1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 4 * Copyright 2003 PathScale, Inc. 5 * Derived from include/asm-i386/pgtable.h 6 */ 7 8 #ifndef __UM_PGTABLE_H 9 #define __UM_PGTABLE_H 10 11 #include <asm/fixmap.h> 12 13 #define _PAGE_PRESENT 0x001 14 #define _PAGE_NEWPAGE 0x002 15 #define _PAGE_NEWPROT 0x004 16 #define _PAGE_RW 0x020 17 #define _PAGE_USER 0x040 18 #define _PAGE_ACCESSED 0x080 19 #define _PAGE_DIRTY 0x100 20 /* If _PAGE_PRESENT is clear, we use these: */ 21 #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE; 22 pte_present gives true */ 23 24 #ifdef CONFIG_3_LEVEL_PGTABLES 25 #include <asm/pgtable-3level.h> 26 #else 27 #include <asm/pgtable-2level.h> 28 #endif 29 30 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 31 32 /* zero page used for uninitialized stuff */ 33 extern unsigned long *empty_zero_page; 34 35 /* Just any arbitrary offset to the start of the vmalloc VM area: the 36 * current 8MB value just means that there will be a 8MB "hole" after the 37 * physical memory until the kernel virtual memory starts. That means that 38 * any out-of-bounds memory accesses will hopefully be caught. 39 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 40 * area for the same reason. ;) 41 */ 42 43 extern unsigned long end_iomem; 44 45 #define VMALLOC_OFFSET (__va_space) 46 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) 47 #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK) 48 #define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) 49 #define MODULES_VADDR VMALLOC_START 50 #define MODULES_END VMALLOC_END 51 #define MODULES_LEN (MODULES_VADDR - MODULES_END) 52 53 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) 54 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) 55 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 56 #define __PAGE_KERNEL_EXEC \ 57 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 58 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 59 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) 60 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 61 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 62 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 63 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC) 64 65 /* 66 * The i386 can't do page protection for execute, and considers that the same 67 * are read. 68 * Also, write permissions imply read permissions. This is the closest we can 69 * get.. 70 */ 71 #define __P000 PAGE_NONE 72 #define __P001 PAGE_READONLY 73 #define __P010 PAGE_COPY 74 #define __P011 PAGE_COPY 75 #define __P100 PAGE_READONLY 76 #define __P101 PAGE_READONLY 77 #define __P110 PAGE_COPY 78 #define __P111 PAGE_COPY 79 80 #define __S000 PAGE_NONE 81 #define __S001 PAGE_READONLY 82 #define __S010 PAGE_SHARED 83 #define __S011 PAGE_SHARED 84 #define __S100 PAGE_READONLY 85 #define __S101 PAGE_READONLY 86 #define __S110 PAGE_SHARED 87 #define __S111 PAGE_SHARED 88 89 /* 90 * ZERO_PAGE is a global shared page that is always zero: used 91 * for zero-mapped memory areas etc.. 92 */ 93 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) 94 95 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE)) 96 97 #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE)) 98 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) 99 100 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 101 #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0) 102 103 #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE) 104 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE) 105 106 #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE) 107 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE) 108 109 #define p4d_newpage(x) (p4d_val(x) & _PAGE_NEWPAGE) 110 #define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEWPAGE) 111 112 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK) 113 114 #define pte_page(x) pfn_to_page(pte_pfn(x)) 115 116 #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE)) 117 118 /* 119 * ================================= 120 * Flags checking section. 121 * ================================= 122 */ 123 124 static inline int pte_none(pte_t pte) 125 { 126 return pte_is_zero(pte); 127 } 128 129 /* 130 * The following only work if pte_present() is true. 131 * Undefined behaviour if not.. 132 */ 133 static inline int pte_read(pte_t pte) 134 { 135 return((pte_get_bits(pte, _PAGE_USER)) && 136 !(pte_get_bits(pte, _PAGE_PROTNONE))); 137 } 138 139 static inline int pte_exec(pte_t pte){ 140 return((pte_get_bits(pte, _PAGE_USER)) && 141 !(pte_get_bits(pte, _PAGE_PROTNONE))); 142 } 143 144 static inline int pte_write(pte_t pte) 145 { 146 return((pte_get_bits(pte, _PAGE_RW)) && 147 !(pte_get_bits(pte, _PAGE_PROTNONE))); 148 } 149 150 static inline int pte_dirty(pte_t pte) 151 { 152 return pte_get_bits(pte, _PAGE_DIRTY); 153 } 154 155 static inline int pte_young(pte_t pte) 156 { 157 return pte_get_bits(pte, _PAGE_ACCESSED); 158 } 159 160 static inline int pte_newpage(pte_t pte) 161 { 162 return pte_get_bits(pte, _PAGE_NEWPAGE); 163 } 164 165 static inline int pte_newprot(pte_t pte) 166 { 167 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT))); 168 } 169 170 static inline int pte_special(pte_t pte) 171 { 172 return 0; 173 } 174 175 /* 176 * ================================= 177 * Flags setting section. 178 * ================================= 179 */ 180 181 static inline pte_t pte_mknewprot(pte_t pte) 182 { 183 pte_set_bits(pte, _PAGE_NEWPROT); 184 return(pte); 185 } 186 187 static inline pte_t pte_mkclean(pte_t pte) 188 { 189 pte_clear_bits(pte, _PAGE_DIRTY); 190 return(pte); 191 } 192 193 static inline pte_t pte_mkold(pte_t pte) 194 { 195 pte_clear_bits(pte, _PAGE_ACCESSED); 196 return(pte); 197 } 198 199 static inline pte_t pte_wrprotect(pte_t pte) 200 { 201 if (likely(pte_get_bits(pte, _PAGE_RW))) 202 pte_clear_bits(pte, _PAGE_RW); 203 else 204 return pte; 205 return(pte_mknewprot(pte)); 206 } 207 208 static inline pte_t pte_mkread(pte_t pte) 209 { 210 if (unlikely(pte_get_bits(pte, _PAGE_USER))) 211 return pte; 212 pte_set_bits(pte, _PAGE_USER); 213 return(pte_mknewprot(pte)); 214 } 215 216 static inline pte_t pte_mkdirty(pte_t pte) 217 { 218 pte_set_bits(pte, _PAGE_DIRTY); 219 return(pte); 220 } 221 222 static inline pte_t pte_mkyoung(pte_t pte) 223 { 224 pte_set_bits(pte, _PAGE_ACCESSED); 225 return(pte); 226 } 227 228 static inline pte_t pte_mkwrite(pte_t pte) 229 { 230 if (unlikely(pte_get_bits(pte, _PAGE_RW))) 231 return pte; 232 pte_set_bits(pte, _PAGE_RW); 233 return(pte_mknewprot(pte)); 234 } 235 236 static inline pte_t pte_mkuptodate(pte_t pte) 237 { 238 pte_clear_bits(pte, _PAGE_NEWPAGE); 239 if(pte_present(pte)) 240 pte_clear_bits(pte, _PAGE_NEWPROT); 241 return(pte); 242 } 243 244 static inline pte_t pte_mknewpage(pte_t pte) 245 { 246 pte_set_bits(pte, _PAGE_NEWPAGE); 247 return(pte); 248 } 249 250 static inline pte_t pte_mkspecial(pte_t pte) 251 { 252 return(pte); 253 } 254 255 static inline void set_pte(pte_t *pteptr, pte_t pteval) 256 { 257 pte_copy(*pteptr, pteval); 258 259 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so 260 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to 261 * mapped pages. 262 */ 263 264 *pteptr = pte_mknewpage(*pteptr); 265 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr); 266 } 267 268 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 269 pte_t *pteptr, pte_t pteval) 270 { 271 set_pte(pteptr, pteval); 272 } 273 274 #define __HAVE_ARCH_PTE_SAME 275 static inline int pte_same(pte_t pte_a, pte_t pte_b) 276 { 277 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE); 278 } 279 280 /* 281 * Conversion functions: convert a page and protection to a page entry, 282 * and a page entry and page directory to the page they refer to. 283 */ 284 285 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys)) 286 #define __virt_to_page(virt) phys_to_page(__pa(virt)) 287 #define page_to_phys(page) pfn_to_phys(page_to_pfn(page)) 288 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr) 289 290 #define mk_pte(page, pgprot) \ 291 ({ pte_t pte; \ 292 \ 293 pte_set_val(pte, page_to_phys(page), (pgprot)); \ 294 if (pte_present(pte)) \ 295 pte_mknewprot(pte_mknewpage(pte)); \ 296 pte;}) 297 298 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 299 { 300 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot); 301 return pte; 302 } 303 304 /* 305 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 306 * 307 * this macro returns the index of the entry in the pgd page which would 308 * control the given virtual address 309 */ 310 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 311 312 /* 313 * pgd_offset() returns a (pgd_t *) 314 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 315 */ 316 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 317 318 /* 319 * a shortcut which implies the use of the kernel's pgd, instead 320 * of a process's 321 */ 322 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 323 324 /* 325 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 326 * 327 * this macro returns the index of the entry in the pmd page which would 328 * control the given virtual address 329 */ 330 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 331 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 332 333 #define pmd_page_vaddr(pmd) \ 334 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 335 336 /* 337 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 338 * 339 * this macro returns the index of the entry in the pte page which would 340 * control the given virtual address 341 */ 342 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 343 #define pte_offset_kernel(dir, address) \ 344 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) 345 #define pte_offset_map(dir, address) \ 346 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) 347 #define pte_unmap(pte) do { } while (0) 348 349 struct mm_struct; 350 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr); 351 352 #define update_mmu_cache(vma,address,ptep) do ; while (0) 353 354 /* Encode and de-code a swap entry */ 355 #define __swp_type(x) (((x).val >> 5) & 0x1f) 356 #define __swp_offset(x) ((x).val >> 11) 357 358 #define __swp_entry(type, offset) \ 359 ((swp_entry_t) { ((type) << 5) | ((offset) << 11) }) 360 #define __pte_to_swp_entry(pte) \ 361 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) }) 362 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 363 364 #define kern_addr_valid(addr) (1) 365 366 #include <asm-generic/pgtable.h> 367 368 /* Clear a kernel PTE and flush it from the TLB */ 369 #define kpte_clear_flush(ptep, vaddr) \ 370 do { \ 371 pte_clear(&init_mm, (vaddr), (ptep)); \ 372 __flush_tlb_one((vaddr)); \ 373 } while (0) 374 375 #endif 376