d to. 134 */ 135 void new_thread_handler(void) 136 { 137 int (*fn)(void *), n; 138 void *arg; 139 140 if (current->thread.prev_sched != NULL) 141 schedule_tail(current->thread.prev_sched); 142 current->thread.prev_sched = NULL; 143 144 fn = current->thread.request.u.thread.proc; 145 arg = current->thread.request.u.thread.arg; 146 147 /* 148 * The return value is 1 if the kernel thread execs a process, 149 * 0 if it just exits 150 */ 151 n = run_kernel_thread(fn, arg, ¤t->thread.exec_buf); 152 if (n == 1) { 153 /* Handle any immediate reschedules or signals */ 154 interrupt_end(); 155 userspace(¤t->thread.regs.regs); 156 } 157 else do_exit(0); 158 } 159 160 /* Called magically, see new_thread_handler above */ 161 void fork_handler(void) 162 { 163 force_flush_all(); 164 165 schedule_tail(current->thread.prev_sched); 166 167 /* 168 * XXX: if interrupt_end() calls schedule, this call to 169 * arch_switch_to isn't needed. We could want to apply this to 170 * improve performance. -bb 171 */ 172 arch_switch_to(current); 173 174 current->thread.prev_sched = NULL; 175 176 /* Handle any immediate reschedules or signals */ 177 interrupt_end(); 178 179 userspace(¤t->thread.regs.regs); 180 } 181 182 int copy_thread(unsigned long clone_flags, unsigned long sp, 183 unsigned long stack_top, struct task_struct * p, 184 struct pt_regs *regs) 185 { 186 void (*handler)(void); 187 int ret = 0; 188 189 p->thread = (struct thread_struct) INIT_THREAD; 190 191 if (current->thread.forking) { 192 memcpy(&p->thread.regs.regs, ®s->regs, 193 sizeof(p->thread.regs.regs)); 194 REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0); 195 if (sp != 0) 196 REGS_SP(p->thread.regs.regs.gp) = sp; 197 198 handler = fork_handler; 199 200 arch_copy_thread(¤t->thread.arch, &p->thread.arch); 201 } 202 else { 203 get_safe_registers(p->thread.regs.regs.gp); 204 p->thread.request.u.thread = current->thread.request.u.thread; 205 handler = new_thread_handler; 206 } 207 208 new_thread(task_stack_page(p), &p->thread.switch_buf, handler); 209 210 if (current->thread.forking) { 211 clear_flushed_tls(p); 212 213 /* 214 * Set a new TLS for the child thread? 215 */ 216 if (clone_flags & CLONE_SETTLS) 217 ret = arch_copy_tls(p); 218 } 219 220 return ret; 221 } 222 223 void initial_thread_cb(void (*proc)(void *), void *arg) 224 { 225 int save_kmalloc_ok = kmalloc_ok; 226 227 kmalloc_ok = 0; 228 initial_thread_cb_skas(proc, arg); 229 kmalloc_ok = save_kmalloc_ok; 230 } 231 232 void default_idle(void) 233 { 234 unsigned long long nsecs; 235 236 while (1) { 237 /* endless idle loop with no priority at all */ 238 239 /* 240 * although we are an idle CPU, we do not want to 241 * get into the scheduler unnecessarily. 242 */ 243 if (need_resched()) 244 schedule(); 245 246 tick_nohz_stop_sched_tick(1); 247 nsecs = disable_timer(); 248 idle_sleep(nsecs); 249 tick_nohz_restart_sched_tick(); 250 } 251 } 252 253 void cpu_idle(void) 254 { 255 cpu_tasks[current_thread_info()->cpu].pid = os_getpid(); 256 default_idle(); 257 } 258 259 int __cant_sleep(void) { 260 return in_atomic() || irqs_disabled() || in_interrupt(); 261 /* Is in_interrupt() really needed? */ 262 } 263 264 int user_context(unsigned long sp) 265 { 266 unsigned long stack; 267 268 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER); 269 return stack != (unsigned long) current_thread_info(); 270 } 271 272 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end; 273 274 void do_uml_exitcalls(void) 275 { 276 exitcall_t *call; 277 278 call = &__uml_exitcall_end; 279 while (--call >= &__uml_exitcall_begin) 280 (*call)(); 281 } 282 283 char *uml_strdup(const char *string) 284 { 285 return kstrdup(string, GFP_KERNEL); 286 } 287 288 int copy_to_user_proc(void __user *to, void *from, int size) 289 { 290 return copy_to_user(to, from, size); 291 } 292 293 int copy_from_user_proc(void *to, void __user *from, int size) 294 { 295 return copy_from_user(to, from, size); 296 } 297 298 int clear_user_proc(void __user *buf, int size) 299 { 300 return clear_user(buf, size); 301 } 302 303 int strlen_user_proc(char __user *str) 304 { 305 return strlen_user(str); 306 } 307 308 int smp_sigio_handler(void) 309 { 310 #ifdef CONFIG_SMP 311 int cpu = current_thread_info()->cpu; 312 IPI_handler(cpu); 313 if (cpu != 0) 314 return 1; 315 #endif 316 return 0; 317 } 318 319 int cpu(void) 320 { 321 return current_thread_info()->cpu; 322 } 323 324 static atomic_t using_sysemu = ATOMIC_INIT(0); 325 int sysemu_supported; 326 327 void set_using_sysemu(int value) 328 { 329 if (value > sysemu_supported) 330 return; 331 atomic_set(&using_sysemu, value); 332 } 333 334 int get_using_sysemu(void) 335 { 336 return atomic_read(&using_sysemu); 337 } 338 339 static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data) 340 { 341 if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size) 342 /* No overflow */ 343 *eof = 1; 344 345 return strlen(buf); 346 } 347 348 static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data) 349 { 350 char tmp[2]; 351 352 if (copy_from_user(tmp, buf, 1)) 353 return -EFAULT; 354 355 if (tmp[0] >= '0' && tmp[0] <= '2') 356 set_using_sysemu(tmp[0] - '0'); 357 /* We use the first char, but pretend to write everything */ 358 return count; 359 } 360 361 int __init make_proc_sysemu(void) 362 { 363 struct proc_dir_entry *ent; 364 if (!sysemu_supported) 365 return 0; 366 367 ent = create_proc_entry("sysemu", 0600, NULL); 368 369 if (ent == NULL) 370 { 371 printk(KERN_WARNING "Failed to register /proc/sysemu\n"); 372 return 0; 373 } 374 375 ent->read_proc = proc_read_sysemu; 376 ent->write_proc = proc_write_sysemu; 377 378 return 0; 379 } 380 381 late_initcall(make_proc_sysemu); 382 383 int singlestepping(void * t) 384 { 385 struct task_struct *task = t ? t : current; 386 387 if (!(task->ptrace & PT_DTRACE)) 388 return 0; 389 390 if (task->thread.singlestep_syscall) 391 return 1; 392 393 return 2; 394 } 395 396 /* 397 * Only x86 and x86_64 have an arch_align_stack(). 398 * All other arches have "#define arch_align_stack(x) (x)" 399 * in their asm/system.h 400 * As this is included in UML from asm-um/system-generic.h, 401 * we can use it to behave as the subarch does. 402 */ 403 #ifndef arch_align_stack 404 unsigned long arch_align_stack(unsigned long sp) 405 { 406 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 407 sp -= get_random_int() % 8192; 408 return sp & ~0xf; 409 } 410 #endif 411 412 unsigned long get_wchan(struct task_struct *p) 413 { 414 unsigned long stack_page, sp, ip; 415 bool seen_sched = 0; 416 417 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING)) 418 return 0; 419 420 stack_page = (unsigned long) task_stack_page(p); 421 /* Bail if the process has no kernel stack for some reason */ 422 if (stack_page == 0) 423 return 0; 424 425 sp = p->thread.switch_buf->JB_SP; 426 /* 427 * Bail if the stack pointer is below the bottom of the kernel 428 * stack for some reason 429 */ 430 if (sp < stack_page) 431 return 0; 432 433 while (sp < stack_page + THREAD_SIZE) { 434 ip = *((unsigned long *) sp); 435 if (in_sched_functions(ip)) 436 /* Ignore everything until we're above the scheduler */ 437 seen_sched = 1; 438 else if (kernel_text_address(ip) && seen_sched) 439 return ip; 440 441 sp += sizeof(unsigned long); 442 } 443 444 return 0; 445 } 446 447 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu) 448 { 449 int cpu = current_thread_info()->cpu; 450 451 return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu); 452 } 453 454