xref: /openbmc/linux/arch/um/kernel/process.c (revision 643d1f7f)
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6 
7 #include "linux/stddef.h"
8 #include "linux/err.h"
9 #include "linux/hardirq.h"
10 #include "linux/mm.h"
11 #include "linux/personality.h"
12 #include "linux/proc_fs.h"
13 #include "linux/ptrace.h"
14 #include "linux/random.h"
15 #include "linux/sched.h"
16 #include "linux/tick.h"
17 #include "linux/threads.h"
18 #include "asm/pgtable.h"
19 #include "asm/uaccess.h"
20 #include "as-layout.h"
21 #include "kern_util.h"
22 #include "os.h"
23 #include "skas.h"
24 #include "tlb.h"
25 
26 /*
27  * This is a per-cpu array.  A processor only modifies its entry and it only
28  * cares about its entry, so it's OK if another processor is modifying its
29  * entry.
30  */
31 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
32 
33 static inline int external_pid(struct task_struct *task)
34 {
35 	/* FIXME: Need to look up userspace_pid by cpu */
36 	return userspace_pid[0];
37 }
38 
39 int pid_to_processor_id(int pid)
40 {
41 	int i;
42 
43 	for(i = 0; i < ncpus; i++) {
44 		if (cpu_tasks[i].pid == pid)
45 			return i;
46 	}
47 	return -1;
48 }
49 
50 void free_stack(unsigned long stack, int order)
51 {
52 	free_pages(stack, order);
53 }
54 
55 unsigned long alloc_stack(int order, int atomic)
56 {
57 	unsigned long page;
58 	gfp_t flags = GFP_KERNEL;
59 
60 	if (atomic)
61 		flags = GFP_ATOMIC;
62 	page = __get_free_pages(flags, order);
63 	if (page == 0)
64 		return 0;
65 
66 	return page;
67 }
68 
69 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
70 {
71 	int pid;
72 
73 	current->thread.request.u.thread.proc = fn;
74 	current->thread.request.u.thread.arg = arg;
75 	pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
76 		      &current->thread.regs, 0, NULL, NULL);
77 	return pid;
78 }
79 
80 static inline void set_current(struct task_struct *task)
81 {
82 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
83 		{ external_pid(task), task });
84 }
85 
86 extern void arch_switch_to(struct task_struct *from, struct task_struct *to);
87 
88 void *_switch_to(void *prev, void *next, void *last)
89 {
90 	struct task_struct *from = prev;
91 	struct task_struct *to= next;
92 
93 	to->thread.prev_sched = from;
94 	set_current(to);
95 
96 	do {
97 		current->thread.saved_task = NULL;
98 
99 		switch_threads(&from->thread.switch_buf,
100 			       &to->thread.switch_buf);
101 
102 		arch_switch_to(current->thread.prev_sched, current);
103 
104 		if (current->thread.saved_task)
105 			show_regs(&(current->thread.regs));
106 		next= current->thread.saved_task;
107 		prev= current;
108 	} while(current->thread.saved_task);
109 
110 	return current->thread.prev_sched;
111 
112 }
113 
114 void interrupt_end(void)
115 {
116 	if (need_resched())
117 		schedule();
118 	if (test_tsk_thread_flag(current, TIF_SIGPENDING))
119 		do_signal();
120 }
121 
122 void exit_thread(void)
123 {
124 }
125 
126 void *get_current(void)
127 {
128 	return current;
129 }
130 
131 extern void schedule_tail(struct task_struct *prev);
132 
133 /*
134  * This is called magically, by its address being stuffed in a jmp_buf
135  * and being longjmp-d to.
136  */
137 void new_thread_handler(void)
138 {
139 	int (*fn)(void *), n;
140 	void *arg;
141 
142 	if (current->thread.prev_sched != NULL)
143 		schedule_tail(current->thread.prev_sched);
144 	current->thread.prev_sched = NULL;
145 
146 	fn = current->thread.request.u.thread.proc;
147 	arg = current->thread.request.u.thread.arg;
148 
149 	/*
150 	 * The return value is 1 if the kernel thread execs a process,
151 	 * 0 if it just exits
152 	 */
153 	n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
154 	if (n == 1) {
155 		/* Handle any immediate reschedules or signals */
156 		interrupt_end();
157 		userspace(&current->thread.regs.regs);
158 	}
159 	else do_exit(0);
160 }
161 
162 /* Called magically, see new_thread_handler above */
163 void fork_handler(void)
164 {
165 	force_flush_all();
166 	if (current->thread.prev_sched == NULL)
167 		panic("blech");
168 
169 	schedule_tail(current->thread.prev_sched);
170 
171 	/*
172 	 * XXX: if interrupt_end() calls schedule, this call to
173 	 * arch_switch_to isn't needed. We could want to apply this to
174 	 * improve performance. -bb
175 	 */
176 	arch_switch_to(current->thread.prev_sched, current);
177 
178 	current->thread.prev_sched = NULL;
179 
180 	/* Handle any immediate reschedules or signals */
181 	interrupt_end();
182 
183 	userspace(&current->thread.regs.regs);
184 }
185 
186 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
187 		unsigned long stack_top, struct task_struct * p,
188 		struct pt_regs *regs)
189 {
190 	void (*handler)(void);
191 	int ret = 0;
192 
193 	p->thread = (struct thread_struct) INIT_THREAD;
194 
195 	if (current->thread.forking) {
196 	  	memcpy(&p->thread.regs.regs, &regs->regs,
197 		       sizeof(p->thread.regs.regs));
198 		REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0);
199 		if (sp != 0)
200 			REGS_SP(p->thread.regs.regs.gp) = sp;
201 
202 		handler = fork_handler;
203 
204 		arch_copy_thread(&current->thread.arch, &p->thread.arch);
205 	}
206 	else {
207 		init_thread_registers(&p->thread.regs.regs);
208 		p->thread.request.u.thread = current->thread.request.u.thread;
209 		handler = new_thread_handler;
210 	}
211 
212 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
213 
214 	if (current->thread.forking) {
215 		clear_flushed_tls(p);
216 
217 		/*
218 		 * Set a new TLS for the child thread?
219 		 */
220 		if (clone_flags & CLONE_SETTLS)
221 			ret = arch_copy_tls(p);
222 	}
223 
224 	return ret;
225 }
226 
227 void initial_thread_cb(void (*proc)(void *), void *arg)
228 {
229 	int save_kmalloc_ok = kmalloc_ok;
230 
231 	kmalloc_ok = 0;
232 	initial_thread_cb_skas(proc, arg);
233 	kmalloc_ok = save_kmalloc_ok;
234 }
235 
236 void default_idle(void)
237 {
238 	unsigned long long nsecs;
239 
240 	while(1) {
241 		/* endless idle loop with no priority at all */
242 
243 		/*
244 		 * although we are an idle CPU, we do not want to
245 		 * get into the scheduler unnecessarily.
246 		 */
247 		if (need_resched())
248 			schedule();
249 
250 		tick_nohz_stop_sched_tick();
251 		nsecs = disable_timer();
252 		idle_sleep(nsecs);
253 		tick_nohz_restart_sched_tick();
254 	}
255 }
256 
257 void cpu_idle(void)
258 {
259 	cpu_tasks[current_thread->cpu].pid = os_getpid();
260 	default_idle();
261 }
262 
263 void *um_virt_to_phys(struct task_struct *task, unsigned long addr,
264 		      pte_t *pte_out)
265 {
266 	pgd_t *pgd;
267 	pud_t *pud;
268 	pmd_t *pmd;
269 	pte_t *pte;
270 	pte_t ptent;
271 
272 	if (task->mm == NULL)
273 		return ERR_PTR(-EINVAL);
274 	pgd = pgd_offset(task->mm, addr);
275 	if (!pgd_present(*pgd))
276 		return ERR_PTR(-EINVAL);
277 
278 	pud = pud_offset(pgd, addr);
279 	if (!pud_present(*pud))
280 		return ERR_PTR(-EINVAL);
281 
282 	pmd = pmd_offset(pud, addr);
283 	if (!pmd_present(*pmd))
284 		return ERR_PTR(-EINVAL);
285 
286 	pte = pte_offset_kernel(pmd, addr);
287 	ptent = *pte;
288 	if (!pte_present(ptent))
289 		return ERR_PTR(-EINVAL);
290 
291 	if (pte_out != NULL)
292 		*pte_out = ptent;
293 	return (void *) (pte_val(ptent) & PAGE_MASK) + (addr & ~PAGE_MASK);
294 }
295 
296 char *current_cmd(void)
297 {
298 #if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM)
299 	return "(Unknown)";
300 #else
301 	void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL);
302 	return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr);
303 #endif
304 }
305 
306 void dump_thread(struct pt_regs *regs, struct user *u)
307 {
308 }
309 
310 int __cant_sleep(void) {
311 	return in_atomic() || irqs_disabled() || in_interrupt();
312 	/* Is in_interrupt() really needed? */
313 }
314 
315 int user_context(unsigned long sp)
316 {
317 	unsigned long stack;
318 
319 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
320 	return stack != (unsigned long) current_thread;
321 }
322 
323 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
324 
325 void do_uml_exitcalls(void)
326 {
327 	exitcall_t *call;
328 
329 	call = &__uml_exitcall_end;
330 	while (--call >= &__uml_exitcall_begin)
331 		(*call)();
332 }
333 
334 char *uml_strdup(char *string)
335 {
336 	return kstrdup(string, GFP_KERNEL);
337 }
338 
339 int copy_to_user_proc(void __user *to, void *from, int size)
340 {
341 	return copy_to_user(to, from, size);
342 }
343 
344 int copy_from_user_proc(void *to, void __user *from, int size)
345 {
346 	return copy_from_user(to, from, size);
347 }
348 
349 int clear_user_proc(void __user *buf, int size)
350 {
351 	return clear_user(buf, size);
352 }
353 
354 int strlen_user_proc(char __user *str)
355 {
356 	return strlen_user(str);
357 }
358 
359 int smp_sigio_handler(void)
360 {
361 #ifdef CONFIG_SMP
362 	int cpu = current_thread->cpu;
363 	IPI_handler(cpu);
364 	if (cpu != 0)
365 		return 1;
366 #endif
367 	return 0;
368 }
369 
370 int cpu(void)
371 {
372 	return current_thread->cpu;
373 }
374 
375 static atomic_t using_sysemu = ATOMIC_INIT(0);
376 int sysemu_supported;
377 
378 void set_using_sysemu(int value)
379 {
380 	if (value > sysemu_supported)
381 		return;
382 	atomic_set(&using_sysemu, value);
383 }
384 
385 int get_using_sysemu(void)
386 {
387 	return atomic_read(&using_sysemu);
388 }
389 
390 static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
391 {
392 	if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size)
393 		/* No overflow */
394 		*eof = 1;
395 
396 	return strlen(buf);
397 }
398 
399 static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data)
400 {
401 	char tmp[2];
402 
403 	if (copy_from_user(tmp, buf, 1))
404 		return -EFAULT;
405 
406 	if (tmp[0] >= '0' && tmp[0] <= '2')
407 		set_using_sysemu(tmp[0] - '0');
408 	/* We use the first char, but pretend to write everything */
409 	return count;
410 }
411 
412 int __init make_proc_sysemu(void)
413 {
414 	struct proc_dir_entry *ent;
415 	if (!sysemu_supported)
416 		return 0;
417 
418 	ent = create_proc_entry("sysemu", 0600, &proc_root);
419 
420 	if (ent == NULL)
421 	{
422 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
423 		return 0;
424 	}
425 
426 	ent->read_proc  = proc_read_sysemu;
427 	ent->write_proc = proc_write_sysemu;
428 
429 	return 0;
430 }
431 
432 late_initcall(make_proc_sysemu);
433 
434 int singlestepping(void * t)
435 {
436 	struct task_struct *task = t ? t : current;
437 
438 	if ( ! (task->ptrace & PT_DTRACE) )
439 		return 0;
440 
441 	if (task->thread.singlestep_syscall)
442 		return 1;
443 
444 	return 2;
445 }
446 
447 /*
448  * Only x86 and x86_64 have an arch_align_stack().
449  * All other arches have "#define arch_align_stack(x) (x)"
450  * in their asm/system.h
451  * As this is included in UML from asm-um/system-generic.h,
452  * we can use it to behave as the subarch does.
453  */
454 #ifndef arch_align_stack
455 unsigned long arch_align_stack(unsigned long sp)
456 {
457 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
458 		sp -= get_random_int() % 8192;
459 	return sp & ~0xf;
460 }
461 #endif
462