1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Licensed under the GPL 4 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: 5 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar 6 */ 7 8 #include "linux/cpumask.h" 9 #include "linux/hardirq.h" 10 #include "linux/interrupt.h" 11 #include "linux/kernel_stat.h" 12 #include "linux/module.h" 13 #include "linux/seq_file.h" 14 #include "as-layout.h" 15 #include "kern_util.h" 16 #include "os.h" 17 18 /* 19 * Generic, controller-independent functions: 20 */ 21 22 int show_interrupts(struct seq_file *p, void *v) 23 { 24 int i = *(loff_t *) v, j; 25 struct irqaction * action; 26 unsigned long flags; 27 28 if (i == 0) { 29 seq_printf(p, " "); 30 for_each_online_cpu(j) 31 seq_printf(p, "CPU%d ",j); 32 seq_putc(p, '\n'); 33 } 34 35 if (i < NR_IRQS) { 36 spin_lock_irqsave(&irq_desc[i].lock, flags); 37 action = irq_desc[i].action; 38 if (!action) 39 goto skip; 40 seq_printf(p, "%3d: ",i); 41 #ifndef CONFIG_SMP 42 seq_printf(p, "%10u ", kstat_irqs(i)); 43 #else 44 for_each_online_cpu(j) 45 seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]); 46 #endif 47 seq_printf(p, " %14s", irq_desc[i].chip->typename); 48 seq_printf(p, " %s", action->name); 49 50 for (action=action->next; action; action = action->next) 51 seq_printf(p, ", %s", action->name); 52 53 seq_putc(p, '\n'); 54 skip: 55 spin_unlock_irqrestore(&irq_desc[i].lock, flags); 56 } else if (i == NR_IRQS) 57 seq_putc(p, '\n'); 58 59 return 0; 60 } 61 62 /* 63 * This list is accessed under irq_lock, except in sigio_handler, 64 * where it is safe from being modified. IRQ handlers won't change it - 65 * if an IRQ source has vanished, it will be freed by free_irqs just 66 * before returning from sigio_handler. That will process a separate 67 * list of irqs to free, with its own locking, coming back here to 68 * remove list elements, taking the irq_lock to do so. 69 */ 70 static struct irq_fd *active_fds = NULL; 71 static struct irq_fd **last_irq_ptr = &active_fds; 72 73 extern void free_irqs(void); 74 75 void sigio_handler(int sig, struct uml_pt_regs *regs) 76 { 77 struct irq_fd *irq_fd; 78 int n; 79 80 if (smp_sigio_handler()) 81 return; 82 83 while (1) { 84 n = os_waiting_for_events(active_fds); 85 if (n <= 0) { 86 if (n == -EINTR) 87 continue; 88 else break; 89 } 90 91 for (irq_fd = active_fds; irq_fd != NULL; 92 irq_fd = irq_fd->next) { 93 if (irq_fd->current_events != 0) { 94 irq_fd->current_events = 0; 95 do_IRQ(irq_fd->irq, regs); 96 } 97 } 98 } 99 100 free_irqs(); 101 } 102 103 static DEFINE_SPINLOCK(irq_lock); 104 105 int activate_fd(int irq, int fd, int type, void *dev_id) 106 { 107 struct pollfd *tmp_pfd; 108 struct irq_fd *new_fd, *irq_fd; 109 unsigned long flags; 110 int events, err, n; 111 112 err = os_set_fd_async(fd); 113 if (err < 0) 114 goto out; 115 116 err = -ENOMEM; 117 new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL); 118 if (new_fd == NULL) 119 goto out; 120 121 if (type == IRQ_READ) 122 events = UM_POLLIN | UM_POLLPRI; 123 else events = UM_POLLOUT; 124 *new_fd = ((struct irq_fd) { .next = NULL, 125 .id = dev_id, 126 .fd = fd, 127 .type = type, 128 .irq = irq, 129 .events = events, 130 .current_events = 0 } ); 131 132 err = -EBUSY; 133 spin_lock_irqsave(&irq_lock, flags); 134 for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) { 135 if ((irq_fd->fd == fd) && (irq_fd->type == type)) { 136 printk(KERN_ERR "Registering fd %d twice\n", fd); 137 printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq); 138 printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id, 139 dev_id); 140 goto out_unlock; 141 } 142 } 143 144 if (type == IRQ_WRITE) 145 fd = -1; 146 147 tmp_pfd = NULL; 148 n = 0; 149 150 while (1) { 151 n = os_create_pollfd(fd, events, tmp_pfd, n); 152 if (n == 0) 153 break; 154 155 /* 156 * n > 0 157 * It means we couldn't put new pollfd to current pollfds 158 * and tmp_fds is NULL or too small for new pollfds array. 159 * Needed size is equal to n as minimum. 160 * 161 * Here we have to drop the lock in order to call 162 * kmalloc, which might sleep. 163 * If something else came in and changed the pollfds array 164 * so we will not be able to put new pollfd struct to pollfds 165 * then we free the buffer tmp_fds and try again. 166 */ 167 spin_unlock_irqrestore(&irq_lock, flags); 168 kfree(tmp_pfd); 169 170 tmp_pfd = kmalloc(n, GFP_KERNEL); 171 if (tmp_pfd == NULL) 172 goto out_kfree; 173 174 spin_lock_irqsave(&irq_lock, flags); 175 } 176 177 *last_irq_ptr = new_fd; 178 last_irq_ptr = &new_fd->next; 179 180 spin_unlock_irqrestore(&irq_lock, flags); 181 182 /* 183 * This calls activate_fd, so it has to be outside the critical 184 * section. 185 */ 186 maybe_sigio_broken(fd, (type == IRQ_READ)); 187 188 return 0; 189 190 out_unlock: 191 spin_unlock_irqrestore(&irq_lock, flags); 192 out_kfree: 193 kfree(new_fd); 194 out: 195 return err; 196 } 197 198 static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg) 199 { 200 unsigned long flags; 201 202 spin_lock_irqsave(&irq_lock, flags); 203 os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr); 204 spin_unlock_irqrestore(&irq_lock, flags); 205 } 206 207 struct irq_and_dev { 208 int irq; 209 void *dev; 210 }; 211 212 static int same_irq_and_dev(struct irq_fd *irq, void *d) 213 { 214 struct irq_and_dev *data = d; 215 216 return ((irq->irq == data->irq) && (irq->id == data->dev)); 217 } 218 219 void free_irq_by_irq_and_dev(unsigned int irq, void *dev) 220 { 221 struct irq_and_dev data = ((struct irq_and_dev) { .irq = irq, 222 .dev = dev }); 223 224 free_irq_by_cb(same_irq_and_dev, &data); 225 } 226 227 static int same_fd(struct irq_fd *irq, void *fd) 228 { 229 return (irq->fd == *((int *)fd)); 230 } 231 232 void free_irq_by_fd(int fd) 233 { 234 free_irq_by_cb(same_fd, &fd); 235 } 236 237 /* Must be called with irq_lock held */ 238 static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out) 239 { 240 struct irq_fd *irq; 241 int i = 0; 242 int fdi; 243 244 for (irq = active_fds; irq != NULL; irq = irq->next) { 245 if ((irq->fd == fd) && (irq->irq == irqnum)) 246 break; 247 i++; 248 } 249 if (irq == NULL) { 250 printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n", 251 fd); 252 goto out; 253 } 254 fdi = os_get_pollfd(i); 255 if ((fdi != -1) && (fdi != fd)) { 256 printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds " 257 "and pollfds, fd %d vs %d, need %d\n", irq->fd, 258 fdi, fd); 259 irq = NULL; 260 goto out; 261 } 262 *index_out = i; 263 out: 264 return irq; 265 } 266 267 void reactivate_fd(int fd, int irqnum) 268 { 269 struct irq_fd *irq; 270 unsigned long flags; 271 int i; 272 273 spin_lock_irqsave(&irq_lock, flags); 274 irq = find_irq_by_fd(fd, irqnum, &i); 275 if (irq == NULL) { 276 spin_unlock_irqrestore(&irq_lock, flags); 277 return; 278 } 279 os_set_pollfd(i, irq->fd); 280 spin_unlock_irqrestore(&irq_lock, flags); 281 282 add_sigio_fd(fd); 283 } 284 285 void deactivate_fd(int fd, int irqnum) 286 { 287 struct irq_fd *irq; 288 unsigned long flags; 289 int i; 290 291 spin_lock_irqsave(&irq_lock, flags); 292 irq = find_irq_by_fd(fd, irqnum, &i); 293 if (irq == NULL) { 294 spin_unlock_irqrestore(&irq_lock, flags); 295 return; 296 } 297 298 os_set_pollfd(i, -1); 299 spin_unlock_irqrestore(&irq_lock, flags); 300 301 ignore_sigio_fd(fd); 302 } 303 304 /* 305 * Called just before shutdown in order to provide a clean exec 306 * environment in case the system is rebooting. No locking because 307 * that would cause a pointless shutdown hang if something hadn't 308 * released the lock. 309 */ 310 int deactivate_all_fds(void) 311 { 312 struct irq_fd *irq; 313 int err; 314 315 for (irq = active_fds; irq != NULL; irq = irq->next) { 316 err = os_clear_fd_async(irq->fd); 317 if (err) 318 return err; 319 } 320 /* If there is a signal already queued, after unblocking ignore it */ 321 os_set_ioignore(); 322 323 return 0; 324 } 325 326 /* 327 * do_IRQ handles all normal device IRQs (the special 328 * SMP cross-CPU interrupts have their own specific 329 * handlers). 330 */ 331 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) 332 { 333 struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); 334 irq_enter(); 335 __do_IRQ(irq); 336 irq_exit(); 337 set_irq_regs(old_regs); 338 return 1; 339 } 340 341 int um_request_irq(unsigned int irq, int fd, int type, 342 irq_handler_t handler, 343 unsigned long irqflags, const char * devname, 344 void *dev_id) 345 { 346 int err; 347 348 if (fd != -1) { 349 err = activate_fd(irq, fd, type, dev_id); 350 if (err) 351 return err; 352 } 353 354 return request_irq(irq, handler, irqflags, devname, dev_id); 355 } 356 357 EXPORT_SYMBOL(um_request_irq); 358 EXPORT_SYMBOL(reactivate_fd); 359 360 /* 361 * hw_interrupt_type must define (startup || enable) && 362 * (shutdown || disable) && end 363 */ 364 static void dummy(unsigned int irq) 365 { 366 } 367 368 /* This is used for everything else than the timer. */ 369 static struct hw_interrupt_type normal_irq_type = { 370 .typename = "SIGIO", 371 .release = free_irq_by_irq_and_dev, 372 .disable = dummy, 373 .enable = dummy, 374 .ack = dummy, 375 .end = dummy 376 }; 377 378 static struct hw_interrupt_type SIGVTALRM_irq_type = { 379 .typename = "SIGVTALRM", 380 .release = free_irq_by_irq_and_dev, 381 .shutdown = dummy, /* never called */ 382 .disable = dummy, 383 .enable = dummy, 384 .ack = dummy, 385 .end = dummy 386 }; 387 388 void __init init_IRQ(void) 389 { 390 int i; 391 392 irq_desc[TIMER_IRQ].status = IRQ_DISABLED; 393 irq_desc[TIMER_IRQ].action = NULL; 394 irq_desc[TIMER_IRQ].depth = 1; 395 irq_desc[TIMER_IRQ].chip = &SIGVTALRM_irq_type; 396 enable_irq(TIMER_IRQ); 397 for (i = 1; i < NR_IRQS; i++) { 398 irq_desc[i].status = IRQ_DISABLED; 399 irq_desc[i].action = NULL; 400 irq_desc[i].depth = 1; 401 irq_desc[i].chip = &normal_irq_type; 402 enable_irq(i); 403 } 404 } 405 406 int init_aio_irq(int irq, char *name, irq_handler_t handler) 407 { 408 int fds[2], err; 409 410 err = os_pipe(fds, 1, 1); 411 if (err) { 412 printk(KERN_ERR "init_aio_irq - os_pipe failed, err = %d\n", 413 -err); 414 goto out; 415 } 416 417 err = um_request_irq(irq, fds[0], IRQ_READ, handler, 418 IRQF_DISABLED | IRQF_SAMPLE_RANDOM, name, 419 (void *) (long) fds[0]); 420 if (err) { 421 printk(KERN_ERR "init_aio_irq - : um_request_irq failed, " 422 "err = %d\n", 423 err); 424 goto out_close; 425 } 426 427 err = fds[1]; 428 goto out; 429 430 out_close: 431 os_close_file(fds[0]); 432 os_close_file(fds[1]); 433 out: 434 return err; 435 } 436 437 /* 438 * IRQ stack entry and exit: 439 * 440 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack 441 * and switch over to the IRQ stack after some preparation. We use 442 * sigaltstack to receive signals on a separate stack from the start. 443 * These two functions make sure the rest of the kernel won't be too 444 * upset by being on a different stack. The IRQ stack has a 445 * thread_info structure at the bottom so that current et al continue 446 * to work. 447 * 448 * to_irq_stack copies the current task's thread_info to the IRQ stack 449 * thread_info and sets the tasks's stack to point to the IRQ stack. 450 * 451 * from_irq_stack copies the thread_info struct back (flags may have 452 * been modified) and resets the task's stack pointer. 453 * 454 * Tricky bits - 455 * 456 * What happens when two signals race each other? UML doesn't block 457 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal 458 * could arrive while a previous one is still setting up the 459 * thread_info. 460 * 461 * There are three cases - 462 * The first interrupt on the stack - sets up the thread_info and 463 * handles the interrupt 464 * A nested interrupt interrupting the copying of the thread_info - 465 * can't handle the interrupt, as the stack is in an unknown state 466 * A nested interrupt not interrupting the copying of the 467 * thread_info - doesn't do any setup, just handles the interrupt 468 * 469 * The first job is to figure out whether we interrupted stack setup. 470 * This is done by xchging the signal mask with thread_info->pending. 471 * If the value that comes back is zero, then there is no setup in 472 * progress, and the interrupt can be handled. If the value is 473 * non-zero, then there is stack setup in progress. In order to have 474 * the interrupt handled, we leave our signal in the mask, and it will 475 * be handled by the upper handler after it has set up the stack. 476 * 477 * Next is to figure out whether we are the outer handler or a nested 478 * one. As part of setting up the stack, thread_info->real_thread is 479 * set to non-NULL (and is reset to NULL on exit). This is the 480 * nesting indicator. If it is non-NULL, then the stack is already 481 * set up and the handler can run. 482 */ 483 484 static unsigned long pending_mask; 485 486 unsigned long to_irq_stack(unsigned long *mask_out) 487 { 488 struct thread_info *ti; 489 unsigned long mask, old; 490 int nested; 491 492 mask = xchg(&pending_mask, *mask_out); 493 if (mask != 0) { 494 /* 495 * If any interrupts come in at this point, we want to 496 * make sure that their bits aren't lost by our 497 * putting our bit in. So, this loop accumulates bits 498 * until xchg returns the same value that we put in. 499 * When that happens, there were no new interrupts, 500 * and pending_mask contains a bit for each interrupt 501 * that came in. 502 */ 503 old = *mask_out; 504 do { 505 old |= mask; 506 mask = xchg(&pending_mask, old); 507 } while (mask != old); 508 return 1; 509 } 510 511 ti = current_thread_info(); 512 nested = (ti->real_thread != NULL); 513 if (!nested) { 514 struct task_struct *task; 515 struct thread_info *tti; 516 517 task = cpu_tasks[ti->cpu].task; 518 tti = task_thread_info(task); 519 520 *ti = *tti; 521 ti->real_thread = tti; 522 task->stack = ti; 523 } 524 525 mask = xchg(&pending_mask, 0); 526 *mask_out |= mask | nested; 527 return 0; 528 } 529 530 unsigned long from_irq_stack(int nested) 531 { 532 struct thread_info *ti, *to; 533 unsigned long mask; 534 535 ti = current_thread_info(); 536 537 pending_mask = 1; 538 539 to = ti->real_thread; 540 current->stack = to; 541 ti->real_thread = NULL; 542 *to = *ti; 543 544 mask = xchg(&pending_mask, 0); 545 return mask & ~1; 546 } 547 548