1 /* 2 * Copyright (C) 2017 - Cambridge Greys Ltd 3 * Copyright (C) 2011 - 2014 Cisco Systems Inc 4 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 5 * Licensed under the GPL 6 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: 7 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar 8 */ 9 10 #include <linux/cpumask.h> 11 #include <linux/hardirq.h> 12 #include <linux/interrupt.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/module.h> 15 #include <linux/sched.h> 16 #include <linux/seq_file.h> 17 #include <linux/slab.h> 18 #include <as-layout.h> 19 #include <kern_util.h> 20 #include <os.h> 21 #include <irq_user.h> 22 23 24 /* When epoll triggers we do not know why it did so 25 * we can also have different IRQs for read and write. 26 * This is why we keep a small irq_fd array for each fd - 27 * one entry per IRQ type 28 */ 29 30 struct irq_entry { 31 struct irq_entry *next; 32 int fd; 33 struct irq_fd *irq_array[MAX_IRQ_TYPE + 1]; 34 }; 35 36 static struct irq_entry *active_fds; 37 38 static DEFINE_SPINLOCK(irq_lock); 39 40 static void irq_io_loop(struct irq_fd *irq, struct uml_pt_regs *regs) 41 { 42 /* 43 * irq->active guards against reentry 44 * irq->pending accumulates pending requests 45 * if pending is raised the irq_handler is re-run 46 * until pending is cleared 47 */ 48 if (irq->active) { 49 irq->active = false; 50 do { 51 irq->pending = false; 52 do_IRQ(irq->irq, regs); 53 } while (irq->pending && (!irq->purge)); 54 if (!irq->purge) 55 irq->active = true; 56 } else { 57 irq->pending = true; 58 } 59 } 60 61 void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs) 62 { 63 struct irq_entry *irq_entry; 64 struct irq_fd *irq; 65 66 int n, i, j; 67 68 while (1) { 69 /* This is now lockless - epoll keeps back-referencesto the irqs 70 * which have trigger it so there is no need to walk the irq 71 * list and lock it every time. We avoid locking by turning off 72 * IO for a specific fd by executing os_del_epoll_fd(fd) before 73 * we do any changes to the actual data structures 74 */ 75 n = os_waiting_for_events_epoll(); 76 77 if (n <= 0) { 78 if (n == -EINTR) 79 continue; 80 else 81 break; 82 } 83 84 for (i = 0; i < n ; i++) { 85 /* Epoll back reference is the entry with 3 irq_fd 86 * leaves - one for each irq type. 87 */ 88 irq_entry = (struct irq_entry *) 89 os_epoll_get_data_pointer(i); 90 for (j = 0; j < MAX_IRQ_TYPE ; j++) { 91 irq = irq_entry->irq_array[j]; 92 if (irq == NULL) 93 continue; 94 if (os_epoll_triggered(i, irq->events) > 0) 95 irq_io_loop(irq, regs); 96 if (irq->purge) { 97 irq_entry->irq_array[j] = NULL; 98 kfree(irq); 99 } 100 } 101 } 102 } 103 } 104 105 static int assign_epoll_events_to_irq(struct irq_entry *irq_entry) 106 { 107 int i; 108 int events = 0; 109 struct irq_fd *irq; 110 111 for (i = 0; i < MAX_IRQ_TYPE ; i++) { 112 irq = irq_entry->irq_array[i]; 113 if (irq != NULL) 114 events = irq->events | events; 115 } 116 if (events > 0) { 117 /* os_add_epoll will call os_mod_epoll if this already exists */ 118 return os_add_epoll_fd(events, irq_entry->fd, irq_entry); 119 } 120 /* No events - delete */ 121 return os_del_epoll_fd(irq_entry->fd); 122 } 123 124 125 126 static int activate_fd(int irq, int fd, int type, void *dev_id) 127 { 128 struct irq_fd *new_fd; 129 struct irq_entry *irq_entry; 130 int i, err, events; 131 unsigned long flags; 132 133 err = os_set_fd_async(fd); 134 if (err < 0) 135 goto out; 136 137 spin_lock_irqsave(&irq_lock, flags); 138 139 /* Check if we have an entry for this fd */ 140 141 err = -EBUSY; 142 for (irq_entry = active_fds; 143 irq_entry != NULL; irq_entry = irq_entry->next) { 144 if (irq_entry->fd == fd) 145 break; 146 } 147 148 if (irq_entry == NULL) { 149 /* This needs to be atomic as it may be called from an 150 * IRQ context. 151 */ 152 irq_entry = kmalloc(sizeof(struct irq_entry), GFP_ATOMIC); 153 if (irq_entry == NULL) { 154 printk(KERN_ERR 155 "Failed to allocate new IRQ entry\n"); 156 goto out_unlock; 157 } 158 irq_entry->fd = fd; 159 for (i = 0; i < MAX_IRQ_TYPE; i++) 160 irq_entry->irq_array[i] = NULL; 161 irq_entry->next = active_fds; 162 active_fds = irq_entry; 163 } 164 165 /* Check if we are trying to re-register an interrupt for a 166 * particular fd 167 */ 168 169 if (irq_entry->irq_array[type] != NULL) { 170 printk(KERN_ERR 171 "Trying to reregister IRQ %d FD %d TYPE %d ID %p\n", 172 irq, fd, type, dev_id 173 ); 174 goto out_unlock; 175 } else { 176 /* New entry for this fd */ 177 178 err = -ENOMEM; 179 new_fd = kmalloc(sizeof(struct irq_fd), GFP_ATOMIC); 180 if (new_fd == NULL) 181 goto out_unlock; 182 183 events = os_event_mask(type); 184 185 *new_fd = ((struct irq_fd) { 186 .id = dev_id, 187 .irq = irq, 188 .type = type, 189 .events = events, 190 .active = true, 191 .pending = false, 192 .purge = false 193 }); 194 /* Turn off any IO on this fd - allows us to 195 * avoid locking the IRQ loop 196 */ 197 os_del_epoll_fd(irq_entry->fd); 198 irq_entry->irq_array[type] = new_fd; 199 } 200 201 /* Turn back IO on with the correct (new) IO event mask */ 202 assign_epoll_events_to_irq(irq_entry); 203 spin_unlock_irqrestore(&irq_lock, flags); 204 maybe_sigio_broken(fd, (type != IRQ_NONE)); 205 206 return 0; 207 out_unlock: 208 spin_unlock_irqrestore(&irq_lock, flags); 209 out: 210 return err; 211 } 212 213 /* 214 * Walk the IRQ list and dispose of any unused entries. 215 * Should be done under irq_lock. 216 */ 217 218 static void garbage_collect_irq_entries(void) 219 { 220 int i; 221 bool reap; 222 struct irq_entry *walk; 223 struct irq_entry *previous = NULL; 224 struct irq_entry *to_free; 225 226 if (active_fds == NULL) 227 return; 228 walk = active_fds; 229 while (walk != NULL) { 230 reap = true; 231 for (i = 0; i < MAX_IRQ_TYPE ; i++) { 232 if (walk->irq_array[i] != NULL) { 233 reap = false; 234 break; 235 } 236 } 237 if (reap) { 238 if (previous == NULL) 239 active_fds = walk->next; 240 else 241 previous->next = walk->next; 242 to_free = walk; 243 } else { 244 to_free = NULL; 245 } 246 walk = walk->next; 247 kfree(to_free); 248 } 249 } 250 251 /* 252 * Walk the IRQ list and get the descriptor for our FD 253 */ 254 255 static struct irq_entry *get_irq_entry_by_fd(int fd) 256 { 257 struct irq_entry *walk = active_fds; 258 259 while (walk != NULL) { 260 if (walk->fd == fd) 261 return walk; 262 walk = walk->next; 263 } 264 return NULL; 265 } 266 267 268 /* 269 * Walk the IRQ list and dispose of an entry for a specific 270 * device, fd and number. Note - if sharing an IRQ for read 271 * and writefor the same FD it will be disposed in either case. 272 * If this behaviour is undesirable use different IRQ ids. 273 */ 274 275 #define IGNORE_IRQ 1 276 #define IGNORE_DEV (1<<1) 277 278 static void do_free_by_irq_and_dev( 279 struct irq_entry *irq_entry, 280 unsigned int irq, 281 void *dev, 282 int flags 283 ) 284 { 285 int i; 286 struct irq_fd *to_free; 287 288 for (i = 0; i < MAX_IRQ_TYPE ; i++) { 289 if (irq_entry->irq_array[i] != NULL) { 290 if ( 291 ((flags & IGNORE_IRQ) || 292 (irq_entry->irq_array[i]->irq == irq)) && 293 ((flags & IGNORE_DEV) || 294 (irq_entry->irq_array[i]->id == dev)) 295 ) { 296 /* Turn off any IO on this fd - allows us to 297 * avoid locking the IRQ loop 298 */ 299 os_del_epoll_fd(irq_entry->fd); 300 to_free = irq_entry->irq_array[i]; 301 irq_entry->irq_array[i] = NULL; 302 assign_epoll_events_to_irq(irq_entry); 303 if (to_free->active) 304 to_free->purge = true; 305 else 306 kfree(to_free); 307 } 308 } 309 } 310 } 311 312 void free_irq_by_fd(int fd) 313 { 314 struct irq_entry *to_free; 315 unsigned long flags; 316 317 spin_lock_irqsave(&irq_lock, flags); 318 to_free = get_irq_entry_by_fd(fd); 319 if (to_free != NULL) { 320 do_free_by_irq_and_dev( 321 to_free, 322 -1, 323 NULL, 324 IGNORE_IRQ | IGNORE_DEV 325 ); 326 } 327 garbage_collect_irq_entries(); 328 spin_unlock_irqrestore(&irq_lock, flags); 329 } 330 EXPORT_SYMBOL(free_irq_by_fd); 331 332 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev) 333 { 334 struct irq_entry *to_free; 335 unsigned long flags; 336 337 spin_lock_irqsave(&irq_lock, flags); 338 to_free = active_fds; 339 while (to_free != NULL) { 340 do_free_by_irq_and_dev( 341 to_free, 342 irq, 343 dev, 344 0 345 ); 346 to_free = to_free->next; 347 } 348 garbage_collect_irq_entries(); 349 spin_unlock_irqrestore(&irq_lock, flags); 350 } 351 352 353 void reactivate_fd(int fd, int irqnum) 354 { 355 /** NOP - we do auto-EOI now **/ 356 } 357 358 void deactivate_fd(int fd, int irqnum) 359 { 360 struct irq_entry *to_free; 361 unsigned long flags; 362 363 os_del_epoll_fd(fd); 364 spin_lock_irqsave(&irq_lock, flags); 365 to_free = get_irq_entry_by_fd(fd); 366 if (to_free != NULL) { 367 do_free_by_irq_and_dev( 368 to_free, 369 irqnum, 370 NULL, 371 IGNORE_DEV 372 ); 373 } 374 garbage_collect_irq_entries(); 375 spin_unlock_irqrestore(&irq_lock, flags); 376 ignore_sigio_fd(fd); 377 } 378 EXPORT_SYMBOL(deactivate_fd); 379 380 /* 381 * Called just before shutdown in order to provide a clean exec 382 * environment in case the system is rebooting. No locking because 383 * that would cause a pointless shutdown hang if something hadn't 384 * released the lock. 385 */ 386 int deactivate_all_fds(void) 387 { 388 unsigned long flags; 389 struct irq_entry *to_free; 390 391 spin_lock_irqsave(&irq_lock, flags); 392 /* Stop IO. The IRQ loop has no lock so this is our 393 * only way of making sure we are safe to dispose 394 * of all IRQ handlers 395 */ 396 os_set_ioignore(); 397 to_free = active_fds; 398 while (to_free != NULL) { 399 do_free_by_irq_and_dev( 400 to_free, 401 -1, 402 NULL, 403 IGNORE_IRQ | IGNORE_DEV 404 ); 405 to_free = to_free->next; 406 } 407 garbage_collect_irq_entries(); 408 spin_unlock_irqrestore(&irq_lock, flags); 409 os_close_epoll_fd(); 410 return 0; 411 } 412 413 /* 414 * do_IRQ handles all normal device IRQs (the special 415 * SMP cross-CPU interrupts have their own specific 416 * handlers). 417 */ 418 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) 419 { 420 struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); 421 irq_enter(); 422 generic_handle_irq(irq); 423 irq_exit(); 424 set_irq_regs(old_regs); 425 return 1; 426 } 427 428 void um_free_irq(unsigned int irq, void *dev) 429 { 430 free_irq_by_irq_and_dev(irq, dev); 431 free_irq(irq, dev); 432 } 433 EXPORT_SYMBOL(um_free_irq); 434 435 int um_request_irq(unsigned int irq, int fd, int type, 436 irq_handler_t handler, 437 unsigned long irqflags, const char * devname, 438 void *dev_id) 439 { 440 int err; 441 442 if (fd != -1) { 443 err = activate_fd(irq, fd, type, dev_id); 444 if (err) 445 return err; 446 } 447 448 return request_irq(irq, handler, irqflags, devname, dev_id); 449 } 450 451 EXPORT_SYMBOL(um_request_irq); 452 EXPORT_SYMBOL(reactivate_fd); 453 454 /* 455 * irq_chip must define at least enable/disable and ack when 456 * the edge handler is used. 457 */ 458 static void dummy(struct irq_data *d) 459 { 460 } 461 462 /* This is used for everything else than the timer. */ 463 static struct irq_chip normal_irq_type = { 464 .name = "SIGIO", 465 .irq_disable = dummy, 466 .irq_enable = dummy, 467 .irq_ack = dummy, 468 .irq_mask = dummy, 469 .irq_unmask = dummy, 470 }; 471 472 static struct irq_chip SIGVTALRM_irq_type = { 473 .name = "SIGVTALRM", 474 .irq_disable = dummy, 475 .irq_enable = dummy, 476 .irq_ack = dummy, 477 .irq_mask = dummy, 478 .irq_unmask = dummy, 479 }; 480 481 void __init init_IRQ(void) 482 { 483 int i; 484 485 irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq); 486 487 488 for (i = 1; i < NR_IRQS; i++) 489 irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq); 490 /* Initialize EPOLL Loop */ 491 os_setup_epoll(); 492 } 493 494 /* 495 * IRQ stack entry and exit: 496 * 497 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack 498 * and switch over to the IRQ stack after some preparation. We use 499 * sigaltstack to receive signals on a separate stack from the start. 500 * These two functions make sure the rest of the kernel won't be too 501 * upset by being on a different stack. The IRQ stack has a 502 * thread_info structure at the bottom so that current et al continue 503 * to work. 504 * 505 * to_irq_stack copies the current task's thread_info to the IRQ stack 506 * thread_info and sets the tasks's stack to point to the IRQ stack. 507 * 508 * from_irq_stack copies the thread_info struct back (flags may have 509 * been modified) and resets the task's stack pointer. 510 * 511 * Tricky bits - 512 * 513 * What happens when two signals race each other? UML doesn't block 514 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal 515 * could arrive while a previous one is still setting up the 516 * thread_info. 517 * 518 * There are three cases - 519 * The first interrupt on the stack - sets up the thread_info and 520 * handles the interrupt 521 * A nested interrupt interrupting the copying of the thread_info - 522 * can't handle the interrupt, as the stack is in an unknown state 523 * A nested interrupt not interrupting the copying of the 524 * thread_info - doesn't do any setup, just handles the interrupt 525 * 526 * The first job is to figure out whether we interrupted stack setup. 527 * This is done by xchging the signal mask with thread_info->pending. 528 * If the value that comes back is zero, then there is no setup in 529 * progress, and the interrupt can be handled. If the value is 530 * non-zero, then there is stack setup in progress. In order to have 531 * the interrupt handled, we leave our signal in the mask, and it will 532 * be handled by the upper handler after it has set up the stack. 533 * 534 * Next is to figure out whether we are the outer handler or a nested 535 * one. As part of setting up the stack, thread_info->real_thread is 536 * set to non-NULL (and is reset to NULL on exit). This is the 537 * nesting indicator. If it is non-NULL, then the stack is already 538 * set up and the handler can run. 539 */ 540 541 static unsigned long pending_mask; 542 543 unsigned long to_irq_stack(unsigned long *mask_out) 544 { 545 struct thread_info *ti; 546 unsigned long mask, old; 547 int nested; 548 549 mask = xchg(&pending_mask, *mask_out); 550 if (mask != 0) { 551 /* 552 * If any interrupts come in at this point, we want to 553 * make sure that their bits aren't lost by our 554 * putting our bit in. So, this loop accumulates bits 555 * until xchg returns the same value that we put in. 556 * When that happens, there were no new interrupts, 557 * and pending_mask contains a bit for each interrupt 558 * that came in. 559 */ 560 old = *mask_out; 561 do { 562 old |= mask; 563 mask = xchg(&pending_mask, old); 564 } while (mask != old); 565 return 1; 566 } 567 568 ti = current_thread_info(); 569 nested = (ti->real_thread != NULL); 570 if (!nested) { 571 struct task_struct *task; 572 struct thread_info *tti; 573 574 task = cpu_tasks[ti->cpu].task; 575 tti = task_thread_info(task); 576 577 *ti = *tti; 578 ti->real_thread = tti; 579 task->stack = ti; 580 } 581 582 mask = xchg(&pending_mask, 0); 583 *mask_out |= mask | nested; 584 return 0; 585 } 586 587 unsigned long from_irq_stack(int nested) 588 { 589 struct thread_info *ti, *to; 590 unsigned long mask; 591 592 ti = current_thread_info(); 593 594 pending_mask = 1; 595 596 to = ti->real_thread; 597 current->stack = to; 598 ti->real_thread = NULL; 599 *to = *ti; 600 601 mask = xchg(&pending_mask, 0); 602 return mask & ~1; 603 } 604 605