1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Licensed under the GPL 4 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: 5 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar 6 */ 7 8 #include "linux/cpumask.h" 9 #include "linux/hardirq.h" 10 #include "linux/interrupt.h" 11 #include "linux/kernel_stat.h" 12 #include "linux/module.h" 13 #include "linux/seq_file.h" 14 #include "as-layout.h" 15 #include "kern_util.h" 16 #include "os.h" 17 18 /* 19 * Generic, controller-independent functions: 20 */ 21 22 int show_interrupts(struct seq_file *p, void *v) 23 { 24 int i = *(loff_t *) v, j; 25 struct irqaction * action; 26 unsigned long flags; 27 28 if (i == 0) { 29 seq_printf(p, " "); 30 for_each_online_cpu(j) 31 seq_printf(p, "CPU%d ",j); 32 seq_putc(p, '\n'); 33 } 34 35 if (i < NR_IRQS) { 36 spin_lock_irqsave(&irq_desc[i].lock, flags); 37 action = irq_desc[i].action; 38 if (!action) 39 goto skip; 40 seq_printf(p, "%3d: ",i); 41 #ifndef CONFIG_SMP 42 seq_printf(p, "%10u ", kstat_irqs(i)); 43 #else 44 for_each_online_cpu(j) 45 seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]); 46 #endif 47 seq_printf(p, " %14s", irq_desc[i].chip->typename); 48 seq_printf(p, " %s", action->name); 49 50 for (action=action->next; action; action = action->next) 51 seq_printf(p, ", %s", action->name); 52 53 seq_putc(p, '\n'); 54 skip: 55 spin_unlock_irqrestore(&irq_desc[i].lock, flags); 56 } else if (i == NR_IRQS) 57 seq_putc(p, '\n'); 58 59 return 0; 60 } 61 62 /* 63 * This list is accessed under irq_lock, except in sigio_handler, 64 * where it is safe from being modified. IRQ handlers won't change it - 65 * if an IRQ source has vanished, it will be freed by free_irqs just 66 * before returning from sigio_handler. That will process a separate 67 * list of irqs to free, with its own locking, coming back here to 68 * remove list elements, taking the irq_lock to do so. 69 */ 70 static struct irq_fd *active_fds = NULL; 71 static struct irq_fd **last_irq_ptr = &active_fds; 72 73 extern void free_irqs(void); 74 75 void sigio_handler(int sig, struct uml_pt_regs *regs) 76 { 77 struct irq_fd *irq_fd; 78 int n; 79 80 if (smp_sigio_handler()) 81 return; 82 83 while (1) { 84 n = os_waiting_for_events(active_fds); 85 if (n <= 0) { 86 if (n == -EINTR) 87 continue; 88 else break; 89 } 90 91 for (irq_fd = active_fds; irq_fd != NULL; 92 irq_fd = irq_fd->next) { 93 if (irq_fd->current_events != 0) { 94 irq_fd->current_events = 0; 95 do_IRQ(irq_fd->irq, regs); 96 } 97 } 98 } 99 100 free_irqs(); 101 } 102 103 static DEFINE_SPINLOCK(irq_lock); 104 105 int activate_fd(int irq, int fd, int type, void *dev_id) 106 { 107 struct pollfd *tmp_pfd; 108 struct irq_fd *new_fd, *irq_fd; 109 unsigned long flags; 110 int pid, events, err, n; 111 112 pid = os_getpid(); 113 err = os_set_fd_async(fd, pid); 114 if (err < 0) 115 goto out; 116 117 err = -ENOMEM; 118 new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL); 119 if (new_fd == NULL) 120 goto out; 121 122 if (type == IRQ_READ) 123 events = UM_POLLIN | UM_POLLPRI; 124 else events = UM_POLLOUT; 125 *new_fd = ((struct irq_fd) { .next = NULL, 126 .id = dev_id, 127 .fd = fd, 128 .type = type, 129 .irq = irq, 130 .pid = pid, 131 .events = events, 132 .current_events = 0 } ); 133 134 err = -EBUSY; 135 spin_lock_irqsave(&irq_lock, flags); 136 for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) { 137 if ((irq_fd->fd == fd) && (irq_fd->type == type)) { 138 printk(KERN_ERR "Registering fd %d twice\n", fd); 139 printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq); 140 printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id, 141 dev_id); 142 goto out_unlock; 143 } 144 } 145 146 if (type == IRQ_WRITE) 147 fd = -1; 148 149 tmp_pfd = NULL; 150 n = 0; 151 152 while (1) { 153 n = os_create_pollfd(fd, events, tmp_pfd, n); 154 if (n == 0) 155 break; 156 157 /* 158 * n > 0 159 * It means we couldn't put new pollfd to current pollfds 160 * and tmp_fds is NULL or too small for new pollfds array. 161 * Needed size is equal to n as minimum. 162 * 163 * Here we have to drop the lock in order to call 164 * kmalloc, which might sleep. 165 * If something else came in and changed the pollfds array 166 * so we will not be able to put new pollfd struct to pollfds 167 * then we free the buffer tmp_fds and try again. 168 */ 169 spin_unlock_irqrestore(&irq_lock, flags); 170 kfree(tmp_pfd); 171 172 tmp_pfd = kmalloc(n, GFP_KERNEL); 173 if (tmp_pfd == NULL) 174 goto out_kfree; 175 176 spin_lock_irqsave(&irq_lock, flags); 177 } 178 179 *last_irq_ptr = new_fd; 180 last_irq_ptr = &new_fd->next; 181 182 spin_unlock_irqrestore(&irq_lock, flags); 183 184 /* 185 * This calls activate_fd, so it has to be outside the critical 186 * section. 187 */ 188 maybe_sigio_broken(fd, (type == IRQ_READ)); 189 190 return 0; 191 192 out_unlock: 193 spin_unlock_irqrestore(&irq_lock, flags); 194 out_kfree: 195 kfree(new_fd); 196 out: 197 return err; 198 } 199 200 static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg) 201 { 202 unsigned long flags; 203 204 spin_lock_irqsave(&irq_lock, flags); 205 os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr); 206 spin_unlock_irqrestore(&irq_lock, flags); 207 } 208 209 struct irq_and_dev { 210 int irq; 211 void *dev; 212 }; 213 214 static int same_irq_and_dev(struct irq_fd *irq, void *d) 215 { 216 struct irq_and_dev *data = d; 217 218 return ((irq->irq == data->irq) && (irq->id == data->dev)); 219 } 220 221 void free_irq_by_irq_and_dev(unsigned int irq, void *dev) 222 { 223 struct irq_and_dev data = ((struct irq_and_dev) { .irq = irq, 224 .dev = dev }); 225 226 free_irq_by_cb(same_irq_and_dev, &data); 227 } 228 229 static int same_fd(struct irq_fd *irq, void *fd) 230 { 231 return (irq->fd == *((int *)fd)); 232 } 233 234 void free_irq_by_fd(int fd) 235 { 236 free_irq_by_cb(same_fd, &fd); 237 } 238 239 /* Must be called with irq_lock held */ 240 static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out) 241 { 242 struct irq_fd *irq; 243 int i = 0; 244 int fdi; 245 246 for (irq = active_fds; irq != NULL; irq = irq->next) { 247 if ((irq->fd == fd) && (irq->irq == irqnum)) 248 break; 249 i++; 250 } 251 if (irq == NULL) { 252 printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n", 253 fd); 254 goto out; 255 } 256 fdi = os_get_pollfd(i); 257 if ((fdi != -1) && (fdi != fd)) { 258 printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds " 259 "and pollfds, fd %d vs %d, need %d\n", irq->fd, 260 fdi, fd); 261 irq = NULL; 262 goto out; 263 } 264 *index_out = i; 265 out: 266 return irq; 267 } 268 269 void reactivate_fd(int fd, int irqnum) 270 { 271 struct irq_fd *irq; 272 unsigned long flags; 273 int i; 274 275 spin_lock_irqsave(&irq_lock, flags); 276 irq = find_irq_by_fd(fd, irqnum, &i); 277 if (irq == NULL) { 278 spin_unlock_irqrestore(&irq_lock, flags); 279 return; 280 } 281 os_set_pollfd(i, irq->fd); 282 spin_unlock_irqrestore(&irq_lock, flags); 283 284 add_sigio_fd(fd); 285 } 286 287 void deactivate_fd(int fd, int irqnum) 288 { 289 struct irq_fd *irq; 290 unsigned long flags; 291 int i; 292 293 spin_lock_irqsave(&irq_lock, flags); 294 irq = find_irq_by_fd(fd, irqnum, &i); 295 if (irq == NULL) { 296 spin_unlock_irqrestore(&irq_lock, flags); 297 return; 298 } 299 300 os_set_pollfd(i, -1); 301 spin_unlock_irqrestore(&irq_lock, flags); 302 303 ignore_sigio_fd(fd); 304 } 305 306 /* 307 * Called just before shutdown in order to provide a clean exec 308 * environment in case the system is rebooting. No locking because 309 * that would cause a pointless shutdown hang if something hadn't 310 * released the lock. 311 */ 312 int deactivate_all_fds(void) 313 { 314 struct irq_fd *irq; 315 int err; 316 317 for (irq = active_fds; irq != NULL; irq = irq->next) { 318 err = os_clear_fd_async(irq->fd); 319 if (err) 320 return err; 321 } 322 /* If there is a signal already queued, after unblocking ignore it */ 323 os_set_ioignore(); 324 325 return 0; 326 } 327 328 /* 329 * do_IRQ handles all normal device IRQs (the special 330 * SMP cross-CPU interrupts have their own specific 331 * handlers). 332 */ 333 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) 334 { 335 struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); 336 irq_enter(); 337 __do_IRQ(irq); 338 irq_exit(); 339 set_irq_regs(old_regs); 340 return 1; 341 } 342 343 int um_request_irq(unsigned int irq, int fd, int type, 344 irq_handler_t handler, 345 unsigned long irqflags, const char * devname, 346 void *dev_id) 347 { 348 int err; 349 350 if (fd != -1) { 351 err = activate_fd(irq, fd, type, dev_id); 352 if (err) 353 return err; 354 } 355 356 return request_irq(irq, handler, irqflags, devname, dev_id); 357 } 358 359 EXPORT_SYMBOL(um_request_irq); 360 EXPORT_SYMBOL(reactivate_fd); 361 362 /* 363 * hw_interrupt_type must define (startup || enable) && 364 * (shutdown || disable) && end 365 */ 366 static void dummy(unsigned int irq) 367 { 368 } 369 370 /* This is used for everything else than the timer. */ 371 static struct hw_interrupt_type normal_irq_type = { 372 .typename = "SIGIO", 373 .release = free_irq_by_irq_and_dev, 374 .disable = dummy, 375 .enable = dummy, 376 .ack = dummy, 377 .end = dummy 378 }; 379 380 static struct hw_interrupt_type SIGVTALRM_irq_type = { 381 .typename = "SIGVTALRM", 382 .release = free_irq_by_irq_and_dev, 383 .shutdown = dummy, /* never called */ 384 .disable = dummy, 385 .enable = dummy, 386 .ack = dummy, 387 .end = dummy 388 }; 389 390 void __init init_IRQ(void) 391 { 392 int i; 393 394 irq_desc[TIMER_IRQ].status = IRQ_DISABLED; 395 irq_desc[TIMER_IRQ].action = NULL; 396 irq_desc[TIMER_IRQ].depth = 1; 397 irq_desc[TIMER_IRQ].chip = &SIGVTALRM_irq_type; 398 enable_irq(TIMER_IRQ); 399 for (i = 1; i < NR_IRQS; i++) { 400 irq_desc[i].status = IRQ_DISABLED; 401 irq_desc[i].action = NULL; 402 irq_desc[i].depth = 1; 403 irq_desc[i].chip = &normal_irq_type; 404 enable_irq(i); 405 } 406 } 407 408 int init_aio_irq(int irq, char *name, irq_handler_t handler) 409 { 410 int fds[2], err; 411 412 err = os_pipe(fds, 1, 1); 413 if (err) { 414 printk(KERN_ERR "init_aio_irq - os_pipe failed, err = %d\n", 415 -err); 416 goto out; 417 } 418 419 err = um_request_irq(irq, fds[0], IRQ_READ, handler, 420 IRQF_DISABLED | IRQF_SAMPLE_RANDOM, name, 421 (void *) (long) fds[0]); 422 if (err) { 423 printk(KERN_ERR "init_aio_irq - : um_request_irq failed, " 424 "err = %d\n", 425 err); 426 goto out_close; 427 } 428 429 err = fds[1]; 430 goto out; 431 432 out_close: 433 os_close_file(fds[0]); 434 os_close_file(fds[1]); 435 out: 436 return err; 437 } 438 439 /* 440 * IRQ stack entry and exit: 441 * 442 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack 443 * and switch over to the IRQ stack after some preparation. We use 444 * sigaltstack to receive signals on a separate stack from the start. 445 * These two functions make sure the rest of the kernel won't be too 446 * upset by being on a different stack. The IRQ stack has a 447 * thread_info structure at the bottom so that current et al continue 448 * to work. 449 * 450 * to_irq_stack copies the current task's thread_info to the IRQ stack 451 * thread_info and sets the tasks's stack to point to the IRQ stack. 452 * 453 * from_irq_stack copies the thread_info struct back (flags may have 454 * been modified) and resets the task's stack pointer. 455 * 456 * Tricky bits - 457 * 458 * What happens when two signals race each other? UML doesn't block 459 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal 460 * could arrive while a previous one is still setting up the 461 * thread_info. 462 * 463 * There are three cases - 464 * The first interrupt on the stack - sets up the thread_info and 465 * handles the interrupt 466 * A nested interrupt interrupting the copying of the thread_info - 467 * can't handle the interrupt, as the stack is in an unknown state 468 * A nested interrupt not interrupting the copying of the 469 * thread_info - doesn't do any setup, just handles the interrupt 470 * 471 * The first job is to figure out whether we interrupted stack setup. 472 * This is done by xchging the signal mask with thread_info->pending. 473 * If the value that comes back is zero, then there is no setup in 474 * progress, and the interrupt can be handled. If the value is 475 * non-zero, then there is stack setup in progress. In order to have 476 * the interrupt handled, we leave our signal in the mask, and it will 477 * be handled by the upper handler after it has set up the stack. 478 * 479 * Next is to figure out whether we are the outer handler or a nested 480 * one. As part of setting up the stack, thread_info->real_thread is 481 * set to non-NULL (and is reset to NULL on exit). This is the 482 * nesting indicator. If it is non-NULL, then the stack is already 483 * set up and the handler can run. 484 */ 485 486 static unsigned long pending_mask; 487 488 unsigned long to_irq_stack(unsigned long *mask_out) 489 { 490 struct thread_info *ti; 491 unsigned long mask, old; 492 int nested; 493 494 mask = xchg(&pending_mask, *mask_out); 495 if (mask != 0) { 496 /* 497 * If any interrupts come in at this point, we want to 498 * make sure that their bits aren't lost by our 499 * putting our bit in. So, this loop accumulates bits 500 * until xchg returns the same value that we put in. 501 * When that happens, there were no new interrupts, 502 * and pending_mask contains a bit for each interrupt 503 * that came in. 504 */ 505 old = *mask_out; 506 do { 507 old |= mask; 508 mask = xchg(&pending_mask, old); 509 } while (mask != old); 510 return 1; 511 } 512 513 ti = current_thread_info(); 514 nested = (ti->real_thread != NULL); 515 if (!nested) { 516 struct task_struct *task; 517 struct thread_info *tti; 518 519 task = cpu_tasks[ti->cpu].task; 520 tti = task_thread_info(task); 521 522 *ti = *tti; 523 ti->real_thread = tti; 524 task->stack = ti; 525 } 526 527 mask = xchg(&pending_mask, 0); 528 *mask_out |= mask | nested; 529 return 0; 530 } 531 532 unsigned long from_irq_stack(int nested) 533 { 534 struct thread_info *ti, *to; 535 unsigned long mask; 536 537 ti = current_thread_info(); 538 539 pending_mask = 1; 540 541 to = ti->real_thread; 542 current->stack = to; 543 ti->real_thread = NULL; 544 *to = *ti; 545 546 mask = xchg(&pending_mask, 0); 547 return mask & ~1; 548 } 549 550