xref: /openbmc/linux/arch/um/kernel/process.c (revision 5abbeebd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
4  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
5  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6  * Copyright 2003 PathScale, Inc.
7  */
8 
9 #include <linux/stddef.h>
10 #include <linux/err.h>
11 #include <linux/hardirq.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/personality.h>
15 #include <linux/proc_fs.h>
16 #include <linux/ptrace.h>
17 #include <linux/random.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/seq_file.h>
24 #include <linux/tick.h>
25 #include <linux/threads.h>
26 #include <linux/resume_user_mode.h>
27 #include <asm/current.h>
28 #include <asm/mmu_context.h>
29 #include <linux/uaccess.h>
30 #include <as-layout.h>
31 #include <kern_util.h>
32 #include <os.h>
33 #include <skas.h>
34 #include <registers.h>
35 #include <linux/time-internal.h>
36 #include <linux/elfcore.h>
37 
38 /*
39  * This is a per-cpu array.  A processor only modifies its entry and it only
40  * cares about its entry, so it's OK if another processor is modifying its
41  * entry.
42  */
43 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
44 
45 static inline int external_pid(void)
46 {
47 	/* FIXME: Need to look up userspace_pid by cpu */
48 	return userspace_pid[0];
49 }
50 
51 int pid_to_processor_id(int pid)
52 {
53 	int i;
54 
55 	for (i = 0; i < ncpus; i++) {
56 		if (cpu_tasks[i].pid == pid)
57 			return i;
58 	}
59 	return -1;
60 }
61 
62 void free_stack(unsigned long stack, int order)
63 {
64 	free_pages(stack, order);
65 }
66 
67 unsigned long alloc_stack(int order, int atomic)
68 {
69 	unsigned long page;
70 	gfp_t flags = GFP_KERNEL;
71 
72 	if (atomic)
73 		flags = GFP_ATOMIC;
74 	page = __get_free_pages(flags, order);
75 
76 	return page;
77 }
78 
79 static inline void set_current(struct task_struct *task)
80 {
81 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
82 		{ external_pid(), task });
83 }
84 
85 extern void arch_switch_to(struct task_struct *to);
86 
87 void *__switch_to(struct task_struct *from, struct task_struct *to)
88 {
89 	to->thread.prev_sched = from;
90 	set_current(to);
91 
92 	switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
93 	arch_switch_to(current);
94 
95 	return current->thread.prev_sched;
96 }
97 
98 void interrupt_end(void)
99 {
100 	struct pt_regs *regs = &current->thread.regs;
101 
102 	if (need_resched())
103 		schedule();
104 	if (test_thread_flag(TIF_SIGPENDING) ||
105 	    test_thread_flag(TIF_NOTIFY_SIGNAL))
106 		do_signal(regs);
107 	if (test_thread_flag(TIF_NOTIFY_RESUME))
108 		resume_user_mode_work(regs);
109 }
110 
111 int get_current_pid(void)
112 {
113 	return task_pid_nr(current);
114 }
115 
116 /*
117  * This is called magically, by its address being stuffed in a jmp_buf
118  * and being longjmp-d to.
119  */
120 void new_thread_handler(void)
121 {
122 	int (*fn)(void *), n;
123 	void *arg;
124 
125 	if (current->thread.prev_sched != NULL)
126 		schedule_tail(current->thread.prev_sched);
127 	current->thread.prev_sched = NULL;
128 
129 	fn = current->thread.request.u.thread.proc;
130 	arg = current->thread.request.u.thread.arg;
131 
132 	/*
133 	 * callback returns only if the kernel thread execs a process
134 	 */
135 	n = fn(arg);
136 	userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
137 }
138 
139 /* Called magically, see new_thread_handler above */
140 void fork_handler(void)
141 {
142 	force_flush_all();
143 
144 	schedule_tail(current->thread.prev_sched);
145 
146 	/*
147 	 * XXX: if interrupt_end() calls schedule, this call to
148 	 * arch_switch_to isn't needed. We could want to apply this to
149 	 * improve performance. -bb
150 	 */
151 	arch_switch_to(current);
152 
153 	current->thread.prev_sched = NULL;
154 
155 	userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
156 }
157 
158 int copy_thread(struct task_struct * p, const struct kernel_clone_args *args)
159 {
160 	unsigned long clone_flags = args->flags;
161 	unsigned long sp = args->stack;
162 	unsigned long tls = args->tls;
163 	void (*handler)(void);
164 	int ret = 0;
165 
166 	p->thread = (struct thread_struct) INIT_THREAD;
167 
168 	if (!args->fn) {
169 	  	memcpy(&p->thread.regs.regs, current_pt_regs(),
170 		       sizeof(p->thread.regs.regs));
171 		PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
172 		if (sp != 0)
173 			REGS_SP(p->thread.regs.regs.gp) = sp;
174 
175 		handler = fork_handler;
176 
177 		arch_copy_thread(&current->thread.arch, &p->thread.arch);
178 	} else {
179 		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
180 		p->thread.request.u.thread.proc = args->fn;
181 		p->thread.request.u.thread.arg = args->fn_arg;
182 		handler = new_thread_handler;
183 	}
184 
185 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
186 
187 	if (!args->fn) {
188 		clear_flushed_tls(p);
189 
190 		/*
191 		 * Set a new TLS for the child thread?
192 		 */
193 		if (clone_flags & CLONE_SETTLS)
194 			ret = arch_set_tls(p, tls);
195 	}
196 
197 	return ret;
198 }
199 
200 void initial_thread_cb(void (*proc)(void *), void *arg)
201 {
202 	int save_kmalloc_ok = kmalloc_ok;
203 
204 	kmalloc_ok = 0;
205 	initial_thread_cb_skas(proc, arg);
206 	kmalloc_ok = save_kmalloc_ok;
207 }
208 
209 void um_idle_sleep(void)
210 {
211 	if (time_travel_mode != TT_MODE_OFF)
212 		time_travel_sleep();
213 	else
214 		os_idle_sleep();
215 }
216 
217 void arch_cpu_idle(void)
218 {
219 	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
220 	um_idle_sleep();
221 	raw_local_irq_enable();
222 }
223 
224 int __cant_sleep(void) {
225 	return in_atomic() || irqs_disabled() || in_interrupt();
226 	/* Is in_interrupt() really needed? */
227 }
228 
229 int user_context(unsigned long sp)
230 {
231 	unsigned long stack;
232 
233 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
234 	return stack != (unsigned long) current_thread_info();
235 }
236 
237 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
238 
239 void do_uml_exitcalls(void)
240 {
241 	exitcall_t *call;
242 
243 	call = &__uml_exitcall_end;
244 	while (--call >= &__uml_exitcall_begin)
245 		(*call)();
246 }
247 
248 char *uml_strdup(const char *string)
249 {
250 	return kstrdup(string, GFP_KERNEL);
251 }
252 EXPORT_SYMBOL(uml_strdup);
253 
254 int copy_to_user_proc(void __user *to, void *from, int size)
255 {
256 	return copy_to_user(to, from, size);
257 }
258 
259 int copy_from_user_proc(void *to, void __user *from, int size)
260 {
261 	return copy_from_user(to, from, size);
262 }
263 
264 int clear_user_proc(void __user *buf, int size)
265 {
266 	return clear_user(buf, size);
267 }
268 
269 static atomic_t using_sysemu = ATOMIC_INIT(0);
270 int sysemu_supported;
271 
272 void set_using_sysemu(int value)
273 {
274 	if (value > sysemu_supported)
275 		return;
276 	atomic_set(&using_sysemu, value);
277 }
278 
279 int get_using_sysemu(void)
280 {
281 	return atomic_read(&using_sysemu);
282 }
283 
284 static int sysemu_proc_show(struct seq_file *m, void *v)
285 {
286 	seq_printf(m, "%d\n", get_using_sysemu());
287 	return 0;
288 }
289 
290 static int sysemu_proc_open(struct inode *inode, struct file *file)
291 {
292 	return single_open(file, sysemu_proc_show, NULL);
293 }
294 
295 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
296 				 size_t count, loff_t *pos)
297 {
298 	char tmp[2];
299 
300 	if (copy_from_user(tmp, buf, 1))
301 		return -EFAULT;
302 
303 	if (tmp[0] >= '0' && tmp[0] <= '2')
304 		set_using_sysemu(tmp[0] - '0');
305 	/* We use the first char, but pretend to write everything */
306 	return count;
307 }
308 
309 static const struct proc_ops sysemu_proc_ops = {
310 	.proc_open	= sysemu_proc_open,
311 	.proc_read	= seq_read,
312 	.proc_lseek	= seq_lseek,
313 	.proc_release	= single_release,
314 	.proc_write	= sysemu_proc_write,
315 };
316 
317 int __init make_proc_sysemu(void)
318 {
319 	struct proc_dir_entry *ent;
320 	if (!sysemu_supported)
321 		return 0;
322 
323 	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_ops);
324 
325 	if (ent == NULL)
326 	{
327 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
328 		return 0;
329 	}
330 
331 	return 0;
332 }
333 
334 late_initcall(make_proc_sysemu);
335 
336 int singlestepping(void * t)
337 {
338 	struct task_struct *task = t ? t : current;
339 
340 	if (!test_thread_flag(TIF_SINGLESTEP))
341 		return 0;
342 
343 	if (task->thread.singlestep_syscall)
344 		return 1;
345 
346 	return 2;
347 }
348 
349 /*
350  * Only x86 and x86_64 have an arch_align_stack().
351  * All other arches have "#define arch_align_stack(x) (x)"
352  * in their asm/exec.h
353  * As this is included in UML from asm-um/system-generic.h,
354  * we can use it to behave as the subarch does.
355  */
356 #ifndef arch_align_stack
357 unsigned long arch_align_stack(unsigned long sp)
358 {
359 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
360 		sp -= get_random_u32_below(8192);
361 	return sp & ~0xf;
362 }
363 #endif
364 
365 unsigned long __get_wchan(struct task_struct *p)
366 {
367 	unsigned long stack_page, sp, ip;
368 	bool seen_sched = 0;
369 
370 	stack_page = (unsigned long) task_stack_page(p);
371 	/* Bail if the process has no kernel stack for some reason */
372 	if (stack_page == 0)
373 		return 0;
374 
375 	sp = p->thread.switch_buf->JB_SP;
376 	/*
377 	 * Bail if the stack pointer is below the bottom of the kernel
378 	 * stack for some reason
379 	 */
380 	if (sp < stack_page)
381 		return 0;
382 
383 	while (sp < stack_page + THREAD_SIZE) {
384 		ip = *((unsigned long *) sp);
385 		if (in_sched_functions(ip))
386 			/* Ignore everything until we're above the scheduler */
387 			seen_sched = 1;
388 		else if (kernel_text_address(ip) && seen_sched)
389 			return ip;
390 
391 		sp += sizeof(unsigned long);
392 	}
393 
394 	return 0;
395 }
396 
397 int elf_core_copy_task_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
398 {
399 	int cpu = current_thread_info()->cpu;
400 
401 	return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
402 }
403 
404