1 /* 2 * Copyright (C) 2017 - Cambridge Greys Ltd 3 * Copyright (C) 2011 - 2014 Cisco Systems Inc 4 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 5 * Licensed under the GPL 6 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: 7 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar 8 */ 9 10 #include <linux/cpumask.h> 11 #include <linux/hardirq.h> 12 #include <linux/interrupt.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/module.h> 15 #include <linux/sched.h> 16 #include <linux/seq_file.h> 17 #include <linux/slab.h> 18 #include <as-layout.h> 19 #include <kern_util.h> 20 #include <os.h> 21 #include <irq_user.h> 22 23 24 extern void free_irqs(void); 25 26 /* When epoll triggers we do not know why it did so 27 * we can also have different IRQs for read and write. 28 * This is why we keep a small irq_fd array for each fd - 29 * one entry per IRQ type 30 */ 31 32 struct irq_entry { 33 struct irq_entry *next; 34 int fd; 35 struct irq_fd *irq_array[MAX_IRQ_TYPE + 1]; 36 }; 37 38 static struct irq_entry *active_fds; 39 40 static DEFINE_SPINLOCK(irq_lock); 41 42 static void irq_io_loop(struct irq_fd *irq, struct uml_pt_regs *regs) 43 { 44 /* 45 * irq->active guards against reentry 46 * irq->pending accumulates pending requests 47 * if pending is raised the irq_handler is re-run 48 * until pending is cleared 49 */ 50 if (irq->active) { 51 irq->active = false; 52 do { 53 irq->pending = false; 54 do_IRQ(irq->irq, regs); 55 } while (irq->pending && (!irq->purge)); 56 if (!irq->purge) 57 irq->active = true; 58 } else { 59 irq->pending = true; 60 } 61 } 62 63 void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs) 64 { 65 struct irq_entry *irq_entry; 66 struct irq_fd *irq; 67 68 int n, i, j; 69 70 while (1) { 71 /* This is now lockless - epoll keeps back-referencesto the irqs 72 * which have trigger it so there is no need to walk the irq 73 * list and lock it every time. We avoid locking by turning off 74 * IO for a specific fd by executing os_del_epoll_fd(fd) before 75 * we do any changes to the actual data structures 76 */ 77 n = os_waiting_for_events_epoll(); 78 79 if (n <= 0) { 80 if (n == -EINTR) 81 continue; 82 else 83 break; 84 } 85 86 for (i = 0; i < n ; i++) { 87 /* Epoll back reference is the entry with 3 irq_fd 88 * leaves - one for each irq type. 89 */ 90 irq_entry = (struct irq_entry *) 91 os_epoll_get_data_pointer(i); 92 for (j = 0; j < MAX_IRQ_TYPE ; j++) { 93 irq = irq_entry->irq_array[j]; 94 if (irq == NULL) 95 continue; 96 if (os_epoll_triggered(i, irq->events) > 0) 97 irq_io_loop(irq, regs); 98 if (irq->purge) { 99 irq_entry->irq_array[j] = NULL; 100 kfree(irq); 101 } 102 } 103 } 104 } 105 106 free_irqs(); 107 } 108 109 static int assign_epoll_events_to_irq(struct irq_entry *irq_entry) 110 { 111 int i; 112 int events = 0; 113 struct irq_fd *irq; 114 115 for (i = 0; i < MAX_IRQ_TYPE ; i++) { 116 irq = irq_entry->irq_array[i]; 117 if (irq != NULL) 118 events = irq->events | events; 119 } 120 if (events > 0) { 121 /* os_add_epoll will call os_mod_epoll if this already exists */ 122 return os_add_epoll_fd(events, irq_entry->fd, irq_entry); 123 } 124 /* No events - delete */ 125 return os_del_epoll_fd(irq_entry->fd); 126 } 127 128 129 130 static int activate_fd(int irq, int fd, int type, void *dev_id) 131 { 132 struct irq_fd *new_fd; 133 struct irq_entry *irq_entry; 134 int i, err, events; 135 unsigned long flags; 136 137 err = os_set_fd_async(fd); 138 if (err < 0) 139 goto out; 140 141 spin_lock_irqsave(&irq_lock, flags); 142 143 /* Check if we have an entry for this fd */ 144 145 err = -EBUSY; 146 for (irq_entry = active_fds; 147 irq_entry != NULL; irq_entry = irq_entry->next) { 148 if (irq_entry->fd == fd) 149 break; 150 } 151 152 if (irq_entry == NULL) { 153 /* This needs to be atomic as it may be called from an 154 * IRQ context. 155 */ 156 irq_entry = kmalloc(sizeof(struct irq_entry), GFP_ATOMIC); 157 if (irq_entry == NULL) { 158 printk(KERN_ERR 159 "Failed to allocate new IRQ entry\n"); 160 goto out_unlock; 161 } 162 irq_entry->fd = fd; 163 for (i = 0; i < MAX_IRQ_TYPE; i++) 164 irq_entry->irq_array[i] = NULL; 165 irq_entry->next = active_fds; 166 active_fds = irq_entry; 167 } 168 169 /* Check if we are trying to re-register an interrupt for a 170 * particular fd 171 */ 172 173 if (irq_entry->irq_array[type] != NULL) { 174 printk(KERN_ERR 175 "Trying to reregister IRQ %d FD %d TYPE %d ID %p\n", 176 irq, fd, type, dev_id 177 ); 178 goto out_unlock; 179 } else { 180 /* New entry for this fd */ 181 182 err = -ENOMEM; 183 new_fd = kmalloc(sizeof(struct irq_fd), GFP_ATOMIC); 184 if (new_fd == NULL) 185 goto out_unlock; 186 187 events = os_event_mask(type); 188 189 *new_fd = ((struct irq_fd) { 190 .id = dev_id, 191 .irq = irq, 192 .type = type, 193 .events = events, 194 .active = true, 195 .pending = false, 196 .purge = false 197 }); 198 /* Turn off any IO on this fd - allows us to 199 * avoid locking the IRQ loop 200 */ 201 os_del_epoll_fd(irq_entry->fd); 202 irq_entry->irq_array[type] = new_fd; 203 } 204 205 /* Turn back IO on with the correct (new) IO event mask */ 206 assign_epoll_events_to_irq(irq_entry); 207 spin_unlock_irqrestore(&irq_lock, flags); 208 maybe_sigio_broken(fd, (type != IRQ_NONE)); 209 210 return 0; 211 out_unlock: 212 spin_unlock_irqrestore(&irq_lock, flags); 213 out: 214 return err; 215 } 216 217 /* 218 * Walk the IRQ list and dispose of any unused entries. 219 * Should be done under irq_lock. 220 */ 221 222 static void garbage_collect_irq_entries(void) 223 { 224 int i; 225 bool reap; 226 struct irq_entry *walk; 227 struct irq_entry *previous = NULL; 228 struct irq_entry *to_free; 229 230 if (active_fds == NULL) 231 return; 232 walk = active_fds; 233 while (walk != NULL) { 234 reap = true; 235 for (i = 0; i < MAX_IRQ_TYPE ; i++) { 236 if (walk->irq_array[i] != NULL) { 237 reap = false; 238 break; 239 } 240 } 241 if (reap) { 242 if (previous == NULL) 243 active_fds = walk->next; 244 else 245 previous->next = walk->next; 246 to_free = walk; 247 } else { 248 to_free = NULL; 249 } 250 walk = walk->next; 251 kfree(to_free); 252 } 253 } 254 255 /* 256 * Walk the IRQ list and get the descriptor for our FD 257 */ 258 259 static struct irq_entry *get_irq_entry_by_fd(int fd) 260 { 261 struct irq_entry *walk = active_fds; 262 263 while (walk != NULL) { 264 if (walk->fd == fd) 265 return walk; 266 walk = walk->next; 267 } 268 return NULL; 269 } 270 271 272 /* 273 * Walk the IRQ list and dispose of an entry for a specific 274 * device, fd and number. Note - if sharing an IRQ for read 275 * and writefor the same FD it will be disposed in either case. 276 * If this behaviour is undesirable use different IRQ ids. 277 */ 278 279 #define IGNORE_IRQ 1 280 #define IGNORE_DEV (1<<1) 281 282 static void do_free_by_irq_and_dev( 283 struct irq_entry *irq_entry, 284 unsigned int irq, 285 void *dev, 286 int flags 287 ) 288 { 289 int i; 290 struct irq_fd *to_free; 291 292 for (i = 0; i < MAX_IRQ_TYPE ; i++) { 293 if (irq_entry->irq_array[i] != NULL) { 294 if ( 295 ((flags & IGNORE_IRQ) || 296 (irq_entry->irq_array[i]->irq == irq)) && 297 ((flags & IGNORE_DEV) || 298 (irq_entry->irq_array[i]->id == dev)) 299 ) { 300 /* Turn off any IO on this fd - allows us to 301 * avoid locking the IRQ loop 302 */ 303 os_del_epoll_fd(irq_entry->fd); 304 to_free = irq_entry->irq_array[i]; 305 irq_entry->irq_array[i] = NULL; 306 assign_epoll_events_to_irq(irq_entry); 307 if (to_free->active) 308 to_free->purge = true; 309 else 310 kfree(to_free); 311 } 312 } 313 } 314 } 315 316 void free_irq_by_fd(int fd) 317 { 318 struct irq_entry *to_free; 319 unsigned long flags; 320 321 spin_lock_irqsave(&irq_lock, flags); 322 to_free = get_irq_entry_by_fd(fd); 323 if (to_free != NULL) { 324 do_free_by_irq_and_dev( 325 to_free, 326 -1, 327 NULL, 328 IGNORE_IRQ | IGNORE_DEV 329 ); 330 } 331 garbage_collect_irq_entries(); 332 spin_unlock_irqrestore(&irq_lock, flags); 333 } 334 EXPORT_SYMBOL(free_irq_by_fd); 335 336 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev) 337 { 338 struct irq_entry *to_free; 339 unsigned long flags; 340 341 spin_lock_irqsave(&irq_lock, flags); 342 to_free = active_fds; 343 while (to_free != NULL) { 344 do_free_by_irq_and_dev( 345 to_free, 346 irq, 347 dev, 348 0 349 ); 350 to_free = to_free->next; 351 } 352 garbage_collect_irq_entries(); 353 spin_unlock_irqrestore(&irq_lock, flags); 354 } 355 356 357 void deactivate_fd(int fd, int irqnum) 358 { 359 struct irq_entry *to_free; 360 unsigned long flags; 361 362 os_del_epoll_fd(fd); 363 spin_lock_irqsave(&irq_lock, flags); 364 to_free = get_irq_entry_by_fd(fd); 365 if (to_free != NULL) { 366 do_free_by_irq_and_dev( 367 to_free, 368 irqnum, 369 NULL, 370 IGNORE_DEV 371 ); 372 } 373 garbage_collect_irq_entries(); 374 spin_unlock_irqrestore(&irq_lock, flags); 375 ignore_sigio_fd(fd); 376 } 377 EXPORT_SYMBOL(deactivate_fd); 378 379 /* 380 * Called just before shutdown in order to provide a clean exec 381 * environment in case the system is rebooting. No locking because 382 * that would cause a pointless shutdown hang if something hadn't 383 * released the lock. 384 */ 385 int deactivate_all_fds(void) 386 { 387 struct irq_entry *to_free; 388 389 /* Stop IO. The IRQ loop has no lock so this is our 390 * only way of making sure we are safe to dispose 391 * of all IRQ handlers 392 */ 393 os_set_ioignore(); 394 to_free = active_fds; 395 while (to_free != NULL) { 396 do_free_by_irq_and_dev( 397 to_free, 398 -1, 399 NULL, 400 IGNORE_IRQ | IGNORE_DEV 401 ); 402 to_free = to_free->next; 403 } 404 /* don't garbage collect - we can no longer call kfree() here */ 405 os_close_epoll_fd(); 406 return 0; 407 } 408 409 /* 410 * do_IRQ handles all normal device IRQs (the special 411 * SMP cross-CPU interrupts have their own specific 412 * handlers). 413 */ 414 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) 415 { 416 struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); 417 irq_enter(); 418 generic_handle_irq(irq); 419 irq_exit(); 420 set_irq_regs(old_regs); 421 return 1; 422 } 423 424 void um_free_irq(unsigned int irq, void *dev) 425 { 426 free_irq_by_irq_and_dev(irq, dev); 427 free_irq(irq, dev); 428 } 429 EXPORT_SYMBOL(um_free_irq); 430 431 int um_request_irq(unsigned int irq, int fd, int type, 432 irq_handler_t handler, 433 unsigned long irqflags, const char * devname, 434 void *dev_id) 435 { 436 int err; 437 438 if (fd != -1) { 439 err = activate_fd(irq, fd, type, dev_id); 440 if (err) 441 return err; 442 } 443 444 return request_irq(irq, handler, irqflags, devname, dev_id); 445 } 446 447 EXPORT_SYMBOL(um_request_irq); 448 449 /* 450 * irq_chip must define at least enable/disable and ack when 451 * the edge handler is used. 452 */ 453 static void dummy(struct irq_data *d) 454 { 455 } 456 457 /* This is used for everything else than the timer. */ 458 static struct irq_chip normal_irq_type = { 459 .name = "SIGIO", 460 .irq_disable = dummy, 461 .irq_enable = dummy, 462 .irq_ack = dummy, 463 .irq_mask = dummy, 464 .irq_unmask = dummy, 465 }; 466 467 static struct irq_chip SIGVTALRM_irq_type = { 468 .name = "SIGVTALRM", 469 .irq_disable = dummy, 470 .irq_enable = dummy, 471 .irq_ack = dummy, 472 .irq_mask = dummy, 473 .irq_unmask = dummy, 474 }; 475 476 void __init init_IRQ(void) 477 { 478 int i; 479 480 irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq); 481 482 483 for (i = 1; i < LAST_IRQ; i++) 484 irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq); 485 /* Initialize EPOLL Loop */ 486 os_setup_epoll(); 487 } 488 489 /* 490 * IRQ stack entry and exit: 491 * 492 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack 493 * and switch over to the IRQ stack after some preparation. We use 494 * sigaltstack to receive signals on a separate stack from the start. 495 * These two functions make sure the rest of the kernel won't be too 496 * upset by being on a different stack. The IRQ stack has a 497 * thread_info structure at the bottom so that current et al continue 498 * to work. 499 * 500 * to_irq_stack copies the current task's thread_info to the IRQ stack 501 * thread_info and sets the tasks's stack to point to the IRQ stack. 502 * 503 * from_irq_stack copies the thread_info struct back (flags may have 504 * been modified) and resets the task's stack pointer. 505 * 506 * Tricky bits - 507 * 508 * What happens when two signals race each other? UML doesn't block 509 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal 510 * could arrive while a previous one is still setting up the 511 * thread_info. 512 * 513 * There are three cases - 514 * The first interrupt on the stack - sets up the thread_info and 515 * handles the interrupt 516 * A nested interrupt interrupting the copying of the thread_info - 517 * can't handle the interrupt, as the stack is in an unknown state 518 * A nested interrupt not interrupting the copying of the 519 * thread_info - doesn't do any setup, just handles the interrupt 520 * 521 * The first job is to figure out whether we interrupted stack setup. 522 * This is done by xchging the signal mask with thread_info->pending. 523 * If the value that comes back is zero, then there is no setup in 524 * progress, and the interrupt can be handled. If the value is 525 * non-zero, then there is stack setup in progress. In order to have 526 * the interrupt handled, we leave our signal in the mask, and it will 527 * be handled by the upper handler after it has set up the stack. 528 * 529 * Next is to figure out whether we are the outer handler or a nested 530 * one. As part of setting up the stack, thread_info->real_thread is 531 * set to non-NULL (and is reset to NULL on exit). This is the 532 * nesting indicator. If it is non-NULL, then the stack is already 533 * set up and the handler can run. 534 */ 535 536 static unsigned long pending_mask; 537 538 unsigned long to_irq_stack(unsigned long *mask_out) 539 { 540 struct thread_info *ti; 541 unsigned long mask, old; 542 int nested; 543 544 mask = xchg(&pending_mask, *mask_out); 545 if (mask != 0) { 546 /* 547 * If any interrupts come in at this point, we want to 548 * make sure that their bits aren't lost by our 549 * putting our bit in. So, this loop accumulates bits 550 * until xchg returns the same value that we put in. 551 * When that happens, there were no new interrupts, 552 * and pending_mask contains a bit for each interrupt 553 * that came in. 554 */ 555 old = *mask_out; 556 do { 557 old |= mask; 558 mask = xchg(&pending_mask, old); 559 } while (mask != old); 560 return 1; 561 } 562 563 ti = current_thread_info(); 564 nested = (ti->real_thread != NULL); 565 if (!nested) { 566 struct task_struct *task; 567 struct thread_info *tti; 568 569 task = cpu_tasks[ti->cpu].task; 570 tti = task_thread_info(task); 571 572 *ti = *tti; 573 ti->real_thread = tti; 574 task->stack = ti; 575 } 576 577 mask = xchg(&pending_mask, 0); 578 *mask_out |= mask | nested; 579 return 0; 580 } 581 582 unsigned long from_irq_stack(int nested) 583 { 584 struct thread_info *ti, *to; 585 unsigned long mask; 586 587 ti = current_thread_info(); 588 589 pending_mask = 1; 590 591 to = ti->real_thread; 592 current->stack = to; 593 ti->real_thread = NULL; 594 *to = *ti; 595 596 mask = xchg(&pending_mask, 0); 597 return mask & ~1; 598 } 599 600