xref: /openbmc/linux/arch/um/kernel/process.c (revision 8795a739)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
4  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
5  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6  * Copyright 2003 PathScale, Inc.
7  */
8 
9 #include <linux/stddef.h>
10 #include <linux/err.h>
11 #include <linux/hardirq.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/personality.h>
15 #include <linux/proc_fs.h>
16 #include <linux/ptrace.h>
17 #include <linux/random.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/seq_file.h>
24 #include <linux/tick.h>
25 #include <linux/threads.h>
26 #include <linux/tracehook.h>
27 #include <asm/current.h>
28 #include <asm/pgtable.h>
29 #include <asm/mmu_context.h>
30 #include <linux/uaccess.h>
31 #include <as-layout.h>
32 #include <kern_util.h>
33 #include <os.h>
34 #include <skas.h>
35 #include <timer-internal.h>
36 
37 /*
38  * This is a per-cpu array.  A processor only modifies its entry and it only
39  * cares about its entry, so it's OK if another processor is modifying its
40  * entry.
41  */
42 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
43 
44 static inline int external_pid(void)
45 {
46 	/* FIXME: Need to look up userspace_pid by cpu */
47 	return userspace_pid[0];
48 }
49 
50 int pid_to_processor_id(int pid)
51 {
52 	int i;
53 
54 	for (i = 0; i < ncpus; i++) {
55 		if (cpu_tasks[i].pid == pid)
56 			return i;
57 	}
58 	return -1;
59 }
60 
61 void free_stack(unsigned long stack, int order)
62 {
63 	free_pages(stack, order);
64 }
65 
66 unsigned long alloc_stack(int order, int atomic)
67 {
68 	unsigned long page;
69 	gfp_t flags = GFP_KERNEL;
70 
71 	if (atomic)
72 		flags = GFP_ATOMIC;
73 	page = __get_free_pages(flags, order);
74 
75 	return page;
76 }
77 
78 static inline void set_current(struct task_struct *task)
79 {
80 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
81 		{ external_pid(), task });
82 }
83 
84 extern void arch_switch_to(struct task_struct *to);
85 
86 void *__switch_to(struct task_struct *from, struct task_struct *to)
87 {
88 	to->thread.prev_sched = from;
89 	set_current(to);
90 
91 	switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
92 	arch_switch_to(current);
93 
94 	return current->thread.prev_sched;
95 }
96 
97 void interrupt_end(void)
98 {
99 	struct pt_regs *regs = &current->thread.regs;
100 
101 	if (need_resched())
102 		schedule();
103 	if (test_thread_flag(TIF_SIGPENDING))
104 		do_signal(regs);
105 	if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
106 		tracehook_notify_resume(regs);
107 }
108 
109 int get_current_pid(void)
110 {
111 	return task_pid_nr(current);
112 }
113 
114 /*
115  * This is called magically, by its address being stuffed in a jmp_buf
116  * and being longjmp-d to.
117  */
118 void new_thread_handler(void)
119 {
120 	int (*fn)(void *), n;
121 	void *arg;
122 
123 	if (current->thread.prev_sched != NULL)
124 		schedule_tail(current->thread.prev_sched);
125 	current->thread.prev_sched = NULL;
126 
127 	fn = current->thread.request.u.thread.proc;
128 	arg = current->thread.request.u.thread.arg;
129 
130 	/*
131 	 * callback returns only if the kernel thread execs a process
132 	 */
133 	n = fn(arg);
134 	userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
135 }
136 
137 /* Called magically, see new_thread_handler above */
138 void fork_handler(void)
139 {
140 	force_flush_all();
141 
142 	schedule_tail(current->thread.prev_sched);
143 
144 	/*
145 	 * XXX: if interrupt_end() calls schedule, this call to
146 	 * arch_switch_to isn't needed. We could want to apply this to
147 	 * improve performance. -bb
148 	 */
149 	arch_switch_to(current);
150 
151 	current->thread.prev_sched = NULL;
152 
153 	userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
154 }
155 
156 int copy_thread(unsigned long clone_flags, unsigned long sp,
157 		unsigned long arg, struct task_struct * p)
158 {
159 	void (*handler)(void);
160 	int kthread = current->flags & PF_KTHREAD;
161 	int ret = 0;
162 
163 	p->thread = (struct thread_struct) INIT_THREAD;
164 
165 	if (!kthread) {
166 	  	memcpy(&p->thread.regs.regs, current_pt_regs(),
167 		       sizeof(p->thread.regs.regs));
168 		PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
169 		if (sp != 0)
170 			REGS_SP(p->thread.regs.regs.gp) = sp;
171 
172 		handler = fork_handler;
173 
174 		arch_copy_thread(&current->thread.arch, &p->thread.arch);
175 	} else {
176 		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
177 		p->thread.request.u.thread.proc = (int (*)(void *))sp;
178 		p->thread.request.u.thread.arg = (void *)arg;
179 		handler = new_thread_handler;
180 	}
181 
182 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
183 
184 	if (!kthread) {
185 		clear_flushed_tls(p);
186 
187 		/*
188 		 * Set a new TLS for the child thread?
189 		 */
190 		if (clone_flags & CLONE_SETTLS)
191 			ret = arch_copy_tls(p);
192 	}
193 
194 	return ret;
195 }
196 
197 void initial_thread_cb(void (*proc)(void *), void *arg)
198 {
199 	int save_kmalloc_ok = kmalloc_ok;
200 
201 	kmalloc_ok = 0;
202 	initial_thread_cb_skas(proc, arg);
203 	kmalloc_ok = save_kmalloc_ok;
204 }
205 
206 static void time_travel_sleep(unsigned long long duration)
207 {
208 	unsigned long long next = time_travel_time + duration;
209 
210 	if (time_travel_mode != TT_MODE_INFCPU)
211 		os_timer_disable();
212 
213 	while (time_travel_timer_mode == TT_TMR_PERIODIC &&
214 	       time_travel_timer_expiry < time_travel_time)
215 		time_travel_set_timer_expiry(time_travel_timer_expiry +
216 					     time_travel_timer_interval);
217 
218 	if (time_travel_timer_mode != TT_TMR_DISABLED &&
219 	    time_travel_timer_expiry < next) {
220 		if (time_travel_timer_mode == TT_TMR_ONESHOT)
221 			time_travel_set_timer_mode(TT_TMR_DISABLED);
222 		/*
223 		 * In basic mode, time_travel_time will be adjusted in
224 		 * the timer IRQ handler so it works even when the signal
225 		 * comes from the OS timer, see there.
226 		 */
227 		if (time_travel_mode != TT_MODE_BASIC)
228 			time_travel_set_time(time_travel_timer_expiry);
229 
230 		deliver_alarm();
231 	} else {
232 		time_travel_set_time(next);
233 	}
234 
235 	if (time_travel_mode != TT_MODE_INFCPU) {
236 		if (time_travel_timer_mode == TT_TMR_PERIODIC)
237 			os_timer_set_interval(time_travel_timer_interval);
238 		else if (time_travel_timer_mode == TT_TMR_ONESHOT)
239 			os_timer_one_shot(time_travel_timer_expiry - next);
240 	}
241 }
242 
243 static void um_idle_sleep(void)
244 {
245 	unsigned long long duration = UM_NSEC_PER_SEC;
246 
247 	if (time_travel_mode != TT_MODE_OFF) {
248 		time_travel_sleep(duration);
249 	} else {
250 		os_idle_sleep(duration);
251 	}
252 }
253 
254 void arch_cpu_idle(void)
255 {
256 	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
257 	um_idle_sleep();
258 	local_irq_enable();
259 }
260 
261 int __cant_sleep(void) {
262 	return in_atomic() || irqs_disabled() || in_interrupt();
263 	/* Is in_interrupt() really needed? */
264 }
265 
266 int user_context(unsigned long sp)
267 {
268 	unsigned long stack;
269 
270 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
271 	return stack != (unsigned long) current_thread_info();
272 }
273 
274 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
275 
276 void do_uml_exitcalls(void)
277 {
278 	exitcall_t *call;
279 
280 	call = &__uml_exitcall_end;
281 	while (--call >= &__uml_exitcall_begin)
282 		(*call)();
283 }
284 
285 char *uml_strdup(const char *string)
286 {
287 	return kstrdup(string, GFP_KERNEL);
288 }
289 EXPORT_SYMBOL(uml_strdup);
290 
291 int copy_to_user_proc(void __user *to, void *from, int size)
292 {
293 	return copy_to_user(to, from, size);
294 }
295 
296 int copy_from_user_proc(void *to, void __user *from, int size)
297 {
298 	return copy_from_user(to, from, size);
299 }
300 
301 int clear_user_proc(void __user *buf, int size)
302 {
303 	return clear_user(buf, size);
304 }
305 
306 int cpu(void)
307 {
308 	return current_thread_info()->cpu;
309 }
310 
311 static atomic_t using_sysemu = ATOMIC_INIT(0);
312 int sysemu_supported;
313 
314 void set_using_sysemu(int value)
315 {
316 	if (value > sysemu_supported)
317 		return;
318 	atomic_set(&using_sysemu, value);
319 }
320 
321 int get_using_sysemu(void)
322 {
323 	return atomic_read(&using_sysemu);
324 }
325 
326 static int sysemu_proc_show(struct seq_file *m, void *v)
327 {
328 	seq_printf(m, "%d\n", get_using_sysemu());
329 	return 0;
330 }
331 
332 static int sysemu_proc_open(struct inode *inode, struct file *file)
333 {
334 	return single_open(file, sysemu_proc_show, NULL);
335 }
336 
337 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
338 				 size_t count, loff_t *pos)
339 {
340 	char tmp[2];
341 
342 	if (copy_from_user(tmp, buf, 1))
343 		return -EFAULT;
344 
345 	if (tmp[0] >= '0' && tmp[0] <= '2')
346 		set_using_sysemu(tmp[0] - '0');
347 	/* We use the first char, but pretend to write everything */
348 	return count;
349 }
350 
351 static const struct file_operations sysemu_proc_fops = {
352 	.owner		= THIS_MODULE,
353 	.open		= sysemu_proc_open,
354 	.read		= seq_read,
355 	.llseek		= seq_lseek,
356 	.release	= single_release,
357 	.write		= sysemu_proc_write,
358 };
359 
360 int __init make_proc_sysemu(void)
361 {
362 	struct proc_dir_entry *ent;
363 	if (!sysemu_supported)
364 		return 0;
365 
366 	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
367 
368 	if (ent == NULL)
369 	{
370 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
371 		return 0;
372 	}
373 
374 	return 0;
375 }
376 
377 late_initcall(make_proc_sysemu);
378 
379 int singlestepping(void * t)
380 {
381 	struct task_struct *task = t ? t : current;
382 
383 	if (!(task->ptrace & PT_DTRACE))
384 		return 0;
385 
386 	if (task->thread.singlestep_syscall)
387 		return 1;
388 
389 	return 2;
390 }
391 
392 /*
393  * Only x86 and x86_64 have an arch_align_stack().
394  * All other arches have "#define arch_align_stack(x) (x)"
395  * in their asm/exec.h
396  * As this is included in UML from asm-um/system-generic.h,
397  * we can use it to behave as the subarch does.
398  */
399 #ifndef arch_align_stack
400 unsigned long arch_align_stack(unsigned long sp)
401 {
402 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
403 		sp -= get_random_int() % 8192;
404 	return sp & ~0xf;
405 }
406 #endif
407 
408 unsigned long get_wchan(struct task_struct *p)
409 {
410 	unsigned long stack_page, sp, ip;
411 	bool seen_sched = 0;
412 
413 	if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
414 		return 0;
415 
416 	stack_page = (unsigned long) task_stack_page(p);
417 	/* Bail if the process has no kernel stack for some reason */
418 	if (stack_page == 0)
419 		return 0;
420 
421 	sp = p->thread.switch_buf->JB_SP;
422 	/*
423 	 * Bail if the stack pointer is below the bottom of the kernel
424 	 * stack for some reason
425 	 */
426 	if (sp < stack_page)
427 		return 0;
428 
429 	while (sp < stack_page + THREAD_SIZE) {
430 		ip = *((unsigned long *) sp);
431 		if (in_sched_functions(ip))
432 			/* Ignore everything until we're above the scheduler */
433 			seen_sched = 1;
434 		else if (kernel_text_address(ip) && seen_sched)
435 			return ip;
436 
437 		sp += sizeof(unsigned long);
438 	}
439 
440 	return 0;
441 }
442 
443 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
444 {
445 	int cpu = current_thread_info()->cpu;
446 
447 	return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
448 }
449 
450