xref: /openbmc/linux/arch/um/kernel/process.c (revision 2b1b1267080fe822789d0845a58ebb452724736b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
4  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
5  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6  * Copyright 2003 PathScale, Inc.
7  */
8 
9 #include <linux/stddef.h>
10 #include <linux/err.h>
11 #include <linux/hardirq.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/personality.h>
15 #include <linux/proc_fs.h>
16 #include <linux/ptrace.h>
17 #include <linux/random.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/seq_file.h>
24 #include <linux/tick.h>
25 #include <linux/threads.h>
26 #include <linux/tracehook.h>
27 #include <asm/current.h>
28 #include <asm/mmu_context.h>
29 #include <linux/uaccess.h>
30 #include <as-layout.h>
31 #include <kern_util.h>
32 #include <os.h>
33 #include <skas.h>
34 #include <linux/time-internal.h>
35 
36 /*
37  * This is a per-cpu array.  A processor only modifies its entry and it only
38  * cares about its entry, so it's OK if another processor is modifying its
39  * entry.
40  */
41 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
42 
43 static inline int external_pid(void)
44 {
45 	/* FIXME: Need to look up userspace_pid by cpu */
46 	return userspace_pid[0];
47 }
48 
49 int pid_to_processor_id(int pid)
50 {
51 	int i;
52 
53 	for (i = 0; i < ncpus; i++) {
54 		if (cpu_tasks[i].pid == pid)
55 			return i;
56 	}
57 	return -1;
58 }
59 
60 void free_stack(unsigned long stack, int order)
61 {
62 	free_pages(stack, order);
63 }
64 
65 unsigned long alloc_stack(int order, int atomic)
66 {
67 	unsigned long page;
68 	gfp_t flags = GFP_KERNEL;
69 
70 	if (atomic)
71 		flags = GFP_ATOMIC;
72 	page = __get_free_pages(flags, order);
73 
74 	return page;
75 }
76 
77 static inline void set_current(struct task_struct *task)
78 {
79 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
80 		{ external_pid(), task });
81 }
82 
83 extern void arch_switch_to(struct task_struct *to);
84 
85 void *__switch_to(struct task_struct *from, struct task_struct *to)
86 {
87 	to->thread.prev_sched = from;
88 	set_current(to);
89 
90 	switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
91 	arch_switch_to(current);
92 
93 	return current->thread.prev_sched;
94 }
95 
96 void interrupt_end(void)
97 {
98 	struct pt_regs *regs = &current->thread.regs;
99 
100 	if (need_resched())
101 		schedule();
102 	if (test_thread_flag(TIF_SIGPENDING))
103 		do_signal(regs);
104 	if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
105 		tracehook_notify_resume(regs);
106 }
107 
108 int get_current_pid(void)
109 {
110 	return task_pid_nr(current);
111 }
112 
113 /*
114  * This is called magically, by its address being stuffed in a jmp_buf
115  * and being longjmp-d to.
116  */
117 void new_thread_handler(void)
118 {
119 	int (*fn)(void *), n;
120 	void *arg;
121 
122 	if (current->thread.prev_sched != NULL)
123 		schedule_tail(current->thread.prev_sched);
124 	current->thread.prev_sched = NULL;
125 
126 	fn = current->thread.request.u.thread.proc;
127 	arg = current->thread.request.u.thread.arg;
128 
129 	/*
130 	 * callback returns only if the kernel thread execs a process
131 	 */
132 	n = fn(arg);
133 	userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
134 }
135 
136 /* Called magically, see new_thread_handler above */
137 void fork_handler(void)
138 {
139 	force_flush_all();
140 
141 	schedule_tail(current->thread.prev_sched);
142 
143 	/*
144 	 * XXX: if interrupt_end() calls schedule, this call to
145 	 * arch_switch_to isn't needed. We could want to apply this to
146 	 * improve performance. -bb
147 	 */
148 	arch_switch_to(current);
149 
150 	current->thread.prev_sched = NULL;
151 
152 	userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
153 }
154 
155 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
156 		unsigned long arg, struct task_struct * p, unsigned long tls)
157 {
158 	void (*handler)(void);
159 	int kthread = current->flags & PF_KTHREAD;
160 	int ret = 0;
161 
162 	p->thread = (struct thread_struct) INIT_THREAD;
163 
164 	if (!kthread) {
165 	  	memcpy(&p->thread.regs.regs, current_pt_regs(),
166 		       sizeof(p->thread.regs.regs));
167 		PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
168 		if (sp != 0)
169 			REGS_SP(p->thread.regs.regs.gp) = sp;
170 
171 		handler = fork_handler;
172 
173 		arch_copy_thread(&current->thread.arch, &p->thread.arch);
174 	} else {
175 		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
176 		p->thread.request.u.thread.proc = (int (*)(void *))sp;
177 		p->thread.request.u.thread.arg = (void *)arg;
178 		handler = new_thread_handler;
179 	}
180 
181 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
182 
183 	if (!kthread) {
184 		clear_flushed_tls(p);
185 
186 		/*
187 		 * Set a new TLS for the child thread?
188 		 */
189 		if (clone_flags & CLONE_SETTLS)
190 			ret = arch_set_tls(p, tls);
191 	}
192 
193 	return ret;
194 }
195 
196 void initial_thread_cb(void (*proc)(void *), void *arg)
197 {
198 	int save_kmalloc_ok = kmalloc_ok;
199 
200 	kmalloc_ok = 0;
201 	initial_thread_cb_skas(proc, arg);
202 	kmalloc_ok = save_kmalloc_ok;
203 }
204 
205 static void um_idle_sleep(void)
206 {
207 	unsigned long long duration = UM_NSEC_PER_SEC;
208 
209 	if (time_travel_mode != TT_MODE_OFF) {
210 		time_travel_sleep(duration);
211 	} else {
212 		os_idle_sleep(duration);
213 	}
214 }
215 
216 void arch_cpu_idle(void)
217 {
218 	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
219 	um_idle_sleep();
220 	local_irq_enable();
221 }
222 
223 int __cant_sleep(void) {
224 	return in_atomic() || irqs_disabled() || in_interrupt();
225 	/* Is in_interrupt() really needed? */
226 }
227 
228 int user_context(unsigned long sp)
229 {
230 	unsigned long stack;
231 
232 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
233 	return stack != (unsigned long) current_thread_info();
234 }
235 
236 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
237 
238 void do_uml_exitcalls(void)
239 {
240 	exitcall_t *call;
241 
242 	call = &__uml_exitcall_end;
243 	while (--call >= &__uml_exitcall_begin)
244 		(*call)();
245 }
246 
247 char *uml_strdup(const char *string)
248 {
249 	return kstrdup(string, GFP_KERNEL);
250 }
251 EXPORT_SYMBOL(uml_strdup);
252 
253 int copy_to_user_proc(void __user *to, void *from, int size)
254 {
255 	return copy_to_user(to, from, size);
256 }
257 
258 int copy_from_user_proc(void *to, void __user *from, int size)
259 {
260 	return copy_from_user(to, from, size);
261 }
262 
263 int clear_user_proc(void __user *buf, int size)
264 {
265 	return clear_user(buf, size);
266 }
267 
268 int cpu(void)
269 {
270 	return current_thread_info()->cpu;
271 }
272 
273 static atomic_t using_sysemu = ATOMIC_INIT(0);
274 int sysemu_supported;
275 
276 void set_using_sysemu(int value)
277 {
278 	if (value > sysemu_supported)
279 		return;
280 	atomic_set(&using_sysemu, value);
281 }
282 
283 int get_using_sysemu(void)
284 {
285 	return atomic_read(&using_sysemu);
286 }
287 
288 static int sysemu_proc_show(struct seq_file *m, void *v)
289 {
290 	seq_printf(m, "%d\n", get_using_sysemu());
291 	return 0;
292 }
293 
294 static int sysemu_proc_open(struct inode *inode, struct file *file)
295 {
296 	return single_open(file, sysemu_proc_show, NULL);
297 }
298 
299 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
300 				 size_t count, loff_t *pos)
301 {
302 	char tmp[2];
303 
304 	if (copy_from_user(tmp, buf, 1))
305 		return -EFAULT;
306 
307 	if (tmp[0] >= '0' && tmp[0] <= '2')
308 		set_using_sysemu(tmp[0] - '0');
309 	/* We use the first char, but pretend to write everything */
310 	return count;
311 }
312 
313 static const struct proc_ops sysemu_proc_ops = {
314 	.proc_open	= sysemu_proc_open,
315 	.proc_read	= seq_read,
316 	.proc_lseek	= seq_lseek,
317 	.proc_release	= single_release,
318 	.proc_write	= sysemu_proc_write,
319 };
320 
321 int __init make_proc_sysemu(void)
322 {
323 	struct proc_dir_entry *ent;
324 	if (!sysemu_supported)
325 		return 0;
326 
327 	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_ops);
328 
329 	if (ent == NULL)
330 	{
331 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
332 		return 0;
333 	}
334 
335 	return 0;
336 }
337 
338 late_initcall(make_proc_sysemu);
339 
340 int singlestepping(void * t)
341 {
342 	struct task_struct *task = t ? t : current;
343 
344 	if (!(task->ptrace & PT_DTRACE))
345 		return 0;
346 
347 	if (task->thread.singlestep_syscall)
348 		return 1;
349 
350 	return 2;
351 }
352 
353 /*
354  * Only x86 and x86_64 have an arch_align_stack().
355  * All other arches have "#define arch_align_stack(x) (x)"
356  * in their asm/exec.h
357  * As this is included in UML from asm-um/system-generic.h,
358  * we can use it to behave as the subarch does.
359  */
360 #ifndef arch_align_stack
361 unsigned long arch_align_stack(unsigned long sp)
362 {
363 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
364 		sp -= get_random_int() % 8192;
365 	return sp & ~0xf;
366 }
367 #endif
368 
369 unsigned long get_wchan(struct task_struct *p)
370 {
371 	unsigned long stack_page, sp, ip;
372 	bool seen_sched = 0;
373 
374 	if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
375 		return 0;
376 
377 	stack_page = (unsigned long) task_stack_page(p);
378 	/* Bail if the process has no kernel stack for some reason */
379 	if (stack_page == 0)
380 		return 0;
381 
382 	sp = p->thread.switch_buf->JB_SP;
383 	/*
384 	 * Bail if the stack pointer is below the bottom of the kernel
385 	 * stack for some reason
386 	 */
387 	if (sp < stack_page)
388 		return 0;
389 
390 	while (sp < stack_page + THREAD_SIZE) {
391 		ip = *((unsigned long *) sp);
392 		if (in_sched_functions(ip))
393 			/* Ignore everything until we're above the scheduler */
394 			seen_sched = 1;
395 		else if (kernel_text_address(ip) && seen_sched)
396 			return ip;
397 
398 		sp += sizeof(unsigned long);
399 	}
400 
401 	return 0;
402 }
403 
404 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
405 {
406 	int cpu = current_thread_info()->cpu;
407 
408 	return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
409 }
410 
411