1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Licensed under the GPL 4 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: 5 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar 6 */ 7 8 #include "linux/cpumask.h" 9 #include "linux/hardirq.h" 10 #include "linux/interrupt.h" 11 #include "linux/kernel_stat.h" 12 #include "linux/module.h" 13 #include "linux/sched.h" 14 #include "linux/seq_file.h" 15 #include "linux/slab.h" 16 #include "as-layout.h" 17 #include "kern_util.h" 18 #include "os.h" 19 20 /* 21 * This list is accessed under irq_lock, except in sigio_handler, 22 * where it is safe from being modified. IRQ handlers won't change it - 23 * if an IRQ source has vanished, it will be freed by free_irqs just 24 * before returning from sigio_handler. That will process a separate 25 * list of irqs to free, with its own locking, coming back here to 26 * remove list elements, taking the irq_lock to do so. 27 */ 28 static struct irq_fd *active_fds = NULL; 29 static struct irq_fd **last_irq_ptr = &active_fds; 30 31 extern void free_irqs(void); 32 33 void sigio_handler(int sig, struct uml_pt_regs *regs) 34 { 35 struct irq_fd *irq_fd; 36 int n; 37 38 if (smp_sigio_handler()) 39 return; 40 41 while (1) { 42 n = os_waiting_for_events(active_fds); 43 if (n <= 0) { 44 if (n == -EINTR) 45 continue; 46 else break; 47 } 48 49 for (irq_fd = active_fds; irq_fd != NULL; 50 irq_fd = irq_fd->next) { 51 if (irq_fd->current_events != 0) { 52 irq_fd->current_events = 0; 53 do_IRQ(irq_fd->irq, regs); 54 } 55 } 56 } 57 58 free_irqs(); 59 } 60 61 static DEFINE_SPINLOCK(irq_lock); 62 63 static int activate_fd(int irq, int fd, int type, void *dev_id) 64 { 65 struct pollfd *tmp_pfd; 66 struct irq_fd *new_fd, *irq_fd; 67 unsigned long flags; 68 int events, err, n; 69 70 err = os_set_fd_async(fd); 71 if (err < 0) 72 goto out; 73 74 err = -ENOMEM; 75 new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL); 76 if (new_fd == NULL) 77 goto out; 78 79 if (type == IRQ_READ) 80 events = UM_POLLIN | UM_POLLPRI; 81 else events = UM_POLLOUT; 82 *new_fd = ((struct irq_fd) { .next = NULL, 83 .id = dev_id, 84 .fd = fd, 85 .type = type, 86 .irq = irq, 87 .events = events, 88 .current_events = 0 } ); 89 90 err = -EBUSY; 91 spin_lock_irqsave(&irq_lock, flags); 92 for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) { 93 if ((irq_fd->fd == fd) && (irq_fd->type == type)) { 94 printk(KERN_ERR "Registering fd %d twice\n", fd); 95 printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq); 96 printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id, 97 dev_id); 98 goto out_unlock; 99 } 100 } 101 102 if (type == IRQ_WRITE) 103 fd = -1; 104 105 tmp_pfd = NULL; 106 n = 0; 107 108 while (1) { 109 n = os_create_pollfd(fd, events, tmp_pfd, n); 110 if (n == 0) 111 break; 112 113 /* 114 * n > 0 115 * It means we couldn't put new pollfd to current pollfds 116 * and tmp_fds is NULL or too small for new pollfds array. 117 * Needed size is equal to n as minimum. 118 * 119 * Here we have to drop the lock in order to call 120 * kmalloc, which might sleep. 121 * If something else came in and changed the pollfds array 122 * so we will not be able to put new pollfd struct to pollfds 123 * then we free the buffer tmp_fds and try again. 124 */ 125 spin_unlock_irqrestore(&irq_lock, flags); 126 kfree(tmp_pfd); 127 128 tmp_pfd = kmalloc(n, GFP_KERNEL); 129 if (tmp_pfd == NULL) 130 goto out_kfree; 131 132 spin_lock_irqsave(&irq_lock, flags); 133 } 134 135 *last_irq_ptr = new_fd; 136 last_irq_ptr = &new_fd->next; 137 138 spin_unlock_irqrestore(&irq_lock, flags); 139 140 /* 141 * This calls activate_fd, so it has to be outside the critical 142 * section. 143 */ 144 maybe_sigio_broken(fd, (type == IRQ_READ)); 145 146 return 0; 147 148 out_unlock: 149 spin_unlock_irqrestore(&irq_lock, flags); 150 out_kfree: 151 kfree(new_fd); 152 out: 153 return err; 154 } 155 156 static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg) 157 { 158 unsigned long flags; 159 160 spin_lock_irqsave(&irq_lock, flags); 161 os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr); 162 spin_unlock_irqrestore(&irq_lock, flags); 163 } 164 165 struct irq_and_dev { 166 int irq; 167 void *dev; 168 }; 169 170 static int same_irq_and_dev(struct irq_fd *irq, void *d) 171 { 172 struct irq_and_dev *data = d; 173 174 return ((irq->irq == data->irq) && (irq->id == data->dev)); 175 } 176 177 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev) 178 { 179 struct irq_and_dev data = ((struct irq_and_dev) { .irq = irq, 180 .dev = dev }); 181 182 free_irq_by_cb(same_irq_and_dev, &data); 183 } 184 185 static int same_fd(struct irq_fd *irq, void *fd) 186 { 187 return (irq->fd == *((int *)fd)); 188 } 189 190 void free_irq_by_fd(int fd) 191 { 192 free_irq_by_cb(same_fd, &fd); 193 } 194 195 /* Must be called with irq_lock held */ 196 static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out) 197 { 198 struct irq_fd *irq; 199 int i = 0; 200 int fdi; 201 202 for (irq = active_fds; irq != NULL; irq = irq->next) { 203 if ((irq->fd == fd) && (irq->irq == irqnum)) 204 break; 205 i++; 206 } 207 if (irq == NULL) { 208 printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n", 209 fd); 210 goto out; 211 } 212 fdi = os_get_pollfd(i); 213 if ((fdi != -1) && (fdi != fd)) { 214 printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds " 215 "and pollfds, fd %d vs %d, need %d\n", irq->fd, 216 fdi, fd); 217 irq = NULL; 218 goto out; 219 } 220 *index_out = i; 221 out: 222 return irq; 223 } 224 225 void reactivate_fd(int fd, int irqnum) 226 { 227 struct irq_fd *irq; 228 unsigned long flags; 229 int i; 230 231 spin_lock_irqsave(&irq_lock, flags); 232 irq = find_irq_by_fd(fd, irqnum, &i); 233 if (irq == NULL) { 234 spin_unlock_irqrestore(&irq_lock, flags); 235 return; 236 } 237 os_set_pollfd(i, irq->fd); 238 spin_unlock_irqrestore(&irq_lock, flags); 239 240 add_sigio_fd(fd); 241 } 242 243 void deactivate_fd(int fd, int irqnum) 244 { 245 struct irq_fd *irq; 246 unsigned long flags; 247 int i; 248 249 spin_lock_irqsave(&irq_lock, flags); 250 irq = find_irq_by_fd(fd, irqnum, &i); 251 if (irq == NULL) { 252 spin_unlock_irqrestore(&irq_lock, flags); 253 return; 254 } 255 256 os_set_pollfd(i, -1); 257 spin_unlock_irqrestore(&irq_lock, flags); 258 259 ignore_sigio_fd(fd); 260 } 261 EXPORT_SYMBOL(deactivate_fd); 262 263 /* 264 * Called just before shutdown in order to provide a clean exec 265 * environment in case the system is rebooting. No locking because 266 * that would cause a pointless shutdown hang if something hadn't 267 * released the lock. 268 */ 269 int deactivate_all_fds(void) 270 { 271 struct irq_fd *irq; 272 int err; 273 274 for (irq = active_fds; irq != NULL; irq = irq->next) { 275 err = os_clear_fd_async(irq->fd); 276 if (err) 277 return err; 278 } 279 /* If there is a signal already queued, after unblocking ignore it */ 280 os_set_ioignore(); 281 282 return 0; 283 } 284 285 /* 286 * do_IRQ handles all normal device IRQs (the special 287 * SMP cross-CPU interrupts have their own specific 288 * handlers). 289 */ 290 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) 291 { 292 struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); 293 irq_enter(); 294 generic_handle_irq(irq); 295 irq_exit(); 296 set_irq_regs(old_regs); 297 return 1; 298 } 299 300 void um_free_irq(unsigned int irq, void *dev) 301 { 302 free_irq_by_irq_and_dev(irq, dev); 303 free_irq(irq, dev); 304 } 305 EXPORT_SYMBOL(um_free_irq); 306 307 int um_request_irq(unsigned int irq, int fd, int type, 308 irq_handler_t handler, 309 unsigned long irqflags, const char * devname, 310 void *dev_id) 311 { 312 int err; 313 314 if (fd != -1) { 315 err = activate_fd(irq, fd, type, dev_id); 316 if (err) 317 return err; 318 } 319 320 return request_irq(irq, handler, irqflags, devname, dev_id); 321 } 322 323 EXPORT_SYMBOL(um_request_irq); 324 EXPORT_SYMBOL(reactivate_fd); 325 326 /* 327 * irq_chip must define at least enable/disable and ack when 328 * the edge handler is used. 329 */ 330 static void dummy(struct irq_data *d) 331 { 332 } 333 334 /* This is used for everything else than the timer. */ 335 static struct irq_chip normal_irq_type = { 336 .name = "SIGIO", 337 .irq_disable = dummy, 338 .irq_enable = dummy, 339 .irq_ack = dummy, 340 }; 341 342 static struct irq_chip SIGVTALRM_irq_type = { 343 .name = "SIGVTALRM", 344 .irq_disable = dummy, 345 .irq_enable = dummy, 346 .irq_ack = dummy, 347 }; 348 349 void __init init_IRQ(void) 350 { 351 int i; 352 353 irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq); 354 355 for (i = 1; i < NR_IRQS; i++) 356 irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq); 357 } 358 359 /* 360 * IRQ stack entry and exit: 361 * 362 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack 363 * and switch over to the IRQ stack after some preparation. We use 364 * sigaltstack to receive signals on a separate stack from the start. 365 * These two functions make sure the rest of the kernel won't be too 366 * upset by being on a different stack. The IRQ stack has a 367 * thread_info structure at the bottom so that current et al continue 368 * to work. 369 * 370 * to_irq_stack copies the current task's thread_info to the IRQ stack 371 * thread_info and sets the tasks's stack to point to the IRQ stack. 372 * 373 * from_irq_stack copies the thread_info struct back (flags may have 374 * been modified) and resets the task's stack pointer. 375 * 376 * Tricky bits - 377 * 378 * What happens when two signals race each other? UML doesn't block 379 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal 380 * could arrive while a previous one is still setting up the 381 * thread_info. 382 * 383 * There are three cases - 384 * The first interrupt on the stack - sets up the thread_info and 385 * handles the interrupt 386 * A nested interrupt interrupting the copying of the thread_info - 387 * can't handle the interrupt, as the stack is in an unknown state 388 * A nested interrupt not interrupting the copying of the 389 * thread_info - doesn't do any setup, just handles the interrupt 390 * 391 * The first job is to figure out whether we interrupted stack setup. 392 * This is done by xchging the signal mask with thread_info->pending. 393 * If the value that comes back is zero, then there is no setup in 394 * progress, and the interrupt can be handled. If the value is 395 * non-zero, then there is stack setup in progress. In order to have 396 * the interrupt handled, we leave our signal in the mask, and it will 397 * be handled by the upper handler after it has set up the stack. 398 * 399 * Next is to figure out whether we are the outer handler or a nested 400 * one. As part of setting up the stack, thread_info->real_thread is 401 * set to non-NULL (and is reset to NULL on exit). This is the 402 * nesting indicator. If it is non-NULL, then the stack is already 403 * set up and the handler can run. 404 */ 405 406 static unsigned long pending_mask; 407 408 unsigned long to_irq_stack(unsigned long *mask_out) 409 { 410 struct thread_info *ti; 411 unsigned long mask, old; 412 int nested; 413 414 mask = xchg(&pending_mask, *mask_out); 415 if (mask != 0) { 416 /* 417 * If any interrupts come in at this point, we want to 418 * make sure that their bits aren't lost by our 419 * putting our bit in. So, this loop accumulates bits 420 * until xchg returns the same value that we put in. 421 * When that happens, there were no new interrupts, 422 * and pending_mask contains a bit for each interrupt 423 * that came in. 424 */ 425 old = *mask_out; 426 do { 427 old |= mask; 428 mask = xchg(&pending_mask, old); 429 } while (mask != old); 430 return 1; 431 } 432 433 ti = current_thread_info(); 434 nested = (ti->real_thread != NULL); 435 if (!nested) { 436 struct task_struct *task; 437 struct thread_info *tti; 438 439 task = cpu_tasks[ti->cpu].task; 440 tti = task_thread_info(task); 441 442 *ti = *tti; 443 ti->real_thread = tti; 444 task->stack = ti; 445 } 446 447 mask = xchg(&pending_mask, 0); 448 *mask_out |= mask | nested; 449 return 0; 450 } 451 452 unsigned long from_irq_stack(int nested) 453 { 454 struct thread_info *ti, *to; 455 unsigned long mask; 456 457 ti = current_thread_info(); 458 459 pending_mask = 1; 460 461 to = ti->real_thread; 462 current->stack = to; 463 ti->real_thread = NULL; 464 *to = *ti; 465 466 mask = xchg(&pending_mask, 0); 467 return mask & ~1; 468 } 469 470