1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2017 - Cambridge Greys Ltd 4 * Copyright (C) 2011 - 2014 Cisco Systems Inc 5 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 6 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: 7 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar 8 */ 9 10 #include <linux/cpumask.h> 11 #include <linux/hardirq.h> 12 #include <linux/interrupt.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/module.h> 15 #include <linux/sched.h> 16 #include <linux/seq_file.h> 17 #include <linux/slab.h> 18 #include <as-layout.h> 19 #include <kern_util.h> 20 #include <os.h> 21 #include <irq_user.h> 22 #include <irq_kern.h> 23 #include <linux/time-internal.h> 24 25 26 extern void free_irqs(void); 27 28 /* When epoll triggers we do not know why it did so 29 * we can also have different IRQs for read and write. 30 * This is why we keep a small irq_reg array for each fd - 31 * one entry per IRQ type 32 */ 33 struct irq_reg { 34 void *id; 35 int irq; 36 /* it's cheaper to store this than to query it */ 37 int events; 38 bool active; 39 bool pending; 40 bool wakeup; 41 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT 42 bool pending_on_resume; 43 void (*timetravel_handler)(int, int, void *, 44 struct time_travel_event *); 45 struct time_travel_event event; 46 #endif 47 }; 48 49 struct irq_entry { 50 struct list_head list; 51 int fd; 52 struct irq_reg reg[NUM_IRQ_TYPES]; 53 bool suspended; 54 bool sigio_workaround; 55 }; 56 57 static DEFINE_SPINLOCK(irq_lock); 58 static LIST_HEAD(active_fds); 59 static DECLARE_BITMAP(irqs_allocated, NR_IRQS); 60 static bool irqs_suspended; 61 62 static void irq_io_loop(struct irq_reg *irq, struct uml_pt_regs *regs) 63 { 64 /* 65 * irq->active guards against reentry 66 * irq->pending accumulates pending requests 67 * if pending is raised the irq_handler is re-run 68 * until pending is cleared 69 */ 70 if (irq->active) { 71 irq->active = false; 72 73 do { 74 irq->pending = false; 75 do_IRQ(irq->irq, regs); 76 } while (irq->pending); 77 78 irq->active = true; 79 } else { 80 irq->pending = true; 81 } 82 } 83 84 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT 85 static void irq_event_handler(struct time_travel_event *ev) 86 { 87 struct irq_reg *reg = container_of(ev, struct irq_reg, event); 88 89 /* do nothing if suspended - just to cause a wakeup */ 90 if (irqs_suspended) 91 return; 92 93 generic_handle_irq(reg->irq); 94 } 95 96 static bool irq_do_timetravel_handler(struct irq_entry *entry, 97 enum um_irq_type t) 98 { 99 struct irq_reg *reg = &entry->reg[t]; 100 101 if (!reg->timetravel_handler) 102 return false; 103 104 /* prevent nesting - we'll get it again later when we SIGIO ourselves */ 105 if (reg->pending_on_resume) 106 return true; 107 108 reg->timetravel_handler(reg->irq, entry->fd, reg->id, ®->event); 109 110 if (!reg->event.pending) 111 return false; 112 113 if (irqs_suspended) 114 reg->pending_on_resume = true; 115 return true; 116 } 117 #else 118 static bool irq_do_timetravel_handler(struct irq_entry *entry, 119 enum um_irq_type t) 120 { 121 return false; 122 } 123 #endif 124 125 static void sigio_reg_handler(int idx, struct irq_entry *entry, enum um_irq_type t, 126 struct uml_pt_regs *regs) 127 { 128 struct irq_reg *reg = &entry->reg[t]; 129 130 if (!reg->events) 131 return; 132 133 if (os_epoll_triggered(idx, reg->events) <= 0) 134 return; 135 136 if (irq_do_timetravel_handler(entry, t)) 137 return; 138 139 if (irqs_suspended) 140 return; 141 142 irq_io_loop(reg, regs); 143 } 144 145 void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs) 146 { 147 struct irq_entry *irq_entry; 148 int n, i; 149 150 if (irqs_suspended && !um_irq_timetravel_handler_used()) 151 return; 152 153 while (1) { 154 /* This is now lockless - epoll keeps back-referencesto the irqs 155 * which have trigger it so there is no need to walk the irq 156 * list and lock it every time. We avoid locking by turning off 157 * IO for a specific fd by executing os_del_epoll_fd(fd) before 158 * we do any changes to the actual data structures 159 */ 160 n = os_waiting_for_events_epoll(); 161 162 if (n <= 0) { 163 if (n == -EINTR) 164 continue; 165 else 166 break; 167 } 168 169 for (i = 0; i < n ; i++) { 170 enum um_irq_type t; 171 172 irq_entry = os_epoll_get_data_pointer(i); 173 174 for (t = 0; t < NUM_IRQ_TYPES; t++) 175 sigio_reg_handler(i, irq_entry, t, regs); 176 } 177 } 178 179 if (!irqs_suspended) 180 free_irqs(); 181 } 182 183 static struct irq_entry *get_irq_entry_by_fd(int fd) 184 { 185 struct irq_entry *walk; 186 187 lockdep_assert_held(&irq_lock); 188 189 list_for_each_entry(walk, &active_fds, list) { 190 if (walk->fd == fd) 191 return walk; 192 } 193 194 return NULL; 195 } 196 197 static void free_irq_entry(struct irq_entry *to_free, bool remove) 198 { 199 if (!to_free) 200 return; 201 202 if (remove) 203 os_del_epoll_fd(to_free->fd); 204 list_del(&to_free->list); 205 kfree(to_free); 206 } 207 208 static bool update_irq_entry(struct irq_entry *entry) 209 { 210 enum um_irq_type i; 211 int events = 0; 212 213 for (i = 0; i < NUM_IRQ_TYPES; i++) 214 events |= entry->reg[i].events; 215 216 if (events) { 217 /* will modify (instead of add) if needed */ 218 os_add_epoll_fd(events, entry->fd, entry); 219 return true; 220 } 221 222 os_del_epoll_fd(entry->fd); 223 return false; 224 } 225 226 static void update_or_free_irq_entry(struct irq_entry *entry) 227 { 228 if (!update_irq_entry(entry)) 229 free_irq_entry(entry, false); 230 } 231 232 static int activate_fd(int irq, int fd, enum um_irq_type type, void *dev_id, 233 void (*timetravel_handler)(int, int, void *, 234 struct time_travel_event *)) 235 { 236 struct irq_entry *irq_entry; 237 int err, events = os_event_mask(type); 238 unsigned long flags; 239 240 err = os_set_fd_async(fd); 241 if (err < 0) 242 goto out; 243 244 spin_lock_irqsave(&irq_lock, flags); 245 irq_entry = get_irq_entry_by_fd(fd); 246 if (irq_entry) { 247 /* cannot register the same FD twice with the same type */ 248 if (WARN_ON(irq_entry->reg[type].events)) { 249 err = -EALREADY; 250 goto out_unlock; 251 } 252 253 /* temporarily disable to avoid IRQ-side locking */ 254 os_del_epoll_fd(fd); 255 } else { 256 irq_entry = kzalloc(sizeof(*irq_entry), GFP_ATOMIC); 257 if (!irq_entry) { 258 err = -ENOMEM; 259 goto out_unlock; 260 } 261 irq_entry->fd = fd; 262 list_add_tail(&irq_entry->list, &active_fds); 263 maybe_sigio_broken(fd); 264 } 265 266 irq_entry->reg[type].id = dev_id; 267 irq_entry->reg[type].irq = irq; 268 irq_entry->reg[type].active = true; 269 irq_entry->reg[type].events = events; 270 271 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT 272 if (um_irq_timetravel_handler_used()) { 273 irq_entry->reg[type].timetravel_handler = timetravel_handler; 274 irq_entry->reg[type].event.fn = irq_event_handler; 275 } 276 #endif 277 278 WARN_ON(!update_irq_entry(irq_entry)); 279 spin_unlock_irqrestore(&irq_lock, flags); 280 281 return 0; 282 out_unlock: 283 spin_unlock_irqrestore(&irq_lock, flags); 284 out: 285 return err; 286 } 287 288 /* 289 * Remove the entry or entries for a specific FD, if you 290 * don't want to remove all the possible entries then use 291 * um_free_irq() or deactivate_fd() instead. 292 */ 293 void free_irq_by_fd(int fd) 294 { 295 struct irq_entry *to_free; 296 unsigned long flags; 297 298 spin_lock_irqsave(&irq_lock, flags); 299 to_free = get_irq_entry_by_fd(fd); 300 free_irq_entry(to_free, true); 301 spin_unlock_irqrestore(&irq_lock, flags); 302 } 303 EXPORT_SYMBOL(free_irq_by_fd); 304 305 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev) 306 { 307 struct irq_entry *entry; 308 unsigned long flags; 309 310 spin_lock_irqsave(&irq_lock, flags); 311 list_for_each_entry(entry, &active_fds, list) { 312 enum um_irq_type i; 313 314 for (i = 0; i < NUM_IRQ_TYPES; i++) { 315 struct irq_reg *reg = &entry->reg[i]; 316 317 if (!reg->events) 318 continue; 319 if (reg->irq != irq) 320 continue; 321 if (reg->id != dev) 322 continue; 323 324 os_del_epoll_fd(entry->fd); 325 reg->events = 0; 326 update_or_free_irq_entry(entry); 327 goto out; 328 } 329 } 330 out: 331 spin_unlock_irqrestore(&irq_lock, flags); 332 } 333 334 void deactivate_fd(int fd, int irqnum) 335 { 336 struct irq_entry *entry; 337 unsigned long flags; 338 enum um_irq_type i; 339 340 os_del_epoll_fd(fd); 341 342 spin_lock_irqsave(&irq_lock, flags); 343 entry = get_irq_entry_by_fd(fd); 344 if (!entry) 345 goto out; 346 347 for (i = 0; i < NUM_IRQ_TYPES; i++) { 348 if (!entry->reg[i].events) 349 continue; 350 if (entry->reg[i].irq == irqnum) 351 entry->reg[i].events = 0; 352 } 353 354 update_or_free_irq_entry(entry); 355 out: 356 spin_unlock_irqrestore(&irq_lock, flags); 357 358 ignore_sigio_fd(fd); 359 } 360 EXPORT_SYMBOL(deactivate_fd); 361 362 /* 363 * Called just before shutdown in order to provide a clean exec 364 * environment in case the system is rebooting. No locking because 365 * that would cause a pointless shutdown hang if something hadn't 366 * released the lock. 367 */ 368 int deactivate_all_fds(void) 369 { 370 struct irq_entry *entry; 371 372 /* Stop IO. The IRQ loop has no lock so this is our 373 * only way of making sure we are safe to dispose 374 * of all IRQ handlers 375 */ 376 os_set_ioignore(); 377 378 /* we can no longer call kfree() here so just deactivate */ 379 list_for_each_entry(entry, &active_fds, list) 380 os_del_epoll_fd(entry->fd); 381 os_close_epoll_fd(); 382 return 0; 383 } 384 385 /* 386 * do_IRQ handles all normal device IRQs (the special 387 * SMP cross-CPU interrupts have their own specific 388 * handlers). 389 */ 390 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) 391 { 392 struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); 393 irq_enter(); 394 generic_handle_irq(irq); 395 irq_exit(); 396 set_irq_regs(old_regs); 397 return 1; 398 } 399 400 void um_free_irq(int irq, void *dev) 401 { 402 if (WARN(irq < 0 || irq > NR_IRQS, "freeing invalid irq %d", irq)) 403 return; 404 405 free_irq_by_irq_and_dev(irq, dev); 406 free_irq(irq, dev); 407 clear_bit(irq, irqs_allocated); 408 } 409 EXPORT_SYMBOL(um_free_irq); 410 411 static int 412 _um_request_irq(int irq, int fd, enum um_irq_type type, 413 irq_handler_t handler, unsigned long irqflags, 414 const char *devname, void *dev_id, 415 void (*timetravel_handler)(int, int, void *, 416 struct time_travel_event *)) 417 { 418 int err; 419 420 if (irq == UM_IRQ_ALLOC) { 421 int i; 422 423 for (i = UM_FIRST_DYN_IRQ; i < NR_IRQS; i++) { 424 if (!test_and_set_bit(i, irqs_allocated)) { 425 irq = i; 426 break; 427 } 428 } 429 } 430 431 if (irq < 0) 432 return -ENOSPC; 433 434 if (fd != -1) { 435 err = activate_fd(irq, fd, type, dev_id, timetravel_handler); 436 if (err) 437 goto error; 438 } 439 440 err = request_irq(irq, handler, irqflags, devname, dev_id); 441 if (err < 0) 442 goto error; 443 444 return irq; 445 error: 446 clear_bit(irq, irqs_allocated); 447 return err; 448 } 449 450 int um_request_irq(int irq, int fd, enum um_irq_type type, 451 irq_handler_t handler, unsigned long irqflags, 452 const char *devname, void *dev_id) 453 { 454 return _um_request_irq(irq, fd, type, handler, irqflags, 455 devname, dev_id, NULL); 456 } 457 EXPORT_SYMBOL(um_request_irq); 458 459 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT 460 int um_request_irq_tt(int irq, int fd, enum um_irq_type type, 461 irq_handler_t handler, unsigned long irqflags, 462 const char *devname, void *dev_id, 463 void (*timetravel_handler)(int, int, void *, 464 struct time_travel_event *)) 465 { 466 return _um_request_irq(irq, fd, type, handler, irqflags, 467 devname, dev_id, timetravel_handler); 468 } 469 EXPORT_SYMBOL(um_request_irq_tt); 470 #endif 471 472 #ifdef CONFIG_PM_SLEEP 473 void um_irqs_suspend(void) 474 { 475 struct irq_entry *entry; 476 unsigned long flags; 477 478 irqs_suspended = true; 479 480 spin_lock_irqsave(&irq_lock, flags); 481 list_for_each_entry(entry, &active_fds, list) { 482 enum um_irq_type t; 483 bool clear = true; 484 485 for (t = 0; t < NUM_IRQ_TYPES; t++) { 486 if (!entry->reg[t].events) 487 continue; 488 489 /* 490 * For the SIGIO_WRITE_IRQ, which is used to handle the 491 * SIGIO workaround thread, we need special handling: 492 * enable wake for it itself, but below we tell it about 493 * any FDs that should be suspended. 494 */ 495 if (entry->reg[t].wakeup || 496 entry->reg[t].irq == SIGIO_WRITE_IRQ 497 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT 498 || entry->reg[t].timetravel_handler 499 #endif 500 ) { 501 clear = false; 502 break; 503 } 504 } 505 506 if (clear) { 507 entry->suspended = true; 508 os_clear_fd_async(entry->fd); 509 entry->sigio_workaround = 510 !__ignore_sigio_fd(entry->fd); 511 } 512 } 513 spin_unlock_irqrestore(&irq_lock, flags); 514 } 515 516 void um_irqs_resume(void) 517 { 518 struct irq_entry *entry; 519 unsigned long flags; 520 521 522 local_irq_save(flags); 523 #ifdef CONFIG_UML_TIME_TRAVEL_SUPPORT 524 /* 525 * We don't need to lock anything here since we're in resume 526 * and nothing else is running, but have disabled IRQs so we 527 * don't try anything else with the interrupt list from there. 528 */ 529 list_for_each_entry(entry, &active_fds, list) { 530 enum um_irq_type t; 531 532 for (t = 0; t < NUM_IRQ_TYPES; t++) { 533 struct irq_reg *reg = &entry->reg[t]; 534 535 if (reg->pending_on_resume) { 536 irq_enter(); 537 generic_handle_irq(reg->irq); 538 irq_exit(); 539 reg->pending_on_resume = false; 540 } 541 } 542 } 543 #endif 544 545 spin_lock(&irq_lock); 546 list_for_each_entry(entry, &active_fds, list) { 547 if (entry->suspended) { 548 int err = os_set_fd_async(entry->fd); 549 550 WARN(err < 0, "os_set_fd_async returned %d\n", err); 551 entry->suspended = false; 552 553 if (entry->sigio_workaround) { 554 err = __add_sigio_fd(entry->fd); 555 WARN(err < 0, "add_sigio_returned %d\n", err); 556 } 557 } 558 } 559 spin_unlock_irqrestore(&irq_lock, flags); 560 561 irqs_suspended = false; 562 send_sigio_to_self(); 563 } 564 565 static int normal_irq_set_wake(struct irq_data *d, unsigned int on) 566 { 567 struct irq_entry *entry; 568 unsigned long flags; 569 570 spin_lock_irqsave(&irq_lock, flags); 571 list_for_each_entry(entry, &active_fds, list) { 572 enum um_irq_type t; 573 574 for (t = 0; t < NUM_IRQ_TYPES; t++) { 575 if (!entry->reg[t].events) 576 continue; 577 578 if (entry->reg[t].irq != d->irq) 579 continue; 580 entry->reg[t].wakeup = on; 581 goto unlock; 582 } 583 } 584 unlock: 585 spin_unlock_irqrestore(&irq_lock, flags); 586 return 0; 587 } 588 #else 589 #define normal_irq_set_wake NULL 590 #endif 591 592 /* 593 * irq_chip must define at least enable/disable and ack when 594 * the edge handler is used. 595 */ 596 static void dummy(struct irq_data *d) 597 { 598 } 599 600 /* This is used for everything other than the timer. */ 601 static struct irq_chip normal_irq_type = { 602 .name = "SIGIO", 603 .irq_disable = dummy, 604 .irq_enable = dummy, 605 .irq_ack = dummy, 606 .irq_mask = dummy, 607 .irq_unmask = dummy, 608 .irq_set_wake = normal_irq_set_wake, 609 }; 610 611 static struct irq_chip alarm_irq_type = { 612 .name = "SIGALRM", 613 .irq_disable = dummy, 614 .irq_enable = dummy, 615 .irq_ack = dummy, 616 .irq_mask = dummy, 617 .irq_unmask = dummy, 618 }; 619 620 void __init init_IRQ(void) 621 { 622 int i; 623 624 irq_set_chip_and_handler(TIMER_IRQ, &alarm_irq_type, handle_edge_irq); 625 626 for (i = 1; i < NR_IRQS; i++) 627 irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq); 628 /* Initialize EPOLL Loop */ 629 os_setup_epoll(); 630 } 631 632 /* 633 * IRQ stack entry and exit: 634 * 635 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack 636 * and switch over to the IRQ stack after some preparation. We use 637 * sigaltstack to receive signals on a separate stack from the start. 638 * These two functions make sure the rest of the kernel won't be too 639 * upset by being on a different stack. The IRQ stack has a 640 * thread_info structure at the bottom so that current et al continue 641 * to work. 642 * 643 * to_irq_stack copies the current task's thread_info to the IRQ stack 644 * thread_info and sets the tasks's stack to point to the IRQ stack. 645 * 646 * from_irq_stack copies the thread_info struct back (flags may have 647 * been modified) and resets the task's stack pointer. 648 * 649 * Tricky bits - 650 * 651 * What happens when two signals race each other? UML doesn't block 652 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal 653 * could arrive while a previous one is still setting up the 654 * thread_info. 655 * 656 * There are three cases - 657 * The first interrupt on the stack - sets up the thread_info and 658 * handles the interrupt 659 * A nested interrupt interrupting the copying of the thread_info - 660 * can't handle the interrupt, as the stack is in an unknown state 661 * A nested interrupt not interrupting the copying of the 662 * thread_info - doesn't do any setup, just handles the interrupt 663 * 664 * The first job is to figure out whether we interrupted stack setup. 665 * This is done by xchging the signal mask with thread_info->pending. 666 * If the value that comes back is zero, then there is no setup in 667 * progress, and the interrupt can be handled. If the value is 668 * non-zero, then there is stack setup in progress. In order to have 669 * the interrupt handled, we leave our signal in the mask, and it will 670 * be handled by the upper handler after it has set up the stack. 671 * 672 * Next is to figure out whether we are the outer handler or a nested 673 * one. As part of setting up the stack, thread_info->real_thread is 674 * set to non-NULL (and is reset to NULL on exit). This is the 675 * nesting indicator. If it is non-NULL, then the stack is already 676 * set up and the handler can run. 677 */ 678 679 static unsigned long pending_mask; 680 681 unsigned long to_irq_stack(unsigned long *mask_out) 682 { 683 struct thread_info *ti; 684 unsigned long mask, old; 685 int nested; 686 687 mask = xchg(&pending_mask, *mask_out); 688 if (mask != 0) { 689 /* 690 * If any interrupts come in at this point, we want to 691 * make sure that their bits aren't lost by our 692 * putting our bit in. So, this loop accumulates bits 693 * until xchg returns the same value that we put in. 694 * When that happens, there were no new interrupts, 695 * and pending_mask contains a bit for each interrupt 696 * that came in. 697 */ 698 old = *mask_out; 699 do { 700 old |= mask; 701 mask = xchg(&pending_mask, old); 702 } while (mask != old); 703 return 1; 704 } 705 706 ti = current_thread_info(); 707 nested = (ti->real_thread != NULL); 708 if (!nested) { 709 struct task_struct *task; 710 struct thread_info *tti; 711 712 task = cpu_tasks[ti->cpu].task; 713 tti = task_thread_info(task); 714 715 *ti = *tti; 716 ti->real_thread = tti; 717 task->stack = ti; 718 } 719 720 mask = xchg(&pending_mask, 0); 721 *mask_out |= mask | nested; 722 return 0; 723 } 724 725 unsigned long from_irq_stack(int nested) 726 { 727 struct thread_info *ti, *to; 728 unsigned long mask; 729 730 ti = current_thread_info(); 731 732 pending_mask = 1; 733 734 to = ti->real_thread; 735 current->stack = to; 736 ti->real_thread = NULL; 737 *to = *ti; 738 739 mask = xchg(&pending_mask, 0); 740 return mask & ~1; 741 } 742 743