1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Licensed under the GPL 4 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: 5 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar 6 */ 7 8 #include <linux/cpumask.h> 9 #include <linux/hardirq.h> 10 #include <linux/interrupt.h> 11 #include <linux/kernel_stat.h> 12 #include <linux/module.h> 13 #include <linux/sched.h> 14 #include <linux/seq_file.h> 15 #include <linux/slab.h> 16 #include <as-layout.h> 17 #include <kern_util.h> 18 #include <os.h> 19 20 /* 21 * This list is accessed under irq_lock, except in sigio_handler, 22 * where it is safe from being modified. IRQ handlers won't change it - 23 * if an IRQ source has vanished, it will be freed by free_irqs just 24 * before returning from sigio_handler. That will process a separate 25 * list of irqs to free, with its own locking, coming back here to 26 * remove list elements, taking the irq_lock to do so. 27 */ 28 static struct irq_fd *active_fds = NULL; 29 static struct irq_fd **last_irq_ptr = &active_fds; 30 31 extern void free_irqs(void); 32 33 void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs) 34 { 35 struct irq_fd *irq_fd; 36 int n; 37 38 while (1) { 39 n = os_waiting_for_events(active_fds); 40 if (n <= 0) { 41 if (n == -EINTR) 42 continue; 43 else break; 44 } 45 46 for (irq_fd = active_fds; irq_fd != NULL; 47 irq_fd = irq_fd->next) { 48 if (irq_fd->current_events != 0) { 49 irq_fd->current_events = 0; 50 do_IRQ(irq_fd->irq, regs); 51 } 52 } 53 } 54 55 free_irqs(); 56 } 57 58 static DEFINE_SPINLOCK(irq_lock); 59 60 static int activate_fd(int irq, int fd, int type, void *dev_id) 61 { 62 struct pollfd *tmp_pfd; 63 struct irq_fd *new_fd, *irq_fd; 64 unsigned long flags; 65 int events, err, n; 66 67 err = os_set_fd_async(fd); 68 if (err < 0) 69 goto out; 70 71 err = -ENOMEM; 72 new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL); 73 if (new_fd == NULL) 74 goto out; 75 76 if (type == IRQ_READ) 77 events = UM_POLLIN | UM_POLLPRI; 78 else events = UM_POLLOUT; 79 *new_fd = ((struct irq_fd) { .next = NULL, 80 .id = dev_id, 81 .fd = fd, 82 .type = type, 83 .irq = irq, 84 .events = events, 85 .current_events = 0 } ); 86 87 err = -EBUSY; 88 spin_lock_irqsave(&irq_lock, flags); 89 for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) { 90 if ((irq_fd->fd == fd) && (irq_fd->type == type)) { 91 printk(KERN_ERR "Registering fd %d twice\n", fd); 92 printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq); 93 printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id, 94 dev_id); 95 goto out_unlock; 96 } 97 } 98 99 if (type == IRQ_WRITE) 100 fd = -1; 101 102 tmp_pfd = NULL; 103 n = 0; 104 105 while (1) { 106 n = os_create_pollfd(fd, events, tmp_pfd, n); 107 if (n == 0) 108 break; 109 110 /* 111 * n > 0 112 * It means we couldn't put new pollfd to current pollfds 113 * and tmp_fds is NULL or too small for new pollfds array. 114 * Needed size is equal to n as minimum. 115 * 116 * Here we have to drop the lock in order to call 117 * kmalloc, which might sleep. 118 * If something else came in and changed the pollfds array 119 * so we will not be able to put new pollfd struct to pollfds 120 * then we free the buffer tmp_fds and try again. 121 */ 122 spin_unlock_irqrestore(&irq_lock, flags); 123 kfree(tmp_pfd); 124 125 tmp_pfd = kmalloc(n, GFP_KERNEL); 126 if (tmp_pfd == NULL) 127 goto out_kfree; 128 129 spin_lock_irqsave(&irq_lock, flags); 130 } 131 132 *last_irq_ptr = new_fd; 133 last_irq_ptr = &new_fd->next; 134 135 spin_unlock_irqrestore(&irq_lock, flags); 136 137 /* 138 * This calls activate_fd, so it has to be outside the critical 139 * section. 140 */ 141 maybe_sigio_broken(fd, (type == IRQ_READ)); 142 143 return 0; 144 145 out_unlock: 146 spin_unlock_irqrestore(&irq_lock, flags); 147 out_kfree: 148 kfree(new_fd); 149 out: 150 return err; 151 } 152 153 static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg) 154 { 155 unsigned long flags; 156 157 spin_lock_irqsave(&irq_lock, flags); 158 os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr); 159 spin_unlock_irqrestore(&irq_lock, flags); 160 } 161 162 struct irq_and_dev { 163 int irq; 164 void *dev; 165 }; 166 167 static int same_irq_and_dev(struct irq_fd *irq, void *d) 168 { 169 struct irq_and_dev *data = d; 170 171 return ((irq->irq == data->irq) && (irq->id == data->dev)); 172 } 173 174 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev) 175 { 176 struct irq_and_dev data = ((struct irq_and_dev) { .irq = irq, 177 .dev = dev }); 178 179 free_irq_by_cb(same_irq_and_dev, &data); 180 } 181 182 static int same_fd(struct irq_fd *irq, void *fd) 183 { 184 return (irq->fd == *((int *)fd)); 185 } 186 187 void free_irq_by_fd(int fd) 188 { 189 free_irq_by_cb(same_fd, &fd); 190 } 191 192 /* Must be called with irq_lock held */ 193 static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out) 194 { 195 struct irq_fd *irq; 196 int i = 0; 197 int fdi; 198 199 for (irq = active_fds; irq != NULL; irq = irq->next) { 200 if ((irq->fd == fd) && (irq->irq == irqnum)) 201 break; 202 i++; 203 } 204 if (irq == NULL) { 205 printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n", 206 fd); 207 goto out; 208 } 209 fdi = os_get_pollfd(i); 210 if ((fdi != -1) && (fdi != fd)) { 211 printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds " 212 "and pollfds, fd %d vs %d, need %d\n", irq->fd, 213 fdi, fd); 214 irq = NULL; 215 goto out; 216 } 217 *index_out = i; 218 out: 219 return irq; 220 } 221 222 void reactivate_fd(int fd, int irqnum) 223 { 224 struct irq_fd *irq; 225 unsigned long flags; 226 int i; 227 228 spin_lock_irqsave(&irq_lock, flags); 229 irq = find_irq_by_fd(fd, irqnum, &i); 230 if (irq == NULL) { 231 spin_unlock_irqrestore(&irq_lock, flags); 232 return; 233 } 234 os_set_pollfd(i, irq->fd); 235 spin_unlock_irqrestore(&irq_lock, flags); 236 237 add_sigio_fd(fd); 238 } 239 240 void deactivate_fd(int fd, int irqnum) 241 { 242 struct irq_fd *irq; 243 unsigned long flags; 244 int i; 245 246 spin_lock_irqsave(&irq_lock, flags); 247 irq = find_irq_by_fd(fd, irqnum, &i); 248 if (irq == NULL) { 249 spin_unlock_irqrestore(&irq_lock, flags); 250 return; 251 } 252 253 os_set_pollfd(i, -1); 254 spin_unlock_irqrestore(&irq_lock, flags); 255 256 ignore_sigio_fd(fd); 257 } 258 EXPORT_SYMBOL(deactivate_fd); 259 260 /* 261 * Called just before shutdown in order to provide a clean exec 262 * environment in case the system is rebooting. No locking because 263 * that would cause a pointless shutdown hang if something hadn't 264 * released the lock. 265 */ 266 int deactivate_all_fds(void) 267 { 268 struct irq_fd *irq; 269 int err; 270 271 for (irq = active_fds; irq != NULL; irq = irq->next) { 272 err = os_clear_fd_async(irq->fd); 273 if (err) 274 return err; 275 } 276 /* If there is a signal already queued, after unblocking ignore it */ 277 os_set_ioignore(); 278 279 return 0; 280 } 281 282 /* 283 * do_IRQ handles all normal device IRQs (the special 284 * SMP cross-CPU interrupts have their own specific 285 * handlers). 286 */ 287 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) 288 { 289 struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); 290 irq_enter(); 291 generic_handle_irq(irq); 292 irq_exit(); 293 set_irq_regs(old_regs); 294 return 1; 295 } 296 297 void um_free_irq(unsigned int irq, void *dev) 298 { 299 free_irq_by_irq_and_dev(irq, dev); 300 free_irq(irq, dev); 301 } 302 EXPORT_SYMBOL(um_free_irq); 303 304 int um_request_irq(unsigned int irq, int fd, int type, 305 irq_handler_t handler, 306 unsigned long irqflags, const char * devname, 307 void *dev_id) 308 { 309 int err; 310 311 if (fd != -1) { 312 err = activate_fd(irq, fd, type, dev_id); 313 if (err) 314 return err; 315 } 316 317 return request_irq(irq, handler, irqflags, devname, dev_id); 318 } 319 320 EXPORT_SYMBOL(um_request_irq); 321 EXPORT_SYMBOL(reactivate_fd); 322 323 /* 324 * irq_chip must define at least enable/disable and ack when 325 * the edge handler is used. 326 */ 327 static void dummy(struct irq_data *d) 328 { 329 } 330 331 /* This is used for everything else than the timer. */ 332 static struct irq_chip normal_irq_type = { 333 .name = "SIGIO", 334 .irq_disable = dummy, 335 .irq_enable = dummy, 336 .irq_ack = dummy, 337 .irq_mask = dummy, 338 .irq_unmask = dummy, 339 }; 340 341 static struct irq_chip SIGVTALRM_irq_type = { 342 .name = "SIGVTALRM", 343 .irq_disable = dummy, 344 .irq_enable = dummy, 345 .irq_ack = dummy, 346 .irq_mask = dummy, 347 .irq_unmask = dummy, 348 }; 349 350 void __init init_IRQ(void) 351 { 352 int i; 353 354 irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq); 355 356 for (i = 1; i < NR_IRQS; i++) 357 irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq); 358 } 359 360 /* 361 * IRQ stack entry and exit: 362 * 363 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack 364 * and switch over to the IRQ stack after some preparation. We use 365 * sigaltstack to receive signals on a separate stack from the start. 366 * These two functions make sure the rest of the kernel won't be too 367 * upset by being on a different stack. The IRQ stack has a 368 * thread_info structure at the bottom so that current et al continue 369 * to work. 370 * 371 * to_irq_stack copies the current task's thread_info to the IRQ stack 372 * thread_info and sets the tasks's stack to point to the IRQ stack. 373 * 374 * from_irq_stack copies the thread_info struct back (flags may have 375 * been modified) and resets the task's stack pointer. 376 * 377 * Tricky bits - 378 * 379 * What happens when two signals race each other? UML doesn't block 380 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal 381 * could arrive while a previous one is still setting up the 382 * thread_info. 383 * 384 * There are three cases - 385 * The first interrupt on the stack - sets up the thread_info and 386 * handles the interrupt 387 * A nested interrupt interrupting the copying of the thread_info - 388 * can't handle the interrupt, as the stack is in an unknown state 389 * A nested interrupt not interrupting the copying of the 390 * thread_info - doesn't do any setup, just handles the interrupt 391 * 392 * The first job is to figure out whether we interrupted stack setup. 393 * This is done by xchging the signal mask with thread_info->pending. 394 * If the value that comes back is zero, then there is no setup in 395 * progress, and the interrupt can be handled. If the value is 396 * non-zero, then there is stack setup in progress. In order to have 397 * the interrupt handled, we leave our signal in the mask, and it will 398 * be handled by the upper handler after it has set up the stack. 399 * 400 * Next is to figure out whether we are the outer handler or a nested 401 * one. As part of setting up the stack, thread_info->real_thread is 402 * set to non-NULL (and is reset to NULL on exit). This is the 403 * nesting indicator. If it is non-NULL, then the stack is already 404 * set up and the handler can run. 405 */ 406 407 static unsigned long pending_mask; 408 409 unsigned long to_irq_stack(unsigned long *mask_out) 410 { 411 struct thread_info *ti; 412 unsigned long mask, old; 413 int nested; 414 415 mask = xchg(&pending_mask, *mask_out); 416 if (mask != 0) { 417 /* 418 * If any interrupts come in at this point, we want to 419 * make sure that their bits aren't lost by our 420 * putting our bit in. So, this loop accumulates bits 421 * until xchg returns the same value that we put in. 422 * When that happens, there were no new interrupts, 423 * and pending_mask contains a bit for each interrupt 424 * that came in. 425 */ 426 old = *mask_out; 427 do { 428 old |= mask; 429 mask = xchg(&pending_mask, old); 430 } while (mask != old); 431 return 1; 432 } 433 434 ti = current_thread_info(); 435 nested = (ti->real_thread != NULL); 436 if (!nested) { 437 struct task_struct *task; 438 struct thread_info *tti; 439 440 task = cpu_tasks[ti->cpu].task; 441 tti = task_thread_info(task); 442 443 *ti = *tti; 444 ti->real_thread = tti; 445 task->stack = ti; 446 } 447 448 mask = xchg(&pending_mask, 0); 449 *mask_out |= mask | nested; 450 return 0; 451 } 452 453 unsigned long from_irq_stack(int nested) 454 { 455 struct thread_info *ti, *to; 456 unsigned long mask; 457 458 ti = current_thread_info(); 459 460 pending_mask = 1; 461 462 to = ti->real_thread; 463 current->stack = to; 464 ti->real_thread = NULL; 465 *to = *ti; 466 467 mask = xchg(&pending_mask, 0); 468 return mask & ~1; 469 } 470 471