xref: /openbmc/linux/arch/um/kernel/irq.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Licensed under the GPL
4  * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
5  *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
6  */
7 
8 #include "linux/cpumask.h"
9 #include "linux/hardirq.h"
10 #include "linux/interrupt.h"
11 #include "linux/kernel_stat.h"
12 #include "linux/module.h"
13 #include "linux/sched.h"
14 #include "linux/seq_file.h"
15 #include "linux/slab.h"
16 #include "as-layout.h"
17 #include "kern_util.h"
18 #include "os.h"
19 
20 /*
21  * Generic, controller-independent functions:
22  */
23 
24 int show_interrupts(struct seq_file *p, void *v)
25 {
26 	int i = *(loff_t *) v, j;
27 	struct irqaction * action;
28 	unsigned long flags;
29 
30 	if (i == 0) {
31 		seq_printf(p, "           ");
32 		for_each_online_cpu(j)
33 			seq_printf(p, "CPU%d       ",j);
34 		seq_putc(p, '\n');
35 	}
36 
37 	if (i < NR_IRQS) {
38 		raw_spin_lock_irqsave(&irq_desc[i].lock, flags);
39 		action = irq_desc[i].action;
40 		if (!action)
41 			goto skip;
42 		seq_printf(p, "%3d: ",i);
43 #ifndef CONFIG_SMP
44 		seq_printf(p, "%10u ", kstat_irqs(i));
45 #else
46 		for_each_online_cpu(j)
47 			seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
48 #endif
49 		seq_printf(p, " %14s", irq_desc[i].chip->name);
50 		seq_printf(p, "  %s", action->name);
51 
52 		for (action=action->next; action; action = action->next)
53 			seq_printf(p, ", %s", action->name);
54 
55 		seq_putc(p, '\n');
56 skip:
57 		raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags);
58 	} else if (i == NR_IRQS)
59 		seq_putc(p, '\n');
60 
61 	return 0;
62 }
63 
64 /*
65  * This list is accessed under irq_lock, except in sigio_handler,
66  * where it is safe from being modified.  IRQ handlers won't change it -
67  * if an IRQ source has vanished, it will be freed by free_irqs just
68  * before returning from sigio_handler.  That will process a separate
69  * list of irqs to free, with its own locking, coming back here to
70  * remove list elements, taking the irq_lock to do so.
71  */
72 static struct irq_fd *active_fds = NULL;
73 static struct irq_fd **last_irq_ptr = &active_fds;
74 
75 extern void free_irqs(void);
76 
77 void sigio_handler(int sig, struct uml_pt_regs *regs)
78 {
79 	struct irq_fd *irq_fd;
80 	int n;
81 
82 	if (smp_sigio_handler())
83 		return;
84 
85 	while (1) {
86 		n = os_waiting_for_events(active_fds);
87 		if (n <= 0) {
88 			if (n == -EINTR)
89 				continue;
90 			else break;
91 		}
92 
93 		for (irq_fd = active_fds; irq_fd != NULL;
94 		     irq_fd = irq_fd->next) {
95 			if (irq_fd->current_events != 0) {
96 				irq_fd->current_events = 0;
97 				do_IRQ(irq_fd->irq, regs);
98 			}
99 		}
100 	}
101 
102 	free_irqs();
103 }
104 
105 static DEFINE_SPINLOCK(irq_lock);
106 
107 static int activate_fd(int irq, int fd, int type, void *dev_id)
108 {
109 	struct pollfd *tmp_pfd;
110 	struct irq_fd *new_fd, *irq_fd;
111 	unsigned long flags;
112 	int events, err, n;
113 
114 	err = os_set_fd_async(fd);
115 	if (err < 0)
116 		goto out;
117 
118 	err = -ENOMEM;
119 	new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL);
120 	if (new_fd == NULL)
121 		goto out;
122 
123 	if (type == IRQ_READ)
124 		events = UM_POLLIN | UM_POLLPRI;
125 	else events = UM_POLLOUT;
126 	*new_fd = ((struct irq_fd) { .next  		= NULL,
127 				     .id 		= dev_id,
128 				     .fd 		= fd,
129 				     .type 		= type,
130 				     .irq 		= irq,
131 				     .events 		= events,
132 				     .current_events 	= 0 } );
133 
134 	err = -EBUSY;
135 	spin_lock_irqsave(&irq_lock, flags);
136 	for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
137 		if ((irq_fd->fd == fd) && (irq_fd->type == type)) {
138 			printk(KERN_ERR "Registering fd %d twice\n", fd);
139 			printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq);
140 			printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id,
141 			       dev_id);
142 			goto out_unlock;
143 		}
144 	}
145 
146 	if (type == IRQ_WRITE)
147 		fd = -1;
148 
149 	tmp_pfd = NULL;
150 	n = 0;
151 
152 	while (1) {
153 		n = os_create_pollfd(fd, events, tmp_pfd, n);
154 		if (n == 0)
155 			break;
156 
157 		/*
158 		 * n > 0
159 		 * It means we couldn't put new pollfd to current pollfds
160 		 * and tmp_fds is NULL or too small for new pollfds array.
161 		 * Needed size is equal to n as minimum.
162 		 *
163 		 * Here we have to drop the lock in order to call
164 		 * kmalloc, which might sleep.
165 		 * If something else came in and changed the pollfds array
166 		 * so we will not be able to put new pollfd struct to pollfds
167 		 * then we free the buffer tmp_fds and try again.
168 		 */
169 		spin_unlock_irqrestore(&irq_lock, flags);
170 		kfree(tmp_pfd);
171 
172 		tmp_pfd = kmalloc(n, GFP_KERNEL);
173 		if (tmp_pfd == NULL)
174 			goto out_kfree;
175 
176 		spin_lock_irqsave(&irq_lock, flags);
177 	}
178 
179 	*last_irq_ptr = new_fd;
180 	last_irq_ptr = &new_fd->next;
181 
182 	spin_unlock_irqrestore(&irq_lock, flags);
183 
184 	/*
185 	 * This calls activate_fd, so it has to be outside the critical
186 	 * section.
187 	 */
188 	maybe_sigio_broken(fd, (type == IRQ_READ));
189 
190 	return 0;
191 
192  out_unlock:
193 	spin_unlock_irqrestore(&irq_lock, flags);
194  out_kfree:
195 	kfree(new_fd);
196  out:
197 	return err;
198 }
199 
200 static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg)
201 {
202 	unsigned long flags;
203 
204 	spin_lock_irqsave(&irq_lock, flags);
205 	os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr);
206 	spin_unlock_irqrestore(&irq_lock, flags);
207 }
208 
209 struct irq_and_dev {
210 	int irq;
211 	void *dev;
212 };
213 
214 static int same_irq_and_dev(struct irq_fd *irq, void *d)
215 {
216 	struct irq_and_dev *data = d;
217 
218 	return ((irq->irq == data->irq) && (irq->id == data->dev));
219 }
220 
221 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
222 {
223 	struct irq_and_dev data = ((struct irq_and_dev) { .irq  = irq,
224 							  .dev  = dev });
225 
226 	free_irq_by_cb(same_irq_and_dev, &data);
227 }
228 
229 static int same_fd(struct irq_fd *irq, void *fd)
230 {
231 	return (irq->fd == *((int *)fd));
232 }
233 
234 void free_irq_by_fd(int fd)
235 {
236 	free_irq_by_cb(same_fd, &fd);
237 }
238 
239 /* Must be called with irq_lock held */
240 static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out)
241 {
242 	struct irq_fd *irq;
243 	int i = 0;
244 	int fdi;
245 
246 	for (irq = active_fds; irq != NULL; irq = irq->next) {
247 		if ((irq->fd == fd) && (irq->irq == irqnum))
248 			break;
249 		i++;
250 	}
251 	if (irq == NULL) {
252 		printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n",
253 		       fd);
254 		goto out;
255 	}
256 	fdi = os_get_pollfd(i);
257 	if ((fdi != -1) && (fdi != fd)) {
258 		printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds "
259 		       "and pollfds, fd %d vs %d, need %d\n", irq->fd,
260 		       fdi, fd);
261 		irq = NULL;
262 		goto out;
263 	}
264 	*index_out = i;
265  out:
266 	return irq;
267 }
268 
269 void reactivate_fd(int fd, int irqnum)
270 {
271 	struct irq_fd *irq;
272 	unsigned long flags;
273 	int i;
274 
275 	spin_lock_irqsave(&irq_lock, flags);
276 	irq = find_irq_by_fd(fd, irqnum, &i);
277 	if (irq == NULL) {
278 		spin_unlock_irqrestore(&irq_lock, flags);
279 		return;
280 	}
281 	os_set_pollfd(i, irq->fd);
282 	spin_unlock_irqrestore(&irq_lock, flags);
283 
284 	add_sigio_fd(fd);
285 }
286 
287 void deactivate_fd(int fd, int irqnum)
288 {
289 	struct irq_fd *irq;
290 	unsigned long flags;
291 	int i;
292 
293 	spin_lock_irqsave(&irq_lock, flags);
294 	irq = find_irq_by_fd(fd, irqnum, &i);
295 	if (irq == NULL) {
296 		spin_unlock_irqrestore(&irq_lock, flags);
297 		return;
298 	}
299 
300 	os_set_pollfd(i, -1);
301 	spin_unlock_irqrestore(&irq_lock, flags);
302 
303 	ignore_sigio_fd(fd);
304 }
305 
306 /*
307  * Called just before shutdown in order to provide a clean exec
308  * environment in case the system is rebooting.  No locking because
309  * that would cause a pointless shutdown hang if something hadn't
310  * released the lock.
311  */
312 int deactivate_all_fds(void)
313 {
314 	struct irq_fd *irq;
315 	int err;
316 
317 	for (irq = active_fds; irq != NULL; irq = irq->next) {
318 		err = os_clear_fd_async(irq->fd);
319 		if (err)
320 			return err;
321 	}
322 	/* If there is a signal already queued, after unblocking ignore it */
323 	os_set_ioignore();
324 
325 	return 0;
326 }
327 
328 /*
329  * do_IRQ handles all normal device IRQs (the special
330  * SMP cross-CPU interrupts have their own specific
331  * handlers).
332  */
333 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
334 {
335 	struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
336 	irq_enter();
337 	generic_handle_irq(irq);
338 	irq_exit();
339 	set_irq_regs(old_regs);
340 	return 1;
341 }
342 
343 int um_request_irq(unsigned int irq, int fd, int type,
344 		   irq_handler_t handler,
345 		   unsigned long irqflags, const char * devname,
346 		   void *dev_id)
347 {
348 	int err;
349 
350 	if (fd != -1) {
351 		err = activate_fd(irq, fd, type, dev_id);
352 		if (err)
353 			return err;
354 	}
355 
356 	return request_irq(irq, handler, irqflags, devname, dev_id);
357 }
358 
359 EXPORT_SYMBOL(um_request_irq);
360 EXPORT_SYMBOL(reactivate_fd);
361 
362 /*
363  * irq_chip must define (startup || enable) &&
364  * (shutdown || disable) && end
365  */
366 static void dummy(unsigned int irq)
367 {
368 }
369 
370 /* This is used for everything else than the timer. */
371 static struct irq_chip normal_irq_type = {
372 	.name = "SIGIO",
373 	.release = free_irq_by_irq_and_dev,
374 	.disable = dummy,
375 	.enable = dummy,
376 	.ack = dummy,
377 	.end = dummy
378 };
379 
380 static struct irq_chip SIGVTALRM_irq_type = {
381 	.name = "SIGVTALRM",
382 	.release = free_irq_by_irq_and_dev,
383 	.shutdown = dummy, /* never called */
384 	.disable = dummy,
385 	.enable = dummy,
386 	.ack = dummy,
387 	.end = dummy
388 };
389 
390 void __init init_IRQ(void)
391 {
392 	int i;
393 
394 	set_irq_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq);
395 
396 	for (i = 1; i < NR_IRQS; i++) {
397 		set_irq_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
398 	}
399 }
400 
401 /*
402  * IRQ stack entry and exit:
403  *
404  * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
405  * and switch over to the IRQ stack after some preparation.  We use
406  * sigaltstack to receive signals on a separate stack from the start.
407  * These two functions make sure the rest of the kernel won't be too
408  * upset by being on a different stack.  The IRQ stack has a
409  * thread_info structure at the bottom so that current et al continue
410  * to work.
411  *
412  * to_irq_stack copies the current task's thread_info to the IRQ stack
413  * thread_info and sets the tasks's stack to point to the IRQ stack.
414  *
415  * from_irq_stack copies the thread_info struct back (flags may have
416  * been modified) and resets the task's stack pointer.
417  *
418  * Tricky bits -
419  *
420  * What happens when two signals race each other?  UML doesn't block
421  * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
422  * could arrive while a previous one is still setting up the
423  * thread_info.
424  *
425  * There are three cases -
426  *     The first interrupt on the stack - sets up the thread_info and
427  * handles the interrupt
428  *     A nested interrupt interrupting the copying of the thread_info -
429  * can't handle the interrupt, as the stack is in an unknown state
430  *     A nested interrupt not interrupting the copying of the
431  * thread_info - doesn't do any setup, just handles the interrupt
432  *
433  * The first job is to figure out whether we interrupted stack setup.
434  * This is done by xchging the signal mask with thread_info->pending.
435  * If the value that comes back is zero, then there is no setup in
436  * progress, and the interrupt can be handled.  If the value is
437  * non-zero, then there is stack setup in progress.  In order to have
438  * the interrupt handled, we leave our signal in the mask, and it will
439  * be handled by the upper handler after it has set up the stack.
440  *
441  * Next is to figure out whether we are the outer handler or a nested
442  * one.  As part of setting up the stack, thread_info->real_thread is
443  * set to non-NULL (and is reset to NULL on exit).  This is the
444  * nesting indicator.  If it is non-NULL, then the stack is already
445  * set up and the handler can run.
446  */
447 
448 static unsigned long pending_mask;
449 
450 unsigned long to_irq_stack(unsigned long *mask_out)
451 {
452 	struct thread_info *ti;
453 	unsigned long mask, old;
454 	int nested;
455 
456 	mask = xchg(&pending_mask, *mask_out);
457 	if (mask != 0) {
458 		/*
459 		 * If any interrupts come in at this point, we want to
460 		 * make sure that their bits aren't lost by our
461 		 * putting our bit in.  So, this loop accumulates bits
462 		 * until xchg returns the same value that we put in.
463 		 * When that happens, there were no new interrupts,
464 		 * and pending_mask contains a bit for each interrupt
465 		 * that came in.
466 		 */
467 		old = *mask_out;
468 		do {
469 			old |= mask;
470 			mask = xchg(&pending_mask, old);
471 		} while (mask != old);
472 		return 1;
473 	}
474 
475 	ti = current_thread_info();
476 	nested = (ti->real_thread != NULL);
477 	if (!nested) {
478 		struct task_struct *task;
479 		struct thread_info *tti;
480 
481 		task = cpu_tasks[ti->cpu].task;
482 		tti = task_thread_info(task);
483 
484 		*ti = *tti;
485 		ti->real_thread = tti;
486 		task->stack = ti;
487 	}
488 
489 	mask = xchg(&pending_mask, 0);
490 	*mask_out |= mask | nested;
491 	return 0;
492 }
493 
494 unsigned long from_irq_stack(int nested)
495 {
496 	struct thread_info *ti, *to;
497 	unsigned long mask;
498 
499 	ti = current_thread_info();
500 
501 	pending_mask = 1;
502 
503 	to = ti->real_thread;
504 	current->stack = to;
505 	ti->real_thread = NULL;
506 	*to = *ti;
507 
508 	mask = xchg(&pending_mask, 0);
509 	return mask & ~1;
510 }
511 
512