1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 4 * Copyright 2003 PathScale, Inc. 5 * Derived from include/asm-i386/pgtable.h 6 */ 7 8 #ifndef __UM_PGTABLE_H 9 #define __UM_PGTABLE_H 10 11 #include <asm/fixmap.h> 12 13 #define _PAGE_PRESENT 0x001 14 #define _PAGE_NEWPAGE 0x002 15 #define _PAGE_NEWPROT 0x004 16 #define _PAGE_RW 0x020 17 #define _PAGE_USER 0x040 18 #define _PAGE_ACCESSED 0x080 19 #define _PAGE_DIRTY 0x100 20 /* If _PAGE_PRESENT is clear, we use these: */ 21 #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE; 22 pte_present gives true */ 23 24 #ifdef CONFIG_3_LEVEL_PGTABLES 25 #include <asm/pgtable-3level.h> 26 #else 27 #include <asm/pgtable-2level.h> 28 #endif 29 30 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 31 32 /* zero page used for uninitialized stuff */ 33 extern unsigned long *empty_zero_page; 34 35 /* Just any arbitrary offset to the start of the vmalloc VM area: the 36 * current 8MB value just means that there will be a 8MB "hole" after the 37 * physical memory until the kernel virtual memory starts. That means that 38 * any out-of-bounds memory accesses will hopefully be caught. 39 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 40 * area for the same reason. ;) 41 */ 42 43 extern unsigned long end_iomem; 44 45 #define VMALLOC_OFFSET (__va_space) 46 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) 47 #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK) 48 #define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) 49 #define MODULES_VADDR VMALLOC_START 50 #define MODULES_END VMALLOC_END 51 #define MODULES_LEN (MODULES_VADDR - MODULES_END) 52 53 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) 54 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) 55 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 56 #define __PAGE_KERNEL_EXEC \ 57 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 58 #define __PAGE_KERNEL_RO \ 59 (_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED) 60 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 61 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) 62 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 63 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 64 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 65 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC) 66 #define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO) 67 68 /* 69 * The i386 can't do page protection for execute, and considers that the same 70 * are read. 71 * Also, write permissions imply read permissions. This is the closest we can 72 * get.. 73 */ 74 #define __P000 PAGE_NONE 75 #define __P001 PAGE_READONLY 76 #define __P010 PAGE_COPY 77 #define __P011 PAGE_COPY 78 #define __P100 PAGE_READONLY 79 #define __P101 PAGE_READONLY 80 #define __P110 PAGE_COPY 81 #define __P111 PAGE_COPY 82 83 #define __S000 PAGE_NONE 84 #define __S001 PAGE_READONLY 85 #define __S010 PAGE_SHARED 86 #define __S011 PAGE_SHARED 87 #define __S100 PAGE_READONLY 88 #define __S101 PAGE_READONLY 89 #define __S110 PAGE_SHARED 90 #define __S111 PAGE_SHARED 91 92 /* 93 * ZERO_PAGE is a global shared page that is always zero: used 94 * for zero-mapped memory areas etc.. 95 */ 96 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) 97 98 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE)) 99 100 #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE)) 101 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) 102 103 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 104 #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0) 105 106 #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE) 107 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE) 108 109 #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE) 110 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE) 111 112 #define p4d_newpage(x) (p4d_val(x) & _PAGE_NEWPAGE) 113 #define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEWPAGE) 114 115 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK) 116 117 #define pte_page(x) pfn_to_page(pte_pfn(x)) 118 119 #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE)) 120 121 /* 122 * ================================= 123 * Flags checking section. 124 * ================================= 125 */ 126 127 static inline int pte_none(pte_t pte) 128 { 129 return pte_is_zero(pte); 130 } 131 132 /* 133 * The following only work if pte_present() is true. 134 * Undefined behaviour if not.. 135 */ 136 static inline int pte_read(pte_t pte) 137 { 138 return((pte_get_bits(pte, _PAGE_USER)) && 139 !(pte_get_bits(pte, _PAGE_PROTNONE))); 140 } 141 142 static inline int pte_exec(pte_t pte){ 143 return((pte_get_bits(pte, _PAGE_USER)) && 144 !(pte_get_bits(pte, _PAGE_PROTNONE))); 145 } 146 147 static inline int pte_write(pte_t pte) 148 { 149 return((pte_get_bits(pte, _PAGE_RW)) && 150 !(pte_get_bits(pte, _PAGE_PROTNONE))); 151 } 152 153 static inline int pte_dirty(pte_t pte) 154 { 155 return pte_get_bits(pte, _PAGE_DIRTY); 156 } 157 158 static inline int pte_young(pte_t pte) 159 { 160 return pte_get_bits(pte, _PAGE_ACCESSED); 161 } 162 163 static inline int pte_newpage(pte_t pte) 164 { 165 return pte_get_bits(pte, _PAGE_NEWPAGE); 166 } 167 168 static inline int pte_newprot(pte_t pte) 169 { 170 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT))); 171 } 172 173 /* 174 * ================================= 175 * Flags setting section. 176 * ================================= 177 */ 178 179 static inline pte_t pte_mknewprot(pte_t pte) 180 { 181 pte_set_bits(pte, _PAGE_NEWPROT); 182 return(pte); 183 } 184 185 static inline pte_t pte_mkclean(pte_t pte) 186 { 187 pte_clear_bits(pte, _PAGE_DIRTY); 188 return(pte); 189 } 190 191 static inline pte_t pte_mkold(pte_t pte) 192 { 193 pte_clear_bits(pte, _PAGE_ACCESSED); 194 return(pte); 195 } 196 197 static inline pte_t pte_wrprotect(pte_t pte) 198 { 199 if (likely(pte_get_bits(pte, _PAGE_RW))) 200 pte_clear_bits(pte, _PAGE_RW); 201 else 202 return pte; 203 return(pte_mknewprot(pte)); 204 } 205 206 static inline pte_t pte_mkread(pte_t pte) 207 { 208 if (unlikely(pte_get_bits(pte, _PAGE_USER))) 209 return pte; 210 pte_set_bits(pte, _PAGE_USER); 211 return(pte_mknewprot(pte)); 212 } 213 214 static inline pte_t pte_mkdirty(pte_t pte) 215 { 216 pte_set_bits(pte, _PAGE_DIRTY); 217 return(pte); 218 } 219 220 static inline pte_t pte_mkyoung(pte_t pte) 221 { 222 pte_set_bits(pte, _PAGE_ACCESSED); 223 return(pte); 224 } 225 226 static inline pte_t pte_mkwrite(pte_t pte) 227 { 228 if (unlikely(pte_get_bits(pte, _PAGE_RW))) 229 return pte; 230 pte_set_bits(pte, _PAGE_RW); 231 return(pte_mknewprot(pte)); 232 } 233 234 static inline pte_t pte_mkuptodate(pte_t pte) 235 { 236 pte_clear_bits(pte, _PAGE_NEWPAGE); 237 if(pte_present(pte)) 238 pte_clear_bits(pte, _PAGE_NEWPROT); 239 return(pte); 240 } 241 242 static inline pte_t pte_mknewpage(pte_t pte) 243 { 244 pte_set_bits(pte, _PAGE_NEWPAGE); 245 return(pte); 246 } 247 248 static inline void set_pte(pte_t *pteptr, pte_t pteval) 249 { 250 pte_copy(*pteptr, pteval); 251 252 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so 253 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to 254 * mapped pages. 255 */ 256 257 *pteptr = pte_mknewpage(*pteptr); 258 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr); 259 } 260 261 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 262 pte_t *pteptr, pte_t pteval) 263 { 264 set_pte(pteptr, pteval); 265 } 266 267 #define __HAVE_ARCH_PTE_SAME 268 static inline int pte_same(pte_t pte_a, pte_t pte_b) 269 { 270 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE); 271 } 272 273 /* 274 * Conversion functions: convert a page and protection to a page entry, 275 * and a page entry and page directory to the page they refer to. 276 */ 277 278 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys)) 279 #define __virt_to_page(virt) phys_to_page(__pa(virt)) 280 #define page_to_phys(page) pfn_to_phys(page_to_pfn(page)) 281 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr) 282 283 #define mk_pte(page, pgprot) \ 284 ({ pte_t pte; \ 285 \ 286 pte_set_val(pte, page_to_phys(page), (pgprot)); \ 287 if (pte_present(pte)) \ 288 pte_mknewprot(pte_mknewpage(pte)); \ 289 pte;}) 290 291 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 292 { 293 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot); 294 return pte; 295 } 296 297 /* 298 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 299 * 300 * this macro returns the index of the entry in the pmd page which would 301 * control the given virtual address 302 */ 303 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 304 305 struct mm_struct; 306 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr); 307 308 #define update_mmu_cache(vma,address,ptep) do ; while (0) 309 310 /* Encode and de-code a swap entry */ 311 #define __swp_type(x) (((x).val >> 5) & 0x1f) 312 #define __swp_offset(x) ((x).val >> 11) 313 314 #define __swp_entry(type, offset) \ 315 ((swp_entry_t) { ((type) << 5) | ((offset) << 11) }) 316 #define __pte_to_swp_entry(pte) \ 317 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) }) 318 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 319 320 #define kern_addr_valid(addr) (1) 321 322 /* Clear a kernel PTE and flush it from the TLB */ 323 #define kpte_clear_flush(ptep, vaddr) \ 324 do { \ 325 pte_clear(&init_mm, (vaddr), (ptep)); \ 326 __flush_tlb_one((vaddr)); \ 327 } while (0) 328 329 #endif 330