1 /* 2 * Copyright (C) 2017 - Cambridge Greys Ltd 3 * Copyright (C) 2011 - 2014 Cisco Systems Inc 4 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 5 * Licensed under the GPL 6 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: 7 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar 8 */ 9 10 #include <linux/cpumask.h> 11 #include <linux/hardirq.h> 12 #include <linux/interrupt.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/module.h> 15 #include <linux/sched.h> 16 #include <linux/seq_file.h> 17 #include <linux/slab.h> 18 #include <as-layout.h> 19 #include <kern_util.h> 20 #include <os.h> 21 #include <irq_user.h> 22 23 24 /* When epoll triggers we do not know why it did so 25 * we can also have different IRQs for read and write. 26 * This is why we keep a small irq_fd array for each fd - 27 * one entry per IRQ type 28 */ 29 30 struct irq_entry { 31 struct irq_entry *next; 32 int fd; 33 struct irq_fd *irq_array[MAX_IRQ_TYPE + 1]; 34 }; 35 36 static struct irq_entry *active_fds; 37 38 static DEFINE_SPINLOCK(irq_lock); 39 40 static void irq_io_loop(struct irq_fd *irq, struct uml_pt_regs *regs) 41 { 42 /* 43 * irq->active guards against reentry 44 * irq->pending accumulates pending requests 45 * if pending is raised the irq_handler is re-run 46 * until pending is cleared 47 */ 48 if (irq->active) { 49 irq->active = false; 50 do { 51 irq->pending = false; 52 do_IRQ(irq->irq, regs); 53 } while (irq->pending && (!irq->purge)); 54 if (!irq->purge) 55 irq->active = true; 56 } else { 57 irq->pending = true; 58 } 59 } 60 61 void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs) 62 { 63 struct irq_entry *irq_entry; 64 struct irq_fd *irq; 65 66 int n, i, j; 67 68 while (1) { 69 /* This is now lockless - epoll keeps back-referencesto the irqs 70 * which have trigger it so there is no need to walk the irq 71 * list and lock it every time. We avoid locking by turning off 72 * IO for a specific fd by executing os_del_epoll_fd(fd) before 73 * we do any changes to the actual data structures 74 */ 75 n = os_waiting_for_events_epoll(); 76 77 if (n <= 0) { 78 if (n == -EINTR) 79 continue; 80 else 81 break; 82 } 83 84 for (i = 0; i < n ; i++) { 85 /* Epoll back reference is the entry with 3 irq_fd 86 * leaves - one for each irq type. 87 */ 88 irq_entry = (struct irq_entry *) 89 os_epoll_get_data_pointer(i); 90 for (j = 0; j < MAX_IRQ_TYPE ; j++) { 91 irq = irq_entry->irq_array[j]; 92 if (irq == NULL) 93 continue; 94 if (os_epoll_triggered(i, irq->events) > 0) 95 irq_io_loop(irq, regs); 96 if (irq->purge) { 97 irq_entry->irq_array[j] = NULL; 98 kfree(irq); 99 } 100 } 101 } 102 } 103 } 104 105 static int assign_epoll_events_to_irq(struct irq_entry *irq_entry) 106 { 107 int i; 108 int events = 0; 109 struct irq_fd *irq; 110 111 for (i = 0; i < MAX_IRQ_TYPE ; i++) { 112 irq = irq_entry->irq_array[i]; 113 if (irq != NULL) 114 events = irq->events | events; 115 } 116 if (events > 0) { 117 /* os_add_epoll will call os_mod_epoll if this already exists */ 118 return os_add_epoll_fd(events, irq_entry->fd, irq_entry); 119 } 120 /* No events - delete */ 121 return os_del_epoll_fd(irq_entry->fd); 122 } 123 124 125 126 static int activate_fd(int irq, int fd, int type, void *dev_id) 127 { 128 struct irq_fd *new_fd; 129 struct irq_entry *irq_entry; 130 int i, err, events; 131 unsigned long flags; 132 133 err = os_set_fd_async(fd); 134 if (err < 0) 135 goto out; 136 137 spin_lock_irqsave(&irq_lock, flags); 138 139 /* Check if we have an entry for this fd */ 140 141 err = -EBUSY; 142 for (irq_entry = active_fds; 143 irq_entry != NULL; irq_entry = irq_entry->next) { 144 if (irq_entry->fd == fd) 145 break; 146 } 147 148 if (irq_entry == NULL) { 149 /* This needs to be atomic as it may be called from an 150 * IRQ context. 151 */ 152 irq_entry = kmalloc(sizeof(struct irq_entry), GFP_ATOMIC); 153 if (irq_entry == NULL) { 154 printk(KERN_ERR 155 "Failed to allocate new IRQ entry\n"); 156 goto out_unlock; 157 } 158 irq_entry->fd = fd; 159 for (i = 0; i < MAX_IRQ_TYPE; i++) 160 irq_entry->irq_array[i] = NULL; 161 irq_entry->next = active_fds; 162 active_fds = irq_entry; 163 } 164 165 /* Check if we are trying to re-register an interrupt for a 166 * particular fd 167 */ 168 169 if (irq_entry->irq_array[type] != NULL) { 170 printk(KERN_ERR 171 "Trying to reregister IRQ %d FD %d TYPE %d ID %p\n", 172 irq, fd, type, dev_id 173 ); 174 goto out_unlock; 175 } else { 176 /* New entry for this fd */ 177 178 err = -ENOMEM; 179 new_fd = kmalloc(sizeof(struct irq_fd), GFP_ATOMIC); 180 if (new_fd == NULL) 181 goto out_unlock; 182 183 events = os_event_mask(type); 184 185 *new_fd = ((struct irq_fd) { 186 .id = dev_id, 187 .irq = irq, 188 .type = type, 189 .events = events, 190 .active = true, 191 .pending = false, 192 .purge = false 193 }); 194 /* Turn off any IO on this fd - allows us to 195 * avoid locking the IRQ loop 196 */ 197 os_del_epoll_fd(irq_entry->fd); 198 irq_entry->irq_array[type] = new_fd; 199 } 200 201 /* Turn back IO on with the correct (new) IO event mask */ 202 assign_epoll_events_to_irq(irq_entry); 203 spin_unlock_irqrestore(&irq_lock, flags); 204 maybe_sigio_broken(fd, (type != IRQ_NONE)); 205 206 return 0; 207 out_unlock: 208 spin_unlock_irqrestore(&irq_lock, flags); 209 out: 210 return err; 211 } 212 213 /* 214 * Walk the IRQ list and dispose of any unused entries. 215 * Should be done under irq_lock. 216 */ 217 218 static void garbage_collect_irq_entries(void) 219 { 220 int i; 221 bool reap; 222 struct irq_entry *walk; 223 struct irq_entry *previous = NULL; 224 struct irq_entry *to_free; 225 226 if (active_fds == NULL) 227 return; 228 walk = active_fds; 229 while (walk != NULL) { 230 reap = true; 231 for (i = 0; i < MAX_IRQ_TYPE ; i++) { 232 if (walk->irq_array[i] != NULL) { 233 reap = false; 234 break; 235 } 236 } 237 if (reap) { 238 if (previous == NULL) 239 active_fds = walk->next; 240 else 241 previous->next = walk->next; 242 to_free = walk; 243 } else { 244 to_free = NULL; 245 } 246 walk = walk->next; 247 if (to_free != NULL) 248 kfree(to_free); 249 } 250 } 251 252 /* 253 * Walk the IRQ list and get the descriptor for our FD 254 */ 255 256 static struct irq_entry *get_irq_entry_by_fd(int fd) 257 { 258 struct irq_entry *walk = active_fds; 259 260 while (walk != NULL) { 261 if (walk->fd == fd) 262 return walk; 263 walk = walk->next; 264 } 265 return NULL; 266 } 267 268 269 /* 270 * Walk the IRQ list and dispose of an entry for a specific 271 * device, fd and number. Note - if sharing an IRQ for read 272 * and writefor the same FD it will be disposed in either case. 273 * If this behaviour is undesirable use different IRQ ids. 274 */ 275 276 #define IGNORE_IRQ 1 277 #define IGNORE_DEV (1<<1) 278 279 static void do_free_by_irq_and_dev( 280 struct irq_entry *irq_entry, 281 unsigned int irq, 282 void *dev, 283 int flags 284 ) 285 { 286 int i; 287 struct irq_fd *to_free; 288 289 for (i = 0; i < MAX_IRQ_TYPE ; i++) { 290 if (irq_entry->irq_array[i] != NULL) { 291 if ( 292 ((flags & IGNORE_IRQ) || 293 (irq_entry->irq_array[i]->irq == irq)) && 294 ((flags & IGNORE_DEV) || 295 (irq_entry->irq_array[i]->id == dev)) 296 ) { 297 /* Turn off any IO on this fd - allows us to 298 * avoid locking the IRQ loop 299 */ 300 os_del_epoll_fd(irq_entry->fd); 301 to_free = irq_entry->irq_array[i]; 302 irq_entry->irq_array[i] = NULL; 303 assign_epoll_events_to_irq(irq_entry); 304 if (to_free->active) 305 to_free->purge = true; 306 else 307 kfree(to_free); 308 } 309 } 310 } 311 } 312 313 void free_irq_by_fd(int fd) 314 { 315 struct irq_entry *to_free; 316 unsigned long flags; 317 318 spin_lock_irqsave(&irq_lock, flags); 319 to_free = get_irq_entry_by_fd(fd); 320 if (to_free != NULL) { 321 do_free_by_irq_and_dev( 322 to_free, 323 -1, 324 NULL, 325 IGNORE_IRQ | IGNORE_DEV 326 ); 327 } 328 garbage_collect_irq_entries(); 329 spin_unlock_irqrestore(&irq_lock, flags); 330 } 331 EXPORT_SYMBOL(free_irq_by_fd); 332 333 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev) 334 { 335 struct irq_entry *to_free; 336 unsigned long flags; 337 338 spin_lock_irqsave(&irq_lock, flags); 339 to_free = active_fds; 340 while (to_free != NULL) { 341 do_free_by_irq_and_dev( 342 to_free, 343 irq, 344 dev, 345 0 346 ); 347 to_free = to_free->next; 348 } 349 garbage_collect_irq_entries(); 350 spin_unlock_irqrestore(&irq_lock, flags); 351 } 352 353 354 void reactivate_fd(int fd, int irqnum) 355 { 356 /** NOP - we do auto-EOI now **/ 357 } 358 359 void deactivate_fd(int fd, int irqnum) 360 { 361 struct irq_entry *to_free; 362 unsigned long flags; 363 364 os_del_epoll_fd(fd); 365 spin_lock_irqsave(&irq_lock, flags); 366 to_free = get_irq_entry_by_fd(fd); 367 if (to_free != NULL) { 368 do_free_by_irq_and_dev( 369 to_free, 370 irqnum, 371 NULL, 372 IGNORE_DEV 373 ); 374 } 375 garbage_collect_irq_entries(); 376 spin_unlock_irqrestore(&irq_lock, flags); 377 ignore_sigio_fd(fd); 378 } 379 EXPORT_SYMBOL(deactivate_fd); 380 381 /* 382 * Called just before shutdown in order to provide a clean exec 383 * environment in case the system is rebooting. No locking because 384 * that would cause a pointless shutdown hang if something hadn't 385 * released the lock. 386 */ 387 int deactivate_all_fds(void) 388 { 389 unsigned long flags; 390 struct irq_entry *to_free; 391 392 spin_lock_irqsave(&irq_lock, flags); 393 /* Stop IO. The IRQ loop has no lock so this is our 394 * only way of making sure we are safe to dispose 395 * of all IRQ handlers 396 */ 397 os_set_ioignore(); 398 to_free = active_fds; 399 while (to_free != NULL) { 400 do_free_by_irq_and_dev( 401 to_free, 402 -1, 403 NULL, 404 IGNORE_IRQ | IGNORE_DEV 405 ); 406 to_free = to_free->next; 407 } 408 garbage_collect_irq_entries(); 409 spin_unlock_irqrestore(&irq_lock, flags); 410 os_close_epoll_fd(); 411 return 0; 412 } 413 414 /* 415 * do_IRQ handles all normal device IRQs (the special 416 * SMP cross-CPU interrupts have their own specific 417 * handlers). 418 */ 419 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) 420 { 421 struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); 422 irq_enter(); 423 generic_handle_irq(irq); 424 irq_exit(); 425 set_irq_regs(old_regs); 426 return 1; 427 } 428 429 void um_free_irq(unsigned int irq, void *dev) 430 { 431 free_irq_by_irq_and_dev(irq, dev); 432 free_irq(irq, dev); 433 } 434 EXPORT_SYMBOL(um_free_irq); 435 436 int um_request_irq(unsigned int irq, int fd, int type, 437 irq_handler_t handler, 438 unsigned long irqflags, const char * devname, 439 void *dev_id) 440 { 441 int err; 442 443 if (fd != -1) { 444 err = activate_fd(irq, fd, type, dev_id); 445 if (err) 446 return err; 447 } 448 449 return request_irq(irq, handler, irqflags, devname, dev_id); 450 } 451 452 EXPORT_SYMBOL(um_request_irq); 453 EXPORT_SYMBOL(reactivate_fd); 454 455 /* 456 * irq_chip must define at least enable/disable and ack when 457 * the edge handler is used. 458 */ 459 static void dummy(struct irq_data *d) 460 { 461 } 462 463 /* This is used for everything else than the timer. */ 464 static struct irq_chip normal_irq_type = { 465 .name = "SIGIO", 466 .irq_disable = dummy, 467 .irq_enable = dummy, 468 .irq_ack = dummy, 469 .irq_mask = dummy, 470 .irq_unmask = dummy, 471 }; 472 473 static struct irq_chip SIGVTALRM_irq_type = { 474 .name = "SIGVTALRM", 475 .irq_disable = dummy, 476 .irq_enable = dummy, 477 .irq_ack = dummy, 478 .irq_mask = dummy, 479 .irq_unmask = dummy, 480 }; 481 482 void __init init_IRQ(void) 483 { 484 int i; 485 486 irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq); 487 488 489 for (i = 1; i < NR_IRQS; i++) 490 irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq); 491 /* Initialize EPOLL Loop */ 492 os_setup_epoll(); 493 } 494 495 /* 496 * IRQ stack entry and exit: 497 * 498 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack 499 * and switch over to the IRQ stack after some preparation. We use 500 * sigaltstack to receive signals on a separate stack from the start. 501 * These two functions make sure the rest of the kernel won't be too 502 * upset by being on a different stack. The IRQ stack has a 503 * thread_info structure at the bottom so that current et al continue 504 * to work. 505 * 506 * to_irq_stack copies the current task's thread_info to the IRQ stack 507 * thread_info and sets the tasks's stack to point to the IRQ stack. 508 * 509 * from_irq_stack copies the thread_info struct back (flags may have 510 * been modified) and resets the task's stack pointer. 511 * 512 * Tricky bits - 513 * 514 * What happens when two signals race each other? UML doesn't block 515 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal 516 * could arrive while a previous one is still setting up the 517 * thread_info. 518 * 519 * There are three cases - 520 * The first interrupt on the stack - sets up the thread_info and 521 * handles the interrupt 522 * A nested interrupt interrupting the copying of the thread_info - 523 * can't handle the interrupt, as the stack is in an unknown state 524 * A nested interrupt not interrupting the copying of the 525 * thread_info - doesn't do any setup, just handles the interrupt 526 * 527 * The first job is to figure out whether we interrupted stack setup. 528 * This is done by xchging the signal mask with thread_info->pending. 529 * If the value that comes back is zero, then there is no setup in 530 * progress, and the interrupt can be handled. If the value is 531 * non-zero, then there is stack setup in progress. In order to have 532 * the interrupt handled, we leave our signal in the mask, and it will 533 * be handled by the upper handler after it has set up the stack. 534 * 535 * Next is to figure out whether we are the outer handler or a nested 536 * one. As part of setting up the stack, thread_info->real_thread is 537 * set to non-NULL (and is reset to NULL on exit). This is the 538 * nesting indicator. If it is non-NULL, then the stack is already 539 * set up and the handler can run. 540 */ 541 542 static unsigned long pending_mask; 543 544 unsigned long to_irq_stack(unsigned long *mask_out) 545 { 546 struct thread_info *ti; 547 unsigned long mask, old; 548 int nested; 549 550 mask = xchg(&pending_mask, *mask_out); 551 if (mask != 0) { 552 /* 553 * If any interrupts come in at this point, we want to 554 * make sure that their bits aren't lost by our 555 * putting our bit in. So, this loop accumulates bits 556 * until xchg returns the same value that we put in. 557 * When that happens, there were no new interrupts, 558 * and pending_mask contains a bit for each interrupt 559 * that came in. 560 */ 561 old = *mask_out; 562 do { 563 old |= mask; 564 mask = xchg(&pending_mask, old); 565 } while (mask != old); 566 return 1; 567 } 568 569 ti = current_thread_info(); 570 nested = (ti->real_thread != NULL); 571 if (!nested) { 572 struct task_struct *task; 573 struct thread_info *tti; 574 575 task = cpu_tasks[ti->cpu].task; 576 tti = task_thread_info(task); 577 578 *ti = *tti; 579 ti->real_thread = tti; 580 task->stack = ti; 581 } 582 583 mask = xchg(&pending_mask, 0); 584 *mask_out |= mask | nested; 585 return 0; 586 } 587 588 unsigned long from_irq_stack(int nested) 589 { 590 struct thread_info *ti, *to; 591 unsigned long mask; 592 593 ti = current_thread_info(); 594 595 pending_mask = 1; 596 597 to = ti->real_thread; 598 current->stack = to; 599 ti->real_thread = NULL; 600 *to = *ti; 601 602 mask = xchg(&pending_mask, 0); 603 return mask & ~1; 604 } 605 606