1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Copyright 2003 PathScale, Inc. 4 * Licensed under the GPL 5 */ 6 7 #include "linux/stddef.h" 8 #include "linux/err.h" 9 #include "linux/hardirq.h" 10 #include "linux/mm.h" 11 #include "linux/personality.h" 12 #include "linux/proc_fs.h" 13 #include "linux/ptrace.h" 14 #include "linux/random.h" 15 #include "linux/sched.h" 16 #include "linux/tick.h" 17 #include "linux/threads.h" 18 #include "asm/pgtable.h" 19 #include "asm/uaccess.h" 20 #include "as-layout.h" 21 #include "kern_util.h" 22 #include "os.h" 23 #include "skas.h" 24 #include "tlb.h" 25 26 /* 27 * This is a per-cpu array. A processor only modifies its entry and it only 28 * cares about its entry, so it's OK if another processor is modifying its 29 * entry. 30 */ 31 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } }; 32 33 static inline int external_pid(struct task_struct *task) 34 { 35 /* FIXME: Need to look up userspace_pid by cpu */ 36 return userspace_pid[0]; 37 } 38 39 int pid_to_processor_id(int pid) 40 { 41 int i; 42 43 for(i = 0; i < ncpus; i++) { 44 if (cpu_tasks[i].pid == pid) 45 return i; 46 } 47 return -1; 48 } 49 50 void free_stack(unsigned long stack, int order) 51 { 52 free_pages(stack, order); 53 } 54 55 unsigned long alloc_stack(int order, int atomic) 56 { 57 unsigned long page; 58 gfp_t flags = GFP_KERNEL; 59 60 if (atomic) 61 flags = GFP_ATOMIC; 62 page = __get_free_pages(flags, order); 63 if (page == 0) 64 return 0; 65 66 return page; 67 } 68 69 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 70 { 71 int pid; 72 73 current->thread.request.u.thread.proc = fn; 74 current->thread.request.u.thread.arg = arg; 75 pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0, 76 ¤t->thread.regs, 0, NULL, NULL); 77 return pid; 78 } 79 80 static inline void set_current(struct task_struct *task) 81 { 82 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task) 83 { external_pid(task), task }); 84 } 85 86 extern void arch_switch_to(struct task_struct *from, struct task_struct *to); 87 88 void *_switch_to(void *prev, void *next, void *last) 89 { 90 struct task_struct *from = prev; 91 struct task_struct *to= next; 92 93 to->thread.prev_sched = from; 94 set_current(to); 95 96 do { 97 current->thread.saved_task = NULL; 98 99 switch_threads(&from->thread.switch_buf, 100 &to->thread.switch_buf); 101 102 arch_switch_to(current->thread.prev_sched, current); 103 104 if (current->thread.saved_task) 105 show_regs(&(current->thread.regs)); 106 next= current->thread.saved_task; 107 prev= current; 108 } while(current->thread.saved_task); 109 110 return current->thread.prev_sched; 111 112 } 113 114 void interrupt_end(void) 115 { 116 if (need_resched()) 117 schedule(); 118 if (test_tsk_thread_flag(current, TIF_SIGPENDING)) 119 do_signal(); 120 } 121 122 void exit_thread(void) 123 { 124 } 125 126 void *get_current(void) 127 { 128 return current; 129 } 130 131 extern void schedule_tail(struct task_struct *prev); 132 133 /* 134 * This is called magically, by its address being stuffed in a jmp_buf 135 * and being longjmp-d to. 136 */ 137 void new_thread_handler(void) 138 { 139 int (*fn)(void *), n; 140 void *arg; 141 142 if (current->thread.prev_sched != NULL) 143 schedule_tail(current->thread.prev_sched); 144 current->thread.prev_sched = NULL; 145 146 fn = current->thread.request.u.thread.proc; 147 arg = current->thread.request.u.thread.arg; 148 149 /* 150 * The return value is 1 if the kernel thread execs a process, 151 * 0 if it just exits 152 */ 153 n = run_kernel_thread(fn, arg, ¤t->thread.exec_buf); 154 if (n == 1) { 155 /* Handle any immediate reschedules or signals */ 156 interrupt_end(); 157 userspace(¤t->thread.regs.regs); 158 } 159 else do_exit(0); 160 } 161 162 /* Called magically, see new_thread_handler above */ 163 void fork_handler(void) 164 { 165 force_flush_all(); 166 if (current->thread.prev_sched == NULL) 167 panic("blech"); 168 169 schedule_tail(current->thread.prev_sched); 170 171 /* 172 * XXX: if interrupt_end() calls schedule, this call to 173 * arch_switch_to isn't needed. We could want to apply this to 174 * improve performance. -bb 175 */ 176 arch_switch_to(current->thread.prev_sched, current); 177 178 current->thread.prev_sched = NULL; 179 180 /* Handle any immediate reschedules or signals */ 181 interrupt_end(); 182 183 userspace(¤t->thread.regs.regs); 184 } 185 186 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, 187 unsigned long stack_top, struct task_struct * p, 188 struct pt_regs *regs) 189 { 190 void (*handler)(void); 191 int ret = 0; 192 193 p->thread = (struct thread_struct) INIT_THREAD; 194 195 if (current->thread.forking) { 196 memcpy(&p->thread.regs.regs, ®s->regs, 197 sizeof(p->thread.regs.regs)); 198 REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0); 199 if (sp != 0) 200 REGS_SP(p->thread.regs.regs.gp) = sp; 201 202 handler = fork_handler; 203 204 arch_copy_thread(¤t->thread.arch, &p->thread.arch); 205 } 206 else { 207 init_thread_registers(&p->thread.regs.regs); 208 p->thread.request.u.thread = current->thread.request.u.thread; 209 handler = new_thread_handler; 210 } 211 212 new_thread(task_stack_page(p), &p->thread.switch_buf, handler); 213 214 if (current->thread.forking) { 215 clear_flushed_tls(p); 216 217 /* 218 * Set a new TLS for the child thread? 219 */ 220 if (clone_flags & CLONE_SETTLS) 221 ret = arch_copy_tls(p); 222 } 223 224 return ret; 225 } 226 227 void initial_thread_cb(void (*proc)(void *), void *arg) 228 { 229 int save_kmalloc_ok = kmalloc_ok; 230 231 kmalloc_ok = 0; 232 initial_thread_cb_skas(proc, arg); 233 kmalloc_ok = save_kmalloc_ok; 234 } 235 236 void default_idle(void) 237 { 238 unsigned long long nsecs; 239 240 while(1) { 241 /* endless idle loop with no priority at all */ 242 243 /* 244 * although we are an idle CPU, we do not want to 245 * get into the scheduler unnecessarily. 246 */ 247 if (need_resched()) 248 schedule(); 249 250 tick_nohz_stop_sched_tick(); 251 nsecs = disable_timer(); 252 idle_sleep(nsecs); 253 tick_nohz_restart_sched_tick(); 254 } 255 } 256 257 void cpu_idle(void) 258 { 259 cpu_tasks[current_thread->cpu].pid = os_getpid(); 260 default_idle(); 261 } 262 263 void *um_virt_to_phys(struct task_struct *task, unsigned long addr, 264 pte_t *pte_out) 265 { 266 pgd_t *pgd; 267 pud_t *pud; 268 pmd_t *pmd; 269 pte_t *pte; 270 pte_t ptent; 271 272 if (task->mm == NULL) 273 return ERR_PTR(-EINVAL); 274 pgd = pgd_offset(task->mm, addr); 275 if (!pgd_present(*pgd)) 276 return ERR_PTR(-EINVAL); 277 278 pud = pud_offset(pgd, addr); 279 if (!pud_present(*pud)) 280 return ERR_PTR(-EINVAL); 281 282 pmd = pmd_offset(pud, addr); 283 if (!pmd_present(*pmd)) 284 return ERR_PTR(-EINVAL); 285 286 pte = pte_offset_kernel(pmd, addr); 287 ptent = *pte; 288 if (!pte_present(ptent)) 289 return ERR_PTR(-EINVAL); 290 291 if (pte_out != NULL) 292 *pte_out = ptent; 293 return (void *) (pte_val(ptent) & PAGE_MASK) + (addr & ~PAGE_MASK); 294 } 295 296 char *current_cmd(void) 297 { 298 #if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM) 299 return "(Unknown)"; 300 #else 301 void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL); 302 return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr); 303 #endif 304 } 305 306 void dump_thread(struct pt_regs *regs, struct user *u) 307 { 308 } 309 310 int __cant_sleep(void) { 311 return in_atomic() || irqs_disabled() || in_interrupt(); 312 /* Is in_interrupt() really needed? */ 313 } 314 315 int user_context(unsigned long sp) 316 { 317 unsigned long stack; 318 319 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER); 320 return stack != (unsigned long) current_thread; 321 } 322 323 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end; 324 325 void do_uml_exitcalls(void) 326 { 327 exitcall_t *call; 328 329 call = &__uml_exitcall_end; 330 while (--call >= &__uml_exitcall_begin) 331 (*call)(); 332 } 333 334 char *uml_strdup(char *string) 335 { 336 return kstrdup(string, GFP_KERNEL); 337 } 338 339 int copy_to_user_proc(void __user *to, void *from, int size) 340 { 341 return copy_to_user(to, from, size); 342 } 343 344 int copy_from_user_proc(void *to, void __user *from, int size) 345 { 346 return copy_from_user(to, from, size); 347 } 348 349 int clear_user_proc(void __user *buf, int size) 350 { 351 return clear_user(buf, size); 352 } 353 354 int strlen_user_proc(char __user *str) 355 { 356 return strlen_user(str); 357 } 358 359 int smp_sigio_handler(void) 360 { 361 #ifdef CONFIG_SMP 362 int cpu = current_thread->cpu; 363 IPI_handler(cpu); 364 if (cpu != 0) 365 return 1; 366 #endif 367 return 0; 368 } 369 370 int cpu(void) 371 { 372 return current_thread->cpu; 373 } 374 375 static atomic_t using_sysemu = ATOMIC_INIT(0); 376 int sysemu_supported; 377 378 void set_using_sysemu(int value) 379 { 380 if (value > sysemu_supported) 381 return; 382 atomic_set(&using_sysemu, value); 383 } 384 385 int get_using_sysemu(void) 386 { 387 return atomic_read(&using_sysemu); 388 } 389 390 static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data) 391 { 392 if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size) 393 /* No overflow */ 394 *eof = 1; 395 396 return strlen(buf); 397 } 398 399 static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data) 400 { 401 char tmp[2]; 402 403 if (copy_from_user(tmp, buf, 1)) 404 return -EFAULT; 405 406 if (tmp[0] >= '0' && tmp[0] <= '2') 407 set_using_sysemu(tmp[0] - '0'); 408 /* We use the first char, but pretend to write everything */ 409 return count; 410 } 411 412 int __init make_proc_sysemu(void) 413 { 414 struct proc_dir_entry *ent; 415 if (!sysemu_supported) 416 return 0; 417 418 ent = create_proc_entry("sysemu", 0600, &proc_root); 419 420 if (ent == NULL) 421 { 422 printk(KERN_WARNING "Failed to register /proc/sysemu\n"); 423 return 0; 424 } 425 426 ent->read_proc = proc_read_sysemu; 427 ent->write_proc = proc_write_sysemu; 428 429 return 0; 430 } 431 432 late_initcall(make_proc_sysemu); 433 434 int singlestepping(void * t) 435 { 436 struct task_struct *task = t ? t : current; 437 438 if ( ! (task->ptrace & PT_DTRACE) ) 439 return 0; 440 441 if (task->thread.singlestep_syscall) 442 return 1; 443 444 return 2; 445 } 446 447 /* 448 * Only x86 and x86_64 have an arch_align_stack(). 449 * All other arches have "#define arch_align_stack(x) (x)" 450 * in their asm/system.h 451 * As this is included in UML from asm-um/system-generic.h, 452 * we can use it to behave as the subarch does. 453 */ 454 #ifndef arch_align_stack 455 unsigned long arch_align_stack(unsigned long sp) 456 { 457 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 458 sp -= get_random_int() % 8192; 459 return sp & ~0xf; 460 } 461 #endif 462