1 /* 2 * Copyright (C) 2017 - Cambridge Greys Ltd 3 * Copyright (C) 2011 - 2014 Cisco Systems Inc 4 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 5 * Licensed under the GPL 6 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: 7 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar 8 */ 9 10 #include <linux/cpumask.h> 11 #include <linux/hardirq.h> 12 #include <linux/interrupt.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/module.h> 15 #include <linux/sched.h> 16 #include <linux/seq_file.h> 17 #include <linux/slab.h> 18 #include <as-layout.h> 19 #include <kern_util.h> 20 #include <os.h> 21 #include <irq_user.h> 22 23 24 /* When epoll triggers we do not know why it did so 25 * we can also have different IRQs for read and write. 26 * This is why we keep a small irq_fd array for each fd - 27 * one entry per IRQ type 28 */ 29 30 struct irq_entry { 31 struct irq_entry *next; 32 int fd; 33 struct irq_fd *irq_array[MAX_IRQ_TYPE + 1]; 34 }; 35 36 static struct irq_entry *active_fds; 37 38 static DEFINE_SPINLOCK(irq_lock); 39 40 static void irq_io_loop(struct irq_fd *irq, struct uml_pt_regs *regs) 41 { 42 /* 43 * irq->active guards against reentry 44 * irq->pending accumulates pending requests 45 * if pending is raised the irq_handler is re-run 46 * until pending is cleared 47 */ 48 if (irq->active) { 49 irq->active = false; 50 do { 51 irq->pending = false; 52 do_IRQ(irq->irq, regs); 53 } while (irq->pending && (!irq->purge)); 54 if (!irq->purge) 55 irq->active = true; 56 } else { 57 irq->pending = true; 58 } 59 } 60 61 void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs) 62 { 63 struct irq_entry *irq_entry; 64 struct irq_fd *irq; 65 66 int n, i, j; 67 68 while (1) { 69 /* This is now lockless - epoll keeps back-referencesto the irqs 70 * which have trigger it so there is no need to walk the irq 71 * list and lock it every time. We avoid locking by turning off 72 * IO for a specific fd by executing os_del_epoll_fd(fd) before 73 * we do any changes to the actual data structures 74 */ 75 n = os_waiting_for_events_epoll(); 76 77 if (n <= 0) { 78 if (n == -EINTR) 79 continue; 80 else 81 break; 82 } 83 84 for (i = 0; i < n ; i++) { 85 /* Epoll back reference is the entry with 3 irq_fd 86 * leaves - one for each irq type. 87 */ 88 irq_entry = (struct irq_entry *) 89 os_epoll_get_data_pointer(i); 90 for (j = 0; j < MAX_IRQ_TYPE ; j++) { 91 irq = irq_entry->irq_array[j]; 92 if (irq == NULL) 93 continue; 94 if (os_epoll_triggered(i, irq->events) > 0) 95 irq_io_loop(irq, regs); 96 if (irq->purge) { 97 irq_entry->irq_array[j] = NULL; 98 kfree(irq); 99 } 100 } 101 } 102 } 103 } 104 105 static int assign_epoll_events_to_irq(struct irq_entry *irq_entry) 106 { 107 int i; 108 int events = 0; 109 struct irq_fd *irq; 110 111 for (i = 0; i < MAX_IRQ_TYPE ; i++) { 112 irq = irq_entry->irq_array[i]; 113 if (irq != NULL) 114 events = irq->events | events; 115 } 116 if (events > 0) { 117 /* os_add_epoll will call os_mod_epoll if this already exists */ 118 return os_add_epoll_fd(events, irq_entry->fd, irq_entry); 119 } 120 /* No events - delete */ 121 return os_del_epoll_fd(irq_entry->fd); 122 } 123 124 125 126 static int activate_fd(int irq, int fd, int type, void *dev_id) 127 { 128 struct irq_fd *new_fd; 129 struct irq_entry *irq_entry; 130 int i, err, events; 131 unsigned long flags; 132 133 err = os_set_fd_async(fd); 134 if (err < 0) 135 goto out; 136 137 spin_lock_irqsave(&irq_lock, flags); 138 139 /* Check if we have an entry for this fd */ 140 141 err = -EBUSY; 142 for (irq_entry = active_fds; 143 irq_entry != NULL; irq_entry = irq_entry->next) { 144 if (irq_entry->fd == fd) 145 break; 146 } 147 148 if (irq_entry == NULL) { 149 /* This needs to be atomic as it may be called from an 150 * IRQ context. 151 */ 152 irq_entry = kmalloc(sizeof(struct irq_entry), GFP_ATOMIC); 153 if (irq_entry == NULL) { 154 printk(KERN_ERR 155 "Failed to allocate new IRQ entry\n"); 156 goto out_unlock; 157 } 158 irq_entry->fd = fd; 159 for (i = 0; i < MAX_IRQ_TYPE; i++) 160 irq_entry->irq_array[i] = NULL; 161 irq_entry->next = active_fds; 162 active_fds = irq_entry; 163 } 164 165 /* Check if we are trying to re-register an interrupt for a 166 * particular fd 167 */ 168 169 if (irq_entry->irq_array[type] != NULL) { 170 printk(KERN_ERR 171 "Trying to reregister IRQ %d FD %d TYPE %d ID %p\n", 172 irq, fd, type, dev_id 173 ); 174 goto out_unlock; 175 } else { 176 /* New entry for this fd */ 177 178 err = -ENOMEM; 179 new_fd = kmalloc(sizeof(struct irq_fd), GFP_ATOMIC); 180 if (new_fd == NULL) 181 goto out_unlock; 182 183 events = os_event_mask(type); 184 185 *new_fd = ((struct irq_fd) { 186 .id = dev_id, 187 .irq = irq, 188 .type = type, 189 .events = events, 190 .active = true, 191 .pending = false, 192 .purge = false 193 }); 194 /* Turn off any IO on this fd - allows us to 195 * avoid locking the IRQ loop 196 */ 197 os_del_epoll_fd(irq_entry->fd); 198 irq_entry->irq_array[type] = new_fd; 199 } 200 201 /* Turn back IO on with the correct (new) IO event mask */ 202 assign_epoll_events_to_irq(irq_entry); 203 spin_unlock_irqrestore(&irq_lock, flags); 204 maybe_sigio_broken(fd, (type != IRQ_NONE)); 205 206 return 0; 207 out_unlock: 208 spin_unlock_irqrestore(&irq_lock, flags); 209 out: 210 return err; 211 } 212 213 /* 214 * Walk the IRQ list and dispose of any unused entries. 215 * Should be done under irq_lock. 216 */ 217 218 static void garbage_collect_irq_entries(void) 219 { 220 int i; 221 bool reap; 222 struct irq_entry *walk; 223 struct irq_entry *previous = NULL; 224 struct irq_entry *to_free; 225 226 if (active_fds == NULL) 227 return; 228 walk = active_fds; 229 while (walk != NULL) { 230 reap = true; 231 for (i = 0; i < MAX_IRQ_TYPE ; i++) { 232 if (walk->irq_array[i] != NULL) { 233 reap = false; 234 break; 235 } 236 } 237 if (reap) { 238 if (previous == NULL) 239 active_fds = walk->next; 240 else 241 previous->next = walk->next; 242 to_free = walk; 243 } else { 244 to_free = NULL; 245 } 246 walk = walk->next; 247 kfree(to_free); 248 } 249 } 250 251 /* 252 * Walk the IRQ list and get the descriptor for our FD 253 */ 254 255 static struct irq_entry *get_irq_entry_by_fd(int fd) 256 { 257 struct irq_entry *walk = active_fds; 258 259 while (walk != NULL) { 260 if (walk->fd == fd) 261 return walk; 262 walk = walk->next; 263 } 264 return NULL; 265 } 266 267 268 /* 269 * Walk the IRQ list and dispose of an entry for a specific 270 * device, fd and number. Note - if sharing an IRQ for read 271 * and writefor the same FD it will be disposed in either case. 272 * If this behaviour is undesirable use different IRQ ids. 273 */ 274 275 #define IGNORE_IRQ 1 276 #define IGNORE_DEV (1<<1) 277 278 static void do_free_by_irq_and_dev( 279 struct irq_entry *irq_entry, 280 unsigned int irq, 281 void *dev, 282 int flags 283 ) 284 { 285 int i; 286 struct irq_fd *to_free; 287 288 for (i = 0; i < MAX_IRQ_TYPE ; i++) { 289 if (irq_entry->irq_array[i] != NULL) { 290 if ( 291 ((flags & IGNORE_IRQ) || 292 (irq_entry->irq_array[i]->irq == irq)) && 293 ((flags & IGNORE_DEV) || 294 (irq_entry->irq_array[i]->id == dev)) 295 ) { 296 /* Turn off any IO on this fd - allows us to 297 * avoid locking the IRQ loop 298 */ 299 os_del_epoll_fd(irq_entry->fd); 300 to_free = irq_entry->irq_array[i]; 301 irq_entry->irq_array[i] = NULL; 302 assign_epoll_events_to_irq(irq_entry); 303 if (to_free->active) 304 to_free->purge = true; 305 else 306 kfree(to_free); 307 } 308 } 309 } 310 } 311 312 void free_irq_by_fd(int fd) 313 { 314 struct irq_entry *to_free; 315 unsigned long flags; 316 317 spin_lock_irqsave(&irq_lock, flags); 318 to_free = get_irq_entry_by_fd(fd); 319 if (to_free != NULL) { 320 do_free_by_irq_and_dev( 321 to_free, 322 -1, 323 NULL, 324 IGNORE_IRQ | IGNORE_DEV 325 ); 326 } 327 garbage_collect_irq_entries(); 328 spin_unlock_irqrestore(&irq_lock, flags); 329 } 330 EXPORT_SYMBOL(free_irq_by_fd); 331 332 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev) 333 { 334 struct irq_entry *to_free; 335 unsigned long flags; 336 337 spin_lock_irqsave(&irq_lock, flags); 338 to_free = active_fds; 339 while (to_free != NULL) { 340 do_free_by_irq_and_dev( 341 to_free, 342 irq, 343 dev, 344 0 345 ); 346 to_free = to_free->next; 347 } 348 garbage_collect_irq_entries(); 349 spin_unlock_irqrestore(&irq_lock, flags); 350 } 351 352 353 void deactivate_fd(int fd, int irqnum) 354 { 355 struct irq_entry *to_free; 356 unsigned long flags; 357 358 os_del_epoll_fd(fd); 359 spin_lock_irqsave(&irq_lock, flags); 360 to_free = get_irq_entry_by_fd(fd); 361 if (to_free != NULL) { 362 do_free_by_irq_and_dev( 363 to_free, 364 irqnum, 365 NULL, 366 IGNORE_DEV 367 ); 368 } 369 garbage_collect_irq_entries(); 370 spin_unlock_irqrestore(&irq_lock, flags); 371 ignore_sigio_fd(fd); 372 } 373 EXPORT_SYMBOL(deactivate_fd); 374 375 /* 376 * Called just before shutdown in order to provide a clean exec 377 * environment in case the system is rebooting. No locking because 378 * that would cause a pointless shutdown hang if something hadn't 379 * released the lock. 380 */ 381 int deactivate_all_fds(void) 382 { 383 unsigned long flags; 384 struct irq_entry *to_free; 385 386 spin_lock_irqsave(&irq_lock, flags); 387 /* Stop IO. The IRQ loop has no lock so this is our 388 * only way of making sure we are safe to dispose 389 * of all IRQ handlers 390 */ 391 os_set_ioignore(); 392 to_free = active_fds; 393 while (to_free != NULL) { 394 do_free_by_irq_and_dev( 395 to_free, 396 -1, 397 NULL, 398 IGNORE_IRQ | IGNORE_DEV 399 ); 400 to_free = to_free->next; 401 } 402 garbage_collect_irq_entries(); 403 spin_unlock_irqrestore(&irq_lock, flags); 404 os_close_epoll_fd(); 405 return 0; 406 } 407 408 /* 409 * do_IRQ handles all normal device IRQs (the special 410 * SMP cross-CPU interrupts have their own specific 411 * handlers). 412 */ 413 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) 414 { 415 struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); 416 irq_enter(); 417 generic_handle_irq(irq); 418 irq_exit(); 419 set_irq_regs(old_regs); 420 return 1; 421 } 422 423 void um_free_irq(unsigned int irq, void *dev) 424 { 425 free_irq_by_irq_and_dev(irq, dev); 426 free_irq(irq, dev); 427 } 428 EXPORT_SYMBOL(um_free_irq); 429 430 int um_request_irq(unsigned int irq, int fd, int type, 431 irq_handler_t handler, 432 unsigned long irqflags, const char * devname, 433 void *dev_id) 434 { 435 int err; 436 437 if (fd != -1) { 438 err = activate_fd(irq, fd, type, dev_id); 439 if (err) 440 return err; 441 } 442 443 return request_irq(irq, handler, irqflags, devname, dev_id); 444 } 445 446 EXPORT_SYMBOL(um_request_irq); 447 448 /* 449 * irq_chip must define at least enable/disable and ack when 450 * the edge handler is used. 451 */ 452 static void dummy(struct irq_data *d) 453 { 454 } 455 456 /* This is used for everything else than the timer. */ 457 static struct irq_chip normal_irq_type = { 458 .name = "SIGIO", 459 .irq_disable = dummy, 460 .irq_enable = dummy, 461 .irq_ack = dummy, 462 .irq_mask = dummy, 463 .irq_unmask = dummy, 464 }; 465 466 static struct irq_chip SIGVTALRM_irq_type = { 467 .name = "SIGVTALRM", 468 .irq_disable = dummy, 469 .irq_enable = dummy, 470 .irq_ack = dummy, 471 .irq_mask = dummy, 472 .irq_unmask = dummy, 473 }; 474 475 void __init init_IRQ(void) 476 { 477 int i; 478 479 irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq); 480 481 482 for (i = 1; i < NR_IRQS; i++) 483 irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq); 484 /* Initialize EPOLL Loop */ 485 os_setup_epoll(); 486 } 487 488 /* 489 * IRQ stack entry and exit: 490 * 491 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack 492 * and switch over to the IRQ stack after some preparation. We use 493 * sigaltstack to receive signals on a separate stack from the start. 494 * These two functions make sure the rest of the kernel won't be too 495 * upset by being on a different stack. The IRQ stack has a 496 * thread_info structure at the bottom so that current et al continue 497 * to work. 498 * 499 * to_irq_stack copies the current task's thread_info to the IRQ stack 500 * thread_info and sets the tasks's stack to point to the IRQ stack. 501 * 502 * from_irq_stack copies the thread_info struct back (flags may have 503 * been modified) and resets the task's stack pointer. 504 * 505 * Tricky bits - 506 * 507 * What happens when two signals race each other? UML doesn't block 508 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal 509 * could arrive while a previous one is still setting up the 510 * thread_info. 511 * 512 * There are three cases - 513 * The first interrupt on the stack - sets up the thread_info and 514 * handles the interrupt 515 * A nested interrupt interrupting the copying of the thread_info - 516 * can't handle the interrupt, as the stack is in an unknown state 517 * A nested interrupt not interrupting the copying of the 518 * thread_info - doesn't do any setup, just handles the interrupt 519 * 520 * The first job is to figure out whether we interrupted stack setup. 521 * This is done by xchging the signal mask with thread_info->pending. 522 * If the value that comes back is zero, then there is no setup in 523 * progress, and the interrupt can be handled. If the value is 524 * non-zero, then there is stack setup in progress. In order to have 525 * the interrupt handled, we leave our signal in the mask, and it will 526 * be handled by the upper handler after it has set up the stack. 527 * 528 * Next is to figure out whether we are the outer handler or a nested 529 * one. As part of setting up the stack, thread_info->real_thread is 530 * set to non-NULL (and is reset to NULL on exit). This is the 531 * nesting indicator. If it is non-NULL, then the stack is already 532 * set up and the handler can run. 533 */ 534 535 static unsigned long pending_mask; 536 537 unsigned long to_irq_stack(unsigned long *mask_out) 538 { 539 struct thread_info *ti; 540 unsigned long mask, old; 541 int nested; 542 543 mask = xchg(&pending_mask, *mask_out); 544 if (mask != 0) { 545 /* 546 * If any interrupts come in at this point, we want to 547 * make sure that their bits aren't lost by our 548 * putting our bit in. So, this loop accumulates bits 549 * until xchg returns the same value that we put in. 550 * When that happens, there were no new interrupts, 551 * and pending_mask contains a bit for each interrupt 552 * that came in. 553 */ 554 old = *mask_out; 555 do { 556 old |= mask; 557 mask = xchg(&pending_mask, old); 558 } while (mask != old); 559 return 1; 560 } 561 562 ti = current_thread_info(); 563 nested = (ti->real_thread != NULL); 564 if (!nested) { 565 struct task_struct *task; 566 struct thread_info *tti; 567 568 task = cpu_tasks[ti->cpu].task; 569 tti = task_thread_info(task); 570 571 *ti = *tti; 572 ti->real_thread = tti; 573 task->stack = ti; 574 } 575 576 mask = xchg(&pending_mask, 0); 577 *mask_out |= mask | nested; 578 return 0; 579 } 580 581 unsigned long from_irq_stack(int nested) 582 { 583 struct thread_info *ti, *to; 584 unsigned long mask; 585 586 ti = current_thread_info(); 587 588 pending_mask = 1; 589 590 to = ti->real_thread; 591 current->stack = to; 592 ti->real_thread = NULL; 593 *to = *ti; 594 595 mask = xchg(&pending_mask, 0); 596 return mask & ~1; 597 } 598 599