1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Licensed under the GPL 4 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: 5 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar 6 */ 7 8 #include "linux/cpumask.h" 9 #include "linux/hardirq.h" 10 #include "linux/interrupt.h" 11 #include "linux/kernel_stat.h" 12 #include "linux/module.h" 13 #include "linux/sched.h" 14 #include "linux/seq_file.h" 15 #include "linux/slab.h" 16 #include "as-layout.h" 17 #include "kern_util.h" 18 #include "os.h" 19 20 /* 21 * Generic, controller-independent functions: 22 */ 23 24 int show_interrupts(struct seq_file *p, void *v) 25 { 26 int i = *(loff_t *) v, j; 27 struct irqaction * action; 28 unsigned long flags; 29 30 if (i == 0) { 31 seq_printf(p, " "); 32 for_each_online_cpu(j) 33 seq_printf(p, "CPU%d ",j); 34 seq_putc(p, '\n'); 35 } 36 37 if (i < NR_IRQS) { 38 raw_spin_lock_irqsave(&irq_desc[i].lock, flags); 39 action = irq_desc[i].action; 40 if (!action) 41 goto skip; 42 seq_printf(p, "%3d: ",i); 43 #ifndef CONFIG_SMP 44 seq_printf(p, "%10u ", kstat_irqs(i)); 45 #else 46 for_each_online_cpu(j) 47 seq_printf(p, "%10u ", kstat_irqs_cpu(i, j)); 48 #endif 49 seq_printf(p, " %14s", irq_desc[i].chip->name); 50 seq_printf(p, " %s", action->name); 51 52 for (action=action->next; action; action = action->next) 53 seq_printf(p, ", %s", action->name); 54 55 seq_putc(p, '\n'); 56 skip: 57 raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags); 58 } else if (i == NR_IRQS) 59 seq_putc(p, '\n'); 60 61 return 0; 62 } 63 64 /* 65 * This list is accessed under irq_lock, except in sigio_handler, 66 * where it is safe from being modified. IRQ handlers won't change it - 67 * if an IRQ source has vanished, it will be freed by free_irqs just 68 * before returning from sigio_handler. That will process a separate 69 * list of irqs to free, with its own locking, coming back here to 70 * remove list elements, taking the irq_lock to do so. 71 */ 72 static struct irq_fd *active_fds = NULL; 73 static struct irq_fd **last_irq_ptr = &active_fds; 74 75 extern void free_irqs(void); 76 77 void sigio_handler(int sig, struct uml_pt_regs *regs) 78 { 79 struct irq_fd *irq_fd; 80 int n; 81 82 if (smp_sigio_handler()) 83 return; 84 85 while (1) { 86 n = os_waiting_for_events(active_fds); 87 if (n <= 0) { 88 if (n == -EINTR) 89 continue; 90 else break; 91 } 92 93 for (irq_fd = active_fds; irq_fd != NULL; 94 irq_fd = irq_fd->next) { 95 if (irq_fd->current_events != 0) { 96 irq_fd->current_events = 0; 97 do_IRQ(irq_fd->irq, regs); 98 } 99 } 100 } 101 102 free_irqs(); 103 } 104 105 static DEFINE_SPINLOCK(irq_lock); 106 107 static int activate_fd(int irq, int fd, int type, void *dev_id) 108 { 109 struct pollfd *tmp_pfd; 110 struct irq_fd *new_fd, *irq_fd; 111 unsigned long flags; 112 int events, err, n; 113 114 err = os_set_fd_async(fd); 115 if (err < 0) 116 goto out; 117 118 err = -ENOMEM; 119 new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL); 120 if (new_fd == NULL) 121 goto out; 122 123 if (type == IRQ_READ) 124 events = UM_POLLIN | UM_POLLPRI; 125 else events = UM_POLLOUT; 126 *new_fd = ((struct irq_fd) { .next = NULL, 127 .id = dev_id, 128 .fd = fd, 129 .type = type, 130 .irq = irq, 131 .events = events, 132 .current_events = 0 } ); 133 134 err = -EBUSY; 135 spin_lock_irqsave(&irq_lock, flags); 136 for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) { 137 if ((irq_fd->fd == fd) && (irq_fd->type == type)) { 138 printk(KERN_ERR "Registering fd %d twice\n", fd); 139 printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq); 140 printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id, 141 dev_id); 142 goto out_unlock; 143 } 144 } 145 146 if (type == IRQ_WRITE) 147 fd = -1; 148 149 tmp_pfd = NULL; 150 n = 0; 151 152 while (1) { 153 n = os_create_pollfd(fd, events, tmp_pfd, n); 154 if (n == 0) 155 break; 156 157 /* 158 * n > 0 159 * It means we couldn't put new pollfd to current pollfds 160 * and tmp_fds is NULL or too small for new pollfds array. 161 * Needed size is equal to n as minimum. 162 * 163 * Here we have to drop the lock in order to call 164 * kmalloc, which might sleep. 165 * If something else came in and changed the pollfds array 166 * so we will not be able to put new pollfd struct to pollfds 167 * then we free the buffer tmp_fds and try again. 168 */ 169 spin_unlock_irqrestore(&irq_lock, flags); 170 kfree(tmp_pfd); 171 172 tmp_pfd = kmalloc(n, GFP_KERNEL); 173 if (tmp_pfd == NULL) 174 goto out_kfree; 175 176 spin_lock_irqsave(&irq_lock, flags); 177 } 178 179 *last_irq_ptr = new_fd; 180 last_irq_ptr = &new_fd->next; 181 182 spin_unlock_irqrestore(&irq_lock, flags); 183 184 /* 185 * This calls activate_fd, so it has to be outside the critical 186 * section. 187 */ 188 maybe_sigio_broken(fd, (type == IRQ_READ)); 189 190 return 0; 191 192 out_unlock: 193 spin_unlock_irqrestore(&irq_lock, flags); 194 out_kfree: 195 kfree(new_fd); 196 out: 197 return err; 198 } 199 200 static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg) 201 { 202 unsigned long flags; 203 204 spin_lock_irqsave(&irq_lock, flags); 205 os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr); 206 spin_unlock_irqrestore(&irq_lock, flags); 207 } 208 209 struct irq_and_dev { 210 int irq; 211 void *dev; 212 }; 213 214 static int same_irq_and_dev(struct irq_fd *irq, void *d) 215 { 216 struct irq_and_dev *data = d; 217 218 return ((irq->irq == data->irq) && (irq->id == data->dev)); 219 } 220 221 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev) 222 { 223 struct irq_and_dev data = ((struct irq_and_dev) { .irq = irq, 224 .dev = dev }); 225 226 free_irq_by_cb(same_irq_and_dev, &data); 227 } 228 229 static int same_fd(struct irq_fd *irq, void *fd) 230 { 231 return (irq->fd == *((int *)fd)); 232 } 233 234 void free_irq_by_fd(int fd) 235 { 236 free_irq_by_cb(same_fd, &fd); 237 } 238 239 /* Must be called with irq_lock held */ 240 static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out) 241 { 242 struct irq_fd *irq; 243 int i = 0; 244 int fdi; 245 246 for (irq = active_fds; irq != NULL; irq = irq->next) { 247 if ((irq->fd == fd) && (irq->irq == irqnum)) 248 break; 249 i++; 250 } 251 if (irq == NULL) { 252 printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n", 253 fd); 254 goto out; 255 } 256 fdi = os_get_pollfd(i); 257 if ((fdi != -1) && (fdi != fd)) { 258 printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds " 259 "and pollfds, fd %d vs %d, need %d\n", irq->fd, 260 fdi, fd); 261 irq = NULL; 262 goto out; 263 } 264 *index_out = i; 265 out: 266 return irq; 267 } 268 269 void reactivate_fd(int fd, int irqnum) 270 { 271 struct irq_fd *irq; 272 unsigned long flags; 273 int i; 274 275 spin_lock_irqsave(&irq_lock, flags); 276 irq = find_irq_by_fd(fd, irqnum, &i); 277 if (irq == NULL) { 278 spin_unlock_irqrestore(&irq_lock, flags); 279 return; 280 } 281 os_set_pollfd(i, irq->fd); 282 spin_unlock_irqrestore(&irq_lock, flags); 283 284 add_sigio_fd(fd); 285 } 286 287 void deactivate_fd(int fd, int irqnum) 288 { 289 struct irq_fd *irq; 290 unsigned long flags; 291 int i; 292 293 spin_lock_irqsave(&irq_lock, flags); 294 irq = find_irq_by_fd(fd, irqnum, &i); 295 if (irq == NULL) { 296 spin_unlock_irqrestore(&irq_lock, flags); 297 return; 298 } 299 300 os_set_pollfd(i, -1); 301 spin_unlock_irqrestore(&irq_lock, flags); 302 303 ignore_sigio_fd(fd); 304 } 305 306 /* 307 * Called just before shutdown in order to provide a clean exec 308 * environment in case the system is rebooting. No locking because 309 * that would cause a pointless shutdown hang if something hadn't 310 * released the lock. 311 */ 312 int deactivate_all_fds(void) 313 { 314 struct irq_fd *irq; 315 int err; 316 317 for (irq = active_fds; irq != NULL; irq = irq->next) { 318 err = os_clear_fd_async(irq->fd); 319 if (err) 320 return err; 321 } 322 /* If there is a signal already queued, after unblocking ignore it */ 323 os_set_ioignore(); 324 325 return 0; 326 } 327 328 /* 329 * do_IRQ handles all normal device IRQs (the special 330 * SMP cross-CPU interrupts have their own specific 331 * handlers). 332 */ 333 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) 334 { 335 struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); 336 irq_enter(); 337 generic_handle_irq(irq); 338 irq_exit(); 339 set_irq_regs(old_regs); 340 return 1; 341 } 342 343 int um_request_irq(unsigned int irq, int fd, int type, 344 irq_handler_t handler, 345 unsigned long irqflags, const char * devname, 346 void *dev_id) 347 { 348 int err; 349 350 if (fd != -1) { 351 err = activate_fd(irq, fd, type, dev_id); 352 if (err) 353 return err; 354 } 355 356 return request_irq(irq, handler, irqflags, devname, dev_id); 357 } 358 359 EXPORT_SYMBOL(um_request_irq); 360 EXPORT_SYMBOL(reactivate_fd); 361 362 /* 363 * irq_chip must define (startup || enable) && 364 * (shutdown || disable) && end 365 */ 366 static void dummy(unsigned int irq) 367 { 368 } 369 370 /* This is used for everything else than the timer. */ 371 static struct irq_chip normal_irq_type = { 372 .name = "SIGIO", 373 .release = free_irq_by_irq_and_dev, 374 .disable = dummy, 375 .enable = dummy, 376 .ack = dummy, 377 .end = dummy 378 }; 379 380 static struct irq_chip SIGVTALRM_irq_type = { 381 .name = "SIGVTALRM", 382 .release = free_irq_by_irq_and_dev, 383 .shutdown = dummy, /* never called */ 384 .disable = dummy, 385 .enable = dummy, 386 .ack = dummy, 387 .end = dummy 388 }; 389 390 void __init init_IRQ(void) 391 { 392 int i; 393 394 set_irq_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq); 395 396 for (i = 1; i < NR_IRQS; i++) { 397 set_irq_chip_and_handler(i, &normal_irq_type, handle_edge_irq); 398 } 399 } 400 401 /* 402 * IRQ stack entry and exit: 403 * 404 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack 405 * and switch over to the IRQ stack after some preparation. We use 406 * sigaltstack to receive signals on a separate stack from the start. 407 * These two functions make sure the rest of the kernel won't be too 408 * upset by being on a different stack. The IRQ stack has a 409 * thread_info structure at the bottom so that current et al continue 410 * to work. 411 * 412 * to_irq_stack copies the current task's thread_info to the IRQ stack 413 * thread_info and sets the tasks's stack to point to the IRQ stack. 414 * 415 * from_irq_stack copies the thread_info struct back (flags may have 416 * been modified) and resets the task's stack pointer. 417 * 418 * Tricky bits - 419 * 420 * What happens when two signals race each other? UML doesn't block 421 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal 422 * could arrive while a previous one is still setting up the 423 * thread_info. 424 * 425 * There are three cases - 426 * The first interrupt on the stack - sets up the thread_info and 427 * handles the interrupt 428 * A nested interrupt interrupting the copying of the thread_info - 429 * can't handle the interrupt, as the stack is in an unknown state 430 * A nested interrupt not interrupting the copying of the 431 * thread_info - doesn't do any setup, just handles the interrupt 432 * 433 * The first job is to figure out whether we interrupted stack setup. 434 * This is done by xchging the signal mask with thread_info->pending. 435 * If the value that comes back is zero, then there is no setup in 436 * progress, and the interrupt can be handled. If the value is 437 * non-zero, then there is stack setup in progress. In order to have 438 * the interrupt handled, we leave our signal in the mask, and it will 439 * be handled by the upper handler after it has set up the stack. 440 * 441 * Next is to figure out whether we are the outer handler or a nested 442 * one. As part of setting up the stack, thread_info->real_thread is 443 * set to non-NULL (and is reset to NULL on exit). This is the 444 * nesting indicator. If it is non-NULL, then the stack is already 445 * set up and the handler can run. 446 */ 447 448 static unsigned long pending_mask; 449 450 unsigned long to_irq_stack(unsigned long *mask_out) 451 { 452 struct thread_info *ti; 453 unsigned long mask, old; 454 int nested; 455 456 mask = xchg(&pending_mask, *mask_out); 457 if (mask != 0) { 458 /* 459 * If any interrupts come in at this point, we want to 460 * make sure that their bits aren't lost by our 461 * putting our bit in. So, this loop accumulates bits 462 * until xchg returns the same value that we put in. 463 * When that happens, there were no new interrupts, 464 * and pending_mask contains a bit for each interrupt 465 * that came in. 466 */ 467 old = *mask_out; 468 do { 469 old |= mask; 470 mask = xchg(&pending_mask, old); 471 } while (mask != old); 472 return 1; 473 } 474 475 ti = current_thread_info(); 476 nested = (ti->real_thread != NULL); 477 if (!nested) { 478 struct task_struct *task; 479 struct thread_info *tti; 480 481 task = cpu_tasks[ti->cpu].task; 482 tti = task_thread_info(task); 483 484 *ti = *tti; 485 ti->real_thread = tti; 486 task->stack = ti; 487 } 488 489 mask = xchg(&pending_mask, 0); 490 *mask_out |= mask | nested; 491 return 0; 492 } 493 494 unsigned long from_irq_stack(int nested) 495 { 496 struct thread_info *ti, *to; 497 unsigned long mask; 498 499 ti = current_thread_info(); 500 501 pending_mask = 1; 502 503 to = ti->real_thread; 504 current->stack = to; 505 ti->real_thread = NULL; 506 *to = *ti; 507 508 mask = xchg(&pending_mask, 0); 509 return mask & ~1; 510 } 511 512