1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk}) 4 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de) 5 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 6 * Copyright 2003 PathScale, Inc. 7 */ 8 9 #include <linux/stddef.h> 10 #include <linux/err.h> 11 #include <linux/hardirq.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/personality.h> 15 #include <linux/proc_fs.h> 16 #include <linux/ptrace.h> 17 #include <linux/random.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/sched/debug.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/task_stack.h> 23 #include <linux/seq_file.h> 24 #include <linux/tick.h> 25 #include <linux/threads.h> 26 #include <linux/tracehook.h> 27 #include <asm/current.h> 28 #include <asm/mmu_context.h> 29 #include <linux/uaccess.h> 30 #include <as-layout.h> 31 #include <kern_util.h> 32 #include <os.h> 33 #include <skas.h> 34 #include <linux/time-internal.h> 35 36 /* 37 * This is a per-cpu array. A processor only modifies its entry and it only 38 * cares about its entry, so it's OK if another processor is modifying its 39 * entry. 40 */ 41 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } }; 42 43 static inline int external_pid(void) 44 { 45 /* FIXME: Need to look up userspace_pid by cpu */ 46 return userspace_pid[0]; 47 } 48 49 int pid_to_processor_id(int pid) 50 { 51 int i; 52 53 for (i = 0; i < ncpus; i++) { 54 if (cpu_tasks[i].pid == pid) 55 return i; 56 } 57 return -1; 58 } 59 60 void free_stack(unsigned long stack, int order) 61 { 62 free_pages(stack, order); 63 } 64 65 unsigned long alloc_stack(int order, int atomic) 66 { 67 unsigned long page; 68 gfp_t flags = GFP_KERNEL; 69 70 if (atomic) 71 flags = GFP_ATOMIC; 72 page = __get_free_pages(flags, order); 73 74 return page; 75 } 76 77 static inline void set_current(struct task_struct *task) 78 { 79 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task) 80 { external_pid(), task }); 81 } 82 83 extern void arch_switch_to(struct task_struct *to); 84 85 void *__switch_to(struct task_struct *from, struct task_struct *to) 86 { 87 to->thread.prev_sched = from; 88 set_current(to); 89 90 switch_threads(&from->thread.switch_buf, &to->thread.switch_buf); 91 arch_switch_to(current); 92 93 return current->thread.prev_sched; 94 } 95 96 void interrupt_end(void) 97 { 98 struct pt_regs *regs = ¤t->thread.regs; 99 100 if (need_resched()) 101 schedule(); 102 if (test_thread_flag(TIF_SIGPENDING) || 103 test_thread_flag(TIF_NOTIFY_SIGNAL)) 104 do_signal(regs); 105 if (test_thread_flag(TIF_NOTIFY_RESUME)) 106 tracehook_notify_resume(regs); 107 } 108 109 int get_current_pid(void) 110 { 111 return task_pid_nr(current); 112 } 113 114 /* 115 * This is called magically, by its address being stuffed in a jmp_buf 116 * and being longjmp-d to. 117 */ 118 void new_thread_handler(void) 119 { 120 int (*fn)(void *), n; 121 void *arg; 122 123 if (current->thread.prev_sched != NULL) 124 schedule_tail(current->thread.prev_sched); 125 current->thread.prev_sched = NULL; 126 127 fn = current->thread.request.u.thread.proc; 128 arg = current->thread.request.u.thread.arg; 129 130 /* 131 * callback returns only if the kernel thread execs a process 132 */ 133 n = fn(arg); 134 userspace(¤t->thread.regs.regs, current_thread_info()->aux_fp_regs); 135 } 136 137 /* Called magically, see new_thread_handler above */ 138 void fork_handler(void) 139 { 140 force_flush_all(); 141 142 schedule_tail(current->thread.prev_sched); 143 144 /* 145 * XXX: if interrupt_end() calls schedule, this call to 146 * arch_switch_to isn't needed. We could want to apply this to 147 * improve performance. -bb 148 */ 149 arch_switch_to(current); 150 151 current->thread.prev_sched = NULL; 152 153 userspace(¤t->thread.regs.regs, current_thread_info()->aux_fp_regs); 154 } 155 156 int copy_thread(unsigned long clone_flags, unsigned long sp, 157 unsigned long arg, struct task_struct * p, unsigned long tls) 158 { 159 void (*handler)(void); 160 int kthread = current->flags & (PF_KTHREAD | PF_IO_WORKER); 161 int ret = 0; 162 163 p->thread = (struct thread_struct) INIT_THREAD; 164 165 if (!kthread) { 166 memcpy(&p->thread.regs.regs, current_pt_regs(), 167 sizeof(p->thread.regs.regs)); 168 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0); 169 if (sp != 0) 170 REGS_SP(p->thread.regs.regs.gp) = sp; 171 172 handler = fork_handler; 173 174 arch_copy_thread(¤t->thread.arch, &p->thread.arch); 175 } else { 176 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp); 177 p->thread.request.u.thread.proc = (int (*)(void *))sp; 178 p->thread.request.u.thread.arg = (void *)arg; 179 handler = new_thread_handler; 180 } 181 182 new_thread(task_stack_page(p), &p->thread.switch_buf, handler); 183 184 if (!kthread) { 185 clear_flushed_tls(p); 186 187 /* 188 * Set a new TLS for the child thread? 189 */ 190 if (clone_flags & CLONE_SETTLS) 191 ret = arch_set_tls(p, tls); 192 } 193 194 return ret; 195 } 196 197 void initial_thread_cb(void (*proc)(void *), void *arg) 198 { 199 int save_kmalloc_ok = kmalloc_ok; 200 201 kmalloc_ok = 0; 202 initial_thread_cb_skas(proc, arg); 203 kmalloc_ok = save_kmalloc_ok; 204 } 205 206 void um_idle_sleep(void) 207 { 208 if (time_travel_mode != TT_MODE_OFF) 209 time_travel_sleep(); 210 else 211 os_idle_sleep(); 212 } 213 214 void arch_cpu_idle(void) 215 { 216 cpu_tasks[current_thread_info()->cpu].pid = os_getpid(); 217 um_idle_sleep(); 218 raw_local_irq_enable(); 219 } 220 221 int __cant_sleep(void) { 222 return in_atomic() || irqs_disabled() || in_interrupt(); 223 /* Is in_interrupt() really needed? */ 224 } 225 226 int user_context(unsigned long sp) 227 { 228 unsigned long stack; 229 230 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER); 231 return stack != (unsigned long) current_thread_info(); 232 } 233 234 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end; 235 236 void do_uml_exitcalls(void) 237 { 238 exitcall_t *call; 239 240 call = &__uml_exitcall_end; 241 while (--call >= &__uml_exitcall_begin) 242 (*call)(); 243 } 244 245 char *uml_strdup(const char *string) 246 { 247 return kstrdup(string, GFP_KERNEL); 248 } 249 EXPORT_SYMBOL(uml_strdup); 250 251 int copy_to_user_proc(void __user *to, void *from, int size) 252 { 253 return copy_to_user(to, from, size); 254 } 255 256 int copy_from_user_proc(void *to, void __user *from, int size) 257 { 258 return copy_from_user(to, from, size); 259 } 260 261 int clear_user_proc(void __user *buf, int size) 262 { 263 return clear_user(buf, size); 264 } 265 266 int cpu(void) 267 { 268 return current_thread_info()->cpu; 269 } 270 271 static atomic_t using_sysemu = ATOMIC_INIT(0); 272 int sysemu_supported; 273 274 void set_using_sysemu(int value) 275 { 276 if (value > sysemu_supported) 277 return; 278 atomic_set(&using_sysemu, value); 279 } 280 281 int get_using_sysemu(void) 282 { 283 return atomic_read(&using_sysemu); 284 } 285 286 static int sysemu_proc_show(struct seq_file *m, void *v) 287 { 288 seq_printf(m, "%d\n", get_using_sysemu()); 289 return 0; 290 } 291 292 static int sysemu_proc_open(struct inode *inode, struct file *file) 293 { 294 return single_open(file, sysemu_proc_show, NULL); 295 } 296 297 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf, 298 size_t count, loff_t *pos) 299 { 300 char tmp[2]; 301 302 if (copy_from_user(tmp, buf, 1)) 303 return -EFAULT; 304 305 if (tmp[0] >= '0' && tmp[0] <= '2') 306 set_using_sysemu(tmp[0] - '0'); 307 /* We use the first char, but pretend to write everything */ 308 return count; 309 } 310 311 static const struct proc_ops sysemu_proc_ops = { 312 .proc_open = sysemu_proc_open, 313 .proc_read = seq_read, 314 .proc_lseek = seq_lseek, 315 .proc_release = single_release, 316 .proc_write = sysemu_proc_write, 317 }; 318 319 int __init make_proc_sysemu(void) 320 { 321 struct proc_dir_entry *ent; 322 if (!sysemu_supported) 323 return 0; 324 325 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_ops); 326 327 if (ent == NULL) 328 { 329 printk(KERN_WARNING "Failed to register /proc/sysemu\n"); 330 return 0; 331 } 332 333 return 0; 334 } 335 336 late_initcall(make_proc_sysemu); 337 338 int singlestepping(void * t) 339 { 340 struct task_struct *task = t ? t : current; 341 342 if (!(task->ptrace & PT_DTRACE)) 343 return 0; 344 345 if (task->thread.singlestep_syscall) 346 return 1; 347 348 return 2; 349 } 350 351 /* 352 * Only x86 and x86_64 have an arch_align_stack(). 353 * All other arches have "#define arch_align_stack(x) (x)" 354 * in their asm/exec.h 355 * As this is included in UML from asm-um/system-generic.h, 356 * we can use it to behave as the subarch does. 357 */ 358 #ifndef arch_align_stack 359 unsigned long arch_align_stack(unsigned long sp) 360 { 361 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 362 sp -= get_random_int() % 8192; 363 return sp & ~0xf; 364 } 365 #endif 366 367 unsigned long __get_wchan(struct task_struct *p) 368 { 369 unsigned long stack_page, sp, ip; 370 bool seen_sched = 0; 371 372 stack_page = (unsigned long) task_stack_page(p); 373 /* Bail if the process has no kernel stack for some reason */ 374 if (stack_page == 0) 375 return 0; 376 377 sp = p->thread.switch_buf->JB_SP; 378 /* 379 * Bail if the stack pointer is below the bottom of the kernel 380 * stack for some reason 381 */ 382 if (sp < stack_page) 383 return 0; 384 385 while (sp < stack_page + THREAD_SIZE) { 386 ip = *((unsigned long *) sp); 387 if (in_sched_functions(ip)) 388 /* Ignore everything until we're above the scheduler */ 389 seen_sched = 1; 390 else if (kernel_text_address(ip) && seen_sched) 391 return ip; 392 393 sp += sizeof(unsigned long); 394 } 395 396 return 0; 397 } 398 399 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu) 400 { 401 int cpu = current_thread_info()->cpu; 402 403 return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu); 404 } 405 406