1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Copyright 2003 PathScale, Inc. 4 * Licensed under the GPL 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/err.h> 9 #include <linux/hardirq.h> 10 #include <linux/mm.h> 11 #include <linux/module.h> 12 #include <linux/personality.h> 13 #include <linux/proc_fs.h> 14 #include <linux/ptrace.h> 15 #include <linux/random.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/seq_file.h> 19 #include <linux/tick.h> 20 #include <linux/threads.h> 21 #include <linux/tracehook.h> 22 #include <asm/current.h> 23 #include <asm/pgtable.h> 24 #include <asm/mmu_context.h> 25 #include <asm/uaccess.h> 26 #include <as-layout.h> 27 #include <kern_util.h> 28 #include <os.h> 29 #include <skas.h> 30 31 /* 32 * This is a per-cpu array. A processor only modifies its entry and it only 33 * cares about its entry, so it's OK if another processor is modifying its 34 * entry. 35 */ 36 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } }; 37 38 static inline int external_pid(void) 39 { 40 /* FIXME: Need to look up userspace_pid by cpu */ 41 return userspace_pid[0]; 42 } 43 44 int pid_to_processor_id(int pid) 45 { 46 int i; 47 48 for (i = 0; i < ncpus; i++) { 49 if (cpu_tasks[i].pid == pid) 50 return i; 51 } 52 return -1; 53 } 54 55 void free_stack(unsigned long stack, int order) 56 { 57 free_pages(stack, order); 58 } 59 60 unsigned long alloc_stack(int order, int atomic) 61 { 62 unsigned long page; 63 gfp_t flags = GFP_KERNEL; 64 65 if (atomic) 66 flags = GFP_ATOMIC; 67 page = __get_free_pages(flags, order); 68 69 return page; 70 } 71 72 static inline void set_current(struct task_struct *task) 73 { 74 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task) 75 { external_pid(), task }); 76 } 77 78 extern void arch_switch_to(struct task_struct *to); 79 80 void *__switch_to(struct task_struct *from, struct task_struct *to) 81 { 82 to->thread.prev_sched = from; 83 set_current(to); 84 85 switch_threads(&from->thread.switch_buf, &to->thread.switch_buf); 86 arch_switch_to(current); 87 88 return current->thread.prev_sched; 89 } 90 91 void interrupt_end(void) 92 { 93 if (need_resched()) 94 schedule(); 95 if (test_thread_flag(TIF_SIGPENDING)) 96 do_signal(); 97 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) 98 tracehook_notify_resume(¤t->thread.regs); 99 } 100 101 void exit_thread(void) 102 { 103 } 104 105 int get_current_pid(void) 106 { 107 return task_pid_nr(current); 108 } 109 110 /* 111 * This is called magically, by its address being stuffed in a jmp_buf 112 * and being longjmp-d to. 113 */ 114 void new_thread_handler(void) 115 { 116 int (*fn)(void *), n; 117 void *arg; 118 119 if (current->thread.prev_sched != NULL) 120 schedule_tail(current->thread.prev_sched); 121 current->thread.prev_sched = NULL; 122 123 fn = current->thread.request.u.thread.proc; 124 arg = current->thread.request.u.thread.arg; 125 126 /* 127 * callback returns only if the kernel thread execs a process 128 */ 129 n = fn(arg); 130 userspace(¤t->thread.regs.regs); 131 } 132 133 /* Called magically, see new_thread_handler above */ 134 void fork_handler(void) 135 { 136 force_flush_all(); 137 138 schedule_tail(current->thread.prev_sched); 139 140 /* 141 * XXX: if interrupt_end() calls schedule, this call to 142 * arch_switch_to isn't needed. We could want to apply this to 143 * improve performance. -bb 144 */ 145 arch_switch_to(current); 146 147 current->thread.prev_sched = NULL; 148 149 userspace(¤t->thread.regs.regs); 150 } 151 152 int copy_thread(unsigned long clone_flags, unsigned long sp, 153 unsigned long arg, struct task_struct * p) 154 { 155 void (*handler)(void); 156 int kthread = current->flags & PF_KTHREAD; 157 int ret = 0; 158 159 p->thread = (struct thread_struct) INIT_THREAD; 160 161 if (!kthread) { 162 memcpy(&p->thread.regs.regs, current_pt_regs(), 163 sizeof(p->thread.regs.regs)); 164 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0); 165 if (sp != 0) 166 REGS_SP(p->thread.regs.regs.gp) = sp; 167 168 handler = fork_handler; 169 170 arch_copy_thread(¤t->thread.arch, &p->thread.arch); 171 } else { 172 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp); 173 p->thread.request.u.thread.proc = (int (*)(void *))sp; 174 p->thread.request.u.thread.arg = (void *)arg; 175 handler = new_thread_handler; 176 } 177 178 new_thread(task_stack_page(p), &p->thread.switch_buf, handler); 179 180 if (!kthread) { 181 clear_flushed_tls(p); 182 183 /* 184 * Set a new TLS for the child thread? 185 */ 186 if (clone_flags & CLONE_SETTLS) 187 ret = arch_copy_tls(p); 188 } 189 190 return ret; 191 } 192 193 void initial_thread_cb(void (*proc)(void *), void *arg) 194 { 195 int save_kmalloc_ok = kmalloc_ok; 196 197 kmalloc_ok = 0; 198 initial_thread_cb_skas(proc, arg); 199 kmalloc_ok = save_kmalloc_ok; 200 } 201 202 void arch_cpu_idle(void) 203 { 204 unsigned long long nsecs; 205 206 cpu_tasks[current_thread_info()->cpu].pid = os_getpid(); 207 nsecs = disable_timer(); 208 idle_sleep(nsecs); 209 local_irq_enable(); 210 } 211 212 int __cant_sleep(void) { 213 return in_atomic() || irqs_disabled() || in_interrupt(); 214 /* Is in_interrupt() really needed? */ 215 } 216 217 int user_context(unsigned long sp) 218 { 219 unsigned long stack; 220 221 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER); 222 return stack != (unsigned long) current_thread_info(); 223 } 224 225 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end; 226 227 void do_uml_exitcalls(void) 228 { 229 exitcall_t *call; 230 231 call = &__uml_exitcall_end; 232 while (--call >= &__uml_exitcall_begin) 233 (*call)(); 234 } 235 236 char *uml_strdup(const char *string) 237 { 238 return kstrdup(string, GFP_KERNEL); 239 } 240 EXPORT_SYMBOL(uml_strdup); 241 242 int copy_to_user_proc(void __user *to, void *from, int size) 243 { 244 return copy_to_user(to, from, size); 245 } 246 247 int copy_from_user_proc(void *to, void __user *from, int size) 248 { 249 return copy_from_user(to, from, size); 250 } 251 252 int clear_user_proc(void __user *buf, int size) 253 { 254 return clear_user(buf, size); 255 } 256 257 int strlen_user_proc(char __user *str) 258 { 259 return strlen_user(str); 260 } 261 262 int smp_sigio_handler(void) 263 { 264 #ifdef CONFIG_SMP 265 int cpu = current_thread_info()->cpu; 266 IPI_handler(cpu); 267 if (cpu != 0) 268 return 1; 269 #endif 270 return 0; 271 } 272 273 int cpu(void) 274 { 275 return current_thread_info()->cpu; 276 } 277 278 static atomic_t using_sysemu = ATOMIC_INIT(0); 279 int sysemu_supported; 280 281 void set_using_sysemu(int value) 282 { 283 if (value > sysemu_supported) 284 return; 285 atomic_set(&using_sysemu, value); 286 } 287 288 int get_using_sysemu(void) 289 { 290 return atomic_read(&using_sysemu); 291 } 292 293 static int sysemu_proc_show(struct seq_file *m, void *v) 294 { 295 seq_printf(m, "%d\n", get_using_sysemu()); 296 return 0; 297 } 298 299 static int sysemu_proc_open(struct inode *inode, struct file *file) 300 { 301 return single_open(file, sysemu_proc_show, NULL); 302 } 303 304 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf, 305 size_t count, loff_t *pos) 306 { 307 char tmp[2]; 308 309 if (copy_from_user(tmp, buf, 1)) 310 return -EFAULT; 311 312 if (tmp[0] >= '0' && tmp[0] <= '2') 313 set_using_sysemu(tmp[0] - '0'); 314 /* We use the first char, but pretend to write everything */ 315 return count; 316 } 317 318 static const struct file_operations sysemu_proc_fops = { 319 .owner = THIS_MODULE, 320 .open = sysemu_proc_open, 321 .read = seq_read, 322 .llseek = seq_lseek, 323 .release = single_release, 324 .write = sysemu_proc_write, 325 }; 326 327 int __init make_proc_sysemu(void) 328 { 329 struct proc_dir_entry *ent; 330 if (!sysemu_supported) 331 return 0; 332 333 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops); 334 335 if (ent == NULL) 336 { 337 printk(KERN_WARNING "Failed to register /proc/sysemu\n"); 338 return 0; 339 } 340 341 return 0; 342 } 343 344 late_initcall(make_proc_sysemu); 345 346 int singlestepping(void * t) 347 { 348 struct task_struct *task = t ? t : current; 349 350 if (!(task->ptrace & PT_DTRACE)) 351 return 0; 352 353 if (task->thread.singlestep_syscall) 354 return 1; 355 356 return 2; 357 } 358 359 /* 360 * Only x86 and x86_64 have an arch_align_stack(). 361 * All other arches have "#define arch_align_stack(x) (x)" 362 * in their asm/exec.h 363 * As this is included in UML from asm-um/system-generic.h, 364 * we can use it to behave as the subarch does. 365 */ 366 #ifndef arch_align_stack 367 unsigned long arch_align_stack(unsigned long sp) 368 { 369 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 370 sp -= get_random_int() % 8192; 371 return sp & ~0xf; 372 } 373 #endif 374 375 unsigned long get_wchan(struct task_struct *p) 376 { 377 unsigned long stack_page, sp, ip; 378 bool seen_sched = 0; 379 380 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING)) 381 return 0; 382 383 stack_page = (unsigned long) task_stack_page(p); 384 /* Bail if the process has no kernel stack for some reason */ 385 if (stack_page == 0) 386 return 0; 387 388 sp = p->thread.switch_buf->JB_SP; 389 /* 390 * Bail if the stack pointer is below the bottom of the kernel 391 * stack for some reason 392 */ 393 if (sp < stack_page) 394 return 0; 395 396 while (sp < stack_page + THREAD_SIZE) { 397 ip = *((unsigned long *) sp); 398 if (in_sched_functions(ip)) 399 /* Ignore everything until we're above the scheduler */ 400 seen_sched = 1; 401 else if (kernel_text_address(ip) && seen_sched) 402 return ip; 403 404 sp += sizeof(unsigned long); 405 } 406 407 return 0; 408 } 409 410 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu) 411 { 412 int cpu = current_thread_info()->cpu; 413 414 return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu); 415 } 416 417