xref: /openbmc/linux/arch/um/kernel/process.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/gfp.h>
11 #include <linux/mm.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/sched.h>
17 #include <linux/tick.h>
18 #include <linux/threads.h>
19 #include <asm/current.h>
20 #include <asm/pgtable.h>
21 #include <asm/uaccess.h>
22 #include "as-layout.h"
23 #include "kern_util.h"
24 #include "os.h"
25 #include "skas.h"
26 #include "tlb.h"
27 
28 /*
29  * This is a per-cpu array.  A processor only modifies its entry and it only
30  * cares about its entry, so it's OK if another processor is modifying its
31  * entry.
32  */
33 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
34 
35 static inline int external_pid(void)
36 {
37 	/* FIXME: Need to look up userspace_pid by cpu */
38 	return userspace_pid[0];
39 }
40 
41 int pid_to_processor_id(int pid)
42 {
43 	int i;
44 
45 	for (i = 0; i < ncpus; i++) {
46 		if (cpu_tasks[i].pid == pid)
47 			return i;
48 	}
49 	return -1;
50 }
51 
52 void free_stack(unsigned long stack, int order)
53 {
54 	free_pages(stack, order);
55 }
56 
57 unsigned long alloc_stack(int order, int atomic)
58 {
59 	unsigned long page;
60 	gfp_t flags = GFP_KERNEL;
61 
62 	if (atomic)
63 		flags = GFP_ATOMIC;
64 	page = __get_free_pages(flags, order);
65 
66 	return page;
67 }
68 
69 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
70 {
71 	int pid;
72 
73 	current->thread.request.u.thread.proc = fn;
74 	current->thread.request.u.thread.arg = arg;
75 	pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
76 		      &current->thread.regs, 0, NULL, NULL);
77 	return pid;
78 }
79 
80 static inline void set_current(struct task_struct *task)
81 {
82 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
83 		{ external_pid(), task });
84 }
85 
86 extern void arch_switch_to(struct task_struct *to);
87 
88 void *_switch_to(void *prev, void *next, void *last)
89 {
90 	struct task_struct *from = prev;
91 	struct task_struct *to = next;
92 
93 	to->thread.prev_sched = from;
94 	set_current(to);
95 
96 	do {
97 		current->thread.saved_task = NULL;
98 
99 		switch_threads(&from->thread.switch_buf,
100 			       &to->thread.switch_buf);
101 
102 		arch_switch_to(current);
103 
104 		if (current->thread.saved_task)
105 			show_regs(&(current->thread.regs));
106 		to = current->thread.saved_task;
107 		from = current;
108 	} while (current->thread.saved_task);
109 
110 	return current->thread.prev_sched;
111 
112 }
113 
114 void interrupt_end(void)
115 {
116 	if (need_resched())
117 		schedule();
118 	if (test_tsk_thread_flag(current, TIF_SIGPENDING))
119 		do_signal();
120 }
121 
122 void exit_thread(void)
123 {
124 }
125 
126 void *get_current(void)
127 {
128 	return current;
129 }
130 
131 /*
132  * This is called magically, by its address being stuffed in a jmp_buf
133  * and being longjmp-d to.
134  */
135 void new_thread_handler(void)
136 {
137 	int (*fn)(void *), n;
138 	void *arg;
139 
140 	if (current->thread.prev_sched != NULL)
141 		schedule_tail(current->thread.prev_sched);
142 	current->thread.prev_sched = NULL;
143 
144 	fn = current->thread.request.u.thread.proc;
145 	arg = current->thread.request.u.thread.arg;
146 
147 	/*
148 	 * The return value is 1 if the kernel thread execs a process,
149 	 * 0 if it just exits
150 	 */
151 	n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
152 	if (n == 1) {
153 		/* Handle any immediate reschedules or signals */
154 		interrupt_end();
155 		userspace(&current->thread.regs.regs);
156 	}
157 	else do_exit(0);
158 }
159 
160 /* Called magically, see new_thread_handler above */
161 void fork_handler(void)
162 {
163 	force_flush_all();
164 
165 	schedule_tail(current->thread.prev_sched);
166 
167 	/*
168 	 * XXX: if interrupt_end() calls schedule, this call to
169 	 * arch_switch_to isn't needed. We could want to apply this to
170 	 * improve performance. -bb
171 	 */
172 	arch_switch_to(current);
173 
174 	current->thread.prev_sched = NULL;
175 
176 	/* Handle any immediate reschedules or signals */
177 	interrupt_end();
178 
179 	userspace(&current->thread.regs.regs);
180 }
181 
182 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
183 		unsigned long stack_top, struct task_struct * p,
184 		struct pt_regs *regs)
185 {
186 	void (*handler)(void);
187 	int ret = 0;
188 
189 	p->thread = (struct thread_struct) INIT_THREAD;
190 
191 	if (current->thread.forking) {
192 	  	memcpy(&p->thread.regs.regs, &regs->regs,
193 		       sizeof(p->thread.regs.regs));
194 		REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0);
195 		if (sp != 0)
196 			REGS_SP(p->thread.regs.regs.gp) = sp;
197 
198 		handler = fork_handler;
199 
200 		arch_copy_thread(&current->thread.arch, &p->thread.arch);
201 	}
202 	else {
203 		get_safe_registers(p->thread.regs.regs.gp);
204 		p->thread.request.u.thread = current->thread.request.u.thread;
205 		handler = new_thread_handler;
206 	}
207 
208 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
209 
210 	if (current->thread.forking) {
211 		clear_flushed_tls(p);
212 
213 		/*
214 		 * Set a new TLS for the child thread?
215 		 */
216 		if (clone_flags & CLONE_SETTLS)
217 			ret = arch_copy_tls(p);
218 	}
219 
220 	return ret;
221 }
222 
223 void initial_thread_cb(void (*proc)(void *), void *arg)
224 {
225 	int save_kmalloc_ok = kmalloc_ok;
226 
227 	kmalloc_ok = 0;
228 	initial_thread_cb_skas(proc, arg);
229 	kmalloc_ok = save_kmalloc_ok;
230 }
231 
232 void default_idle(void)
233 {
234 	unsigned long long nsecs;
235 
236 	while (1) {
237 		/* endless idle loop with no priority at all */
238 
239 		/*
240 		 * although we are an idle CPU, we do not want to
241 		 * get into the scheduler unnecessarily.
242 		 */
243 		if (need_resched())
244 			schedule();
245 
246 		tick_nohz_stop_sched_tick(1);
247 		nsecs = disable_timer();
248 		idle_sleep(nsecs);
249 		tick_nohz_restart_sched_tick();
250 	}
251 }
252 
253 void cpu_idle(void)
254 {
255 	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
256 	default_idle();
257 }
258 
259 int __cant_sleep(void) {
260 	return in_atomic() || irqs_disabled() || in_interrupt();
261 	/* Is in_interrupt() really needed? */
262 }
263 
264 int user_context(unsigned long sp)
265 {
266 	unsigned long stack;
267 
268 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
269 	return stack != (unsigned long) current_thread_info();
270 }
271 
272 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
273 
274 void do_uml_exitcalls(void)
275 {
276 	exitcall_t *call;
277 
278 	call = &__uml_exitcall_end;
279 	while (--call >= &__uml_exitcall_begin)
280 		(*call)();
281 }
282 
283 char *uml_strdup(const char *string)
284 {
285 	return kstrdup(string, GFP_KERNEL);
286 }
287 
288 int copy_to_user_proc(void __user *to, void *from, int size)
289 {
290 	return copy_to_user(to, from, size);
291 }
292 
293 int copy_from_user_proc(void *to, void __user *from, int size)
294 {
295 	return copy_from_user(to, from, size);
296 }
297 
298 int clear_user_proc(void __user *buf, int size)
299 {
300 	return clear_user(buf, size);
301 }
302 
303 int strlen_user_proc(char __user *str)
304 {
305 	return strlen_user(str);
306 }
307 
308 int smp_sigio_handler(void)
309 {
310 #ifdef CONFIG_SMP
311 	int cpu = current_thread_info()->cpu;
312 	IPI_handler(cpu);
313 	if (cpu != 0)
314 		return 1;
315 #endif
316 	return 0;
317 }
318 
319 int cpu(void)
320 {
321 	return current_thread_info()->cpu;
322 }
323 
324 static atomic_t using_sysemu = ATOMIC_INIT(0);
325 int sysemu_supported;
326 
327 void set_using_sysemu(int value)
328 {
329 	if (value > sysemu_supported)
330 		return;
331 	atomic_set(&using_sysemu, value);
332 }
333 
334 int get_using_sysemu(void)
335 {
336 	return atomic_read(&using_sysemu);
337 }
338 
339 static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
340 {
341 	if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size)
342 		/* No overflow */
343 		*eof = 1;
344 
345 	return strlen(buf);
346 }
347 
348 static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data)
349 {
350 	char tmp[2];
351 
352 	if (copy_from_user(tmp, buf, 1))
353 		return -EFAULT;
354 
355 	if (tmp[0] >= '0' && tmp[0] <= '2')
356 		set_using_sysemu(tmp[0] - '0');
357 	/* We use the first char, but pretend to write everything */
358 	return count;
359 }
360 
361 int __init make_proc_sysemu(void)
362 {
363 	struct proc_dir_entry *ent;
364 	if (!sysemu_supported)
365 		return 0;
366 
367 	ent = create_proc_entry("sysemu", 0600, NULL);
368 
369 	if (ent == NULL)
370 	{
371 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
372 		return 0;
373 	}
374 
375 	ent->read_proc  = proc_read_sysemu;
376 	ent->write_proc = proc_write_sysemu;
377 
378 	return 0;
379 }
380 
381 late_initcall(make_proc_sysemu);
382 
383 int singlestepping(void * t)
384 {
385 	struct task_struct *task = t ? t : current;
386 
387 	if (!(task->ptrace & PT_DTRACE))
388 		return 0;
389 
390 	if (task->thread.singlestep_syscall)
391 		return 1;
392 
393 	return 2;
394 }
395 
396 /*
397  * Only x86 and x86_64 have an arch_align_stack().
398  * All other arches have "#define arch_align_stack(x) (x)"
399  * in their asm/system.h
400  * As this is included in UML from asm-um/system-generic.h,
401  * we can use it to behave as the subarch does.
402  */
403 #ifndef arch_align_stack
404 unsigned long arch_align_stack(unsigned long sp)
405 {
406 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
407 		sp -= get_random_int() % 8192;
408 	return sp & ~0xf;
409 }
410 #endif
411 
412 unsigned long get_wchan(struct task_struct *p)
413 {
414 	unsigned long stack_page, sp, ip;
415 	bool seen_sched = 0;
416 
417 	if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
418 		return 0;
419 
420 	stack_page = (unsigned long) task_stack_page(p);
421 	/* Bail if the process has no kernel stack for some reason */
422 	if (stack_page == 0)
423 		return 0;
424 
425 	sp = p->thread.switch_buf->JB_SP;
426 	/*
427 	 * Bail if the stack pointer is below the bottom of the kernel
428 	 * stack for some reason
429 	 */
430 	if (sp < stack_page)
431 		return 0;
432 
433 	while (sp < stack_page + THREAD_SIZE) {
434 		ip = *((unsigned long *) sp);
435 		if (in_sched_functions(ip))
436 			/* Ignore everything until we're above the scheduler */
437 			seen_sched = 1;
438 		else if (kernel_text_address(ip) && seen_sched)
439 			return ip;
440 
441 		sp += sizeof(unsigned long);
442 	}
443 
444 	return 0;
445 }
446 
447 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
448 {
449 	int cpu = current_thread_info()->cpu;
450 
451 	return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
452 }
453 
454