xref: /openbmc/linux/arch/um/kernel/process.c (revision ae213c44)
1 /*
2  * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
3  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5  * Copyright 2003 PathScale, Inc.
6  * Licensed under the GPL
7  */
8 
9 #include <linux/stddef.h>
10 #include <linux/err.h>
11 #include <linux/hardirq.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/personality.h>
15 #include <linux/proc_fs.h>
16 #include <linux/ptrace.h>
17 #include <linux/random.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/seq_file.h>
24 #include <linux/tick.h>
25 #include <linux/threads.h>
26 #include <linux/tracehook.h>
27 #include <asm/current.h>
28 #include <asm/pgtable.h>
29 #include <asm/mmu_context.h>
30 #include <linux/uaccess.h>
31 #include <as-layout.h>
32 #include <kern_util.h>
33 #include <os.h>
34 #include <skas.h>
35 #include <timer-internal.h>
36 
37 /*
38  * This is a per-cpu array.  A processor only modifies its entry and it only
39  * cares about its entry, so it's OK if another processor is modifying its
40  * entry.
41  */
42 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
43 
44 static inline int external_pid(void)
45 {
46 	/* FIXME: Need to look up userspace_pid by cpu */
47 	return userspace_pid[0];
48 }
49 
50 int pid_to_processor_id(int pid)
51 {
52 	int i;
53 
54 	for (i = 0; i < ncpus; i++) {
55 		if (cpu_tasks[i].pid == pid)
56 			return i;
57 	}
58 	return -1;
59 }
60 
61 void free_stack(unsigned long stack, int order)
62 {
63 	free_pages(stack, order);
64 }
65 
66 unsigned long alloc_stack(int order, int atomic)
67 {
68 	unsigned long page;
69 	gfp_t flags = GFP_KERNEL;
70 
71 	if (atomic)
72 		flags = GFP_ATOMIC;
73 	page = __get_free_pages(flags, order);
74 
75 	return page;
76 }
77 
78 static inline void set_current(struct task_struct *task)
79 {
80 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
81 		{ external_pid(), task });
82 }
83 
84 extern void arch_switch_to(struct task_struct *to);
85 
86 void *__switch_to(struct task_struct *from, struct task_struct *to)
87 {
88 	to->thread.prev_sched = from;
89 	set_current(to);
90 
91 	switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
92 	arch_switch_to(current);
93 
94 	return current->thread.prev_sched;
95 }
96 
97 void interrupt_end(void)
98 {
99 	struct pt_regs *regs = &current->thread.regs;
100 
101 	if (need_resched())
102 		schedule();
103 	if (test_thread_flag(TIF_SIGPENDING))
104 		do_signal(regs);
105 	if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
106 		tracehook_notify_resume(regs);
107 }
108 
109 int get_current_pid(void)
110 {
111 	return task_pid_nr(current);
112 }
113 
114 /*
115  * This is called magically, by its address being stuffed in a jmp_buf
116  * and being longjmp-d to.
117  */
118 void new_thread_handler(void)
119 {
120 	int (*fn)(void *), n;
121 	void *arg;
122 
123 	if (current->thread.prev_sched != NULL)
124 		schedule_tail(current->thread.prev_sched);
125 	current->thread.prev_sched = NULL;
126 
127 	fn = current->thread.request.u.thread.proc;
128 	arg = current->thread.request.u.thread.arg;
129 
130 	/*
131 	 * callback returns only if the kernel thread execs a process
132 	 */
133 	n = fn(arg);
134 	userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
135 }
136 
137 /* Called magically, see new_thread_handler above */
138 void fork_handler(void)
139 {
140 	force_flush_all();
141 
142 	schedule_tail(current->thread.prev_sched);
143 
144 	/*
145 	 * XXX: if interrupt_end() calls schedule, this call to
146 	 * arch_switch_to isn't needed. We could want to apply this to
147 	 * improve performance. -bb
148 	 */
149 	arch_switch_to(current);
150 
151 	current->thread.prev_sched = NULL;
152 
153 	userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
154 }
155 
156 int copy_thread(unsigned long clone_flags, unsigned long sp,
157 		unsigned long arg, struct task_struct * p)
158 {
159 	void (*handler)(void);
160 	int kthread = current->flags & PF_KTHREAD;
161 	int ret = 0;
162 
163 	p->thread = (struct thread_struct) INIT_THREAD;
164 
165 	if (!kthread) {
166 	  	memcpy(&p->thread.regs.regs, current_pt_regs(),
167 		       sizeof(p->thread.regs.regs));
168 		PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
169 		if (sp != 0)
170 			REGS_SP(p->thread.regs.regs.gp) = sp;
171 
172 		handler = fork_handler;
173 
174 		arch_copy_thread(&current->thread.arch, &p->thread.arch);
175 	} else {
176 		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
177 		p->thread.request.u.thread.proc = (int (*)(void *))sp;
178 		p->thread.request.u.thread.arg = (void *)arg;
179 		handler = new_thread_handler;
180 	}
181 
182 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
183 
184 	if (!kthread) {
185 		clear_flushed_tls(p);
186 
187 		/*
188 		 * Set a new TLS for the child thread?
189 		 */
190 		if (clone_flags & CLONE_SETTLS)
191 			ret = arch_copy_tls(p);
192 	}
193 
194 	return ret;
195 }
196 
197 void initial_thread_cb(void (*proc)(void *), void *arg)
198 {
199 	int save_kmalloc_ok = kmalloc_ok;
200 
201 	kmalloc_ok = 0;
202 	initial_thread_cb_skas(proc, arg);
203 	kmalloc_ok = save_kmalloc_ok;
204 }
205 
206 void arch_cpu_idle(void)
207 {
208 	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
209 	os_idle_sleep(UM_NSEC_PER_SEC);
210 	local_irq_enable();
211 }
212 
213 int __cant_sleep(void) {
214 	return in_atomic() || irqs_disabled() || in_interrupt();
215 	/* Is in_interrupt() really needed? */
216 }
217 
218 int user_context(unsigned long sp)
219 {
220 	unsigned long stack;
221 
222 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
223 	return stack != (unsigned long) current_thread_info();
224 }
225 
226 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
227 
228 void do_uml_exitcalls(void)
229 {
230 	exitcall_t *call;
231 
232 	call = &__uml_exitcall_end;
233 	while (--call >= &__uml_exitcall_begin)
234 		(*call)();
235 }
236 
237 char *uml_strdup(const char *string)
238 {
239 	return kstrdup(string, GFP_KERNEL);
240 }
241 EXPORT_SYMBOL(uml_strdup);
242 
243 int copy_to_user_proc(void __user *to, void *from, int size)
244 {
245 	return copy_to_user(to, from, size);
246 }
247 
248 int copy_from_user_proc(void *to, void __user *from, int size)
249 {
250 	return copy_from_user(to, from, size);
251 }
252 
253 int clear_user_proc(void __user *buf, int size)
254 {
255 	return clear_user(buf, size);
256 }
257 
258 int cpu(void)
259 {
260 	return current_thread_info()->cpu;
261 }
262 
263 static atomic_t using_sysemu = ATOMIC_INIT(0);
264 int sysemu_supported;
265 
266 void set_using_sysemu(int value)
267 {
268 	if (value > sysemu_supported)
269 		return;
270 	atomic_set(&using_sysemu, value);
271 }
272 
273 int get_using_sysemu(void)
274 {
275 	return atomic_read(&using_sysemu);
276 }
277 
278 static int sysemu_proc_show(struct seq_file *m, void *v)
279 {
280 	seq_printf(m, "%d\n", get_using_sysemu());
281 	return 0;
282 }
283 
284 static int sysemu_proc_open(struct inode *inode, struct file *file)
285 {
286 	return single_open(file, sysemu_proc_show, NULL);
287 }
288 
289 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
290 				 size_t count, loff_t *pos)
291 {
292 	char tmp[2];
293 
294 	if (copy_from_user(tmp, buf, 1))
295 		return -EFAULT;
296 
297 	if (tmp[0] >= '0' && tmp[0] <= '2')
298 		set_using_sysemu(tmp[0] - '0');
299 	/* We use the first char, but pretend to write everything */
300 	return count;
301 }
302 
303 static const struct file_operations sysemu_proc_fops = {
304 	.owner		= THIS_MODULE,
305 	.open		= sysemu_proc_open,
306 	.read		= seq_read,
307 	.llseek		= seq_lseek,
308 	.release	= single_release,
309 	.write		= sysemu_proc_write,
310 };
311 
312 int __init make_proc_sysemu(void)
313 {
314 	struct proc_dir_entry *ent;
315 	if (!sysemu_supported)
316 		return 0;
317 
318 	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
319 
320 	if (ent == NULL)
321 	{
322 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
323 		return 0;
324 	}
325 
326 	return 0;
327 }
328 
329 late_initcall(make_proc_sysemu);
330 
331 int singlestepping(void * t)
332 {
333 	struct task_struct *task = t ? t : current;
334 
335 	if (!(task->ptrace & PT_DTRACE))
336 		return 0;
337 
338 	if (task->thread.singlestep_syscall)
339 		return 1;
340 
341 	return 2;
342 }
343 
344 /*
345  * Only x86 and x86_64 have an arch_align_stack().
346  * All other arches have "#define arch_align_stack(x) (x)"
347  * in their asm/exec.h
348  * As this is included in UML from asm-um/system-generic.h,
349  * we can use it to behave as the subarch does.
350  */
351 #ifndef arch_align_stack
352 unsigned long arch_align_stack(unsigned long sp)
353 {
354 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
355 		sp -= get_random_int() % 8192;
356 	return sp & ~0xf;
357 }
358 #endif
359 
360 unsigned long get_wchan(struct task_struct *p)
361 {
362 	unsigned long stack_page, sp, ip;
363 	bool seen_sched = 0;
364 
365 	if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
366 		return 0;
367 
368 	stack_page = (unsigned long) task_stack_page(p);
369 	/* Bail if the process has no kernel stack for some reason */
370 	if (stack_page == 0)
371 		return 0;
372 
373 	sp = p->thread.switch_buf->JB_SP;
374 	/*
375 	 * Bail if the stack pointer is below the bottom of the kernel
376 	 * stack for some reason
377 	 */
378 	if (sp < stack_page)
379 		return 0;
380 
381 	while (sp < stack_page + THREAD_SIZE) {
382 		ip = *((unsigned long *) sp);
383 		if (in_sched_functions(ip))
384 			/* Ignore everything until we're above the scheduler */
385 			seen_sched = 1;
386 		else if (kernel_text_address(ip) && seen_sched)
387 			return ip;
388 
389 		sp += sizeof(unsigned long);
390 	}
391 
392 	return 0;
393 }
394 
395 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
396 {
397 	int cpu = current_thread_info()->cpu;
398 
399 	return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
400 }
401 
402