1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 4 * Copyright 2003 PathScale, Inc. 5 * Derived from include/asm-i386/pgtable.h 6 */ 7 8 #ifndef __UM_PGTABLE_H 9 #define __UM_PGTABLE_H 10 11 #include <asm/fixmap.h> 12 13 #define _PAGE_PRESENT 0x001 14 #define _PAGE_NEWPAGE 0x002 15 #define _PAGE_NEWPROT 0x004 16 #define _PAGE_RW 0x020 17 #define _PAGE_USER 0x040 18 #define _PAGE_ACCESSED 0x080 19 #define _PAGE_DIRTY 0x100 20 /* If _PAGE_PRESENT is clear, we use these: */ 21 #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE; 22 pte_present gives true */ 23 24 #ifdef CONFIG_3_LEVEL_PGTABLES 25 #include <asm/pgtable-3level.h> 26 #else 27 #include <asm/pgtable-2level.h> 28 #endif 29 30 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 31 32 /* zero page used for uninitialized stuff */ 33 extern unsigned long *empty_zero_page; 34 35 /* Just any arbitrary offset to the start of the vmalloc VM area: the 36 * current 8MB value just means that there will be a 8MB "hole" after the 37 * physical memory until the kernel virtual memory starts. That means that 38 * any out-of-bounds memory accesses will hopefully be caught. 39 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 40 * area for the same reason. ;) 41 */ 42 43 extern unsigned long end_iomem; 44 45 #define VMALLOC_OFFSET (__va_space) 46 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) 47 #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK) 48 #define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) 49 #define MODULES_VADDR VMALLOC_START 50 #define MODULES_END VMALLOC_END 51 #define MODULES_LEN (MODULES_VADDR - MODULES_END) 52 53 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) 54 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) 55 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 56 #define __PAGE_KERNEL_EXEC \ 57 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 58 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 59 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) 60 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 61 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 62 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 63 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC) 64 65 /* 66 * The i386 can't do page protection for execute, and considers that the same 67 * are read. 68 * Also, write permissions imply read permissions. This is the closest we can 69 * get.. 70 */ 71 #define __P000 PAGE_NONE 72 #define __P001 PAGE_READONLY 73 #define __P010 PAGE_COPY 74 #define __P011 PAGE_COPY 75 #define __P100 PAGE_READONLY 76 #define __P101 PAGE_READONLY 77 #define __P110 PAGE_COPY 78 #define __P111 PAGE_COPY 79 80 #define __S000 PAGE_NONE 81 #define __S001 PAGE_READONLY 82 #define __S010 PAGE_SHARED 83 #define __S011 PAGE_SHARED 84 #define __S100 PAGE_READONLY 85 #define __S101 PAGE_READONLY 86 #define __S110 PAGE_SHARED 87 #define __S111 PAGE_SHARED 88 89 /* 90 * ZERO_PAGE is a global shared page that is always zero: used 91 * for zero-mapped memory areas etc.. 92 */ 93 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) 94 95 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE)) 96 97 #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE)) 98 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) 99 100 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 101 #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0) 102 103 #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE) 104 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE) 105 106 #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE) 107 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE) 108 109 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK) 110 111 #define pte_page(x) pfn_to_page(pte_pfn(x)) 112 113 #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE)) 114 115 /* 116 * ================================= 117 * Flags checking section. 118 * ================================= 119 */ 120 121 static inline int pte_none(pte_t pte) 122 { 123 return pte_is_zero(pte); 124 } 125 126 /* 127 * The following only work if pte_present() is true. 128 * Undefined behaviour if not.. 129 */ 130 static inline int pte_read(pte_t pte) 131 { 132 return((pte_get_bits(pte, _PAGE_USER)) && 133 !(pte_get_bits(pte, _PAGE_PROTNONE))); 134 } 135 136 static inline int pte_exec(pte_t pte){ 137 return((pte_get_bits(pte, _PAGE_USER)) && 138 !(pte_get_bits(pte, _PAGE_PROTNONE))); 139 } 140 141 static inline int pte_write(pte_t pte) 142 { 143 return((pte_get_bits(pte, _PAGE_RW)) && 144 !(pte_get_bits(pte, _PAGE_PROTNONE))); 145 } 146 147 static inline int pte_dirty(pte_t pte) 148 { 149 return pte_get_bits(pte, _PAGE_DIRTY); 150 } 151 152 static inline int pte_young(pte_t pte) 153 { 154 return pte_get_bits(pte, _PAGE_ACCESSED); 155 } 156 157 static inline int pte_newpage(pte_t pte) 158 { 159 return pte_get_bits(pte, _PAGE_NEWPAGE); 160 } 161 162 static inline int pte_newprot(pte_t pte) 163 { 164 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT))); 165 } 166 167 static inline int pte_special(pte_t pte) 168 { 169 return 0; 170 } 171 172 /* 173 * ================================= 174 * Flags setting section. 175 * ================================= 176 */ 177 178 static inline pte_t pte_mknewprot(pte_t pte) 179 { 180 pte_set_bits(pte, _PAGE_NEWPROT); 181 return(pte); 182 } 183 184 static inline pte_t pte_mkclean(pte_t pte) 185 { 186 pte_clear_bits(pte, _PAGE_DIRTY); 187 return(pte); 188 } 189 190 static inline pte_t pte_mkold(pte_t pte) 191 { 192 pte_clear_bits(pte, _PAGE_ACCESSED); 193 return(pte); 194 } 195 196 static inline pte_t pte_wrprotect(pte_t pte) 197 { 198 if (likely(pte_get_bits(pte, _PAGE_RW))) 199 pte_clear_bits(pte, _PAGE_RW); 200 else 201 return pte; 202 return(pte_mknewprot(pte)); 203 } 204 205 static inline pte_t pte_mkread(pte_t pte) 206 { 207 if (unlikely(pte_get_bits(pte, _PAGE_USER))) 208 return pte; 209 pte_set_bits(pte, _PAGE_USER); 210 return(pte_mknewprot(pte)); 211 } 212 213 static inline pte_t pte_mkdirty(pte_t pte) 214 { 215 pte_set_bits(pte, _PAGE_DIRTY); 216 return(pte); 217 } 218 219 static inline pte_t pte_mkyoung(pte_t pte) 220 { 221 pte_set_bits(pte, _PAGE_ACCESSED); 222 return(pte); 223 } 224 225 static inline pte_t pte_mkwrite(pte_t pte) 226 { 227 if (unlikely(pte_get_bits(pte, _PAGE_RW))) 228 return pte; 229 pte_set_bits(pte, _PAGE_RW); 230 return(pte_mknewprot(pte)); 231 } 232 233 static inline pte_t pte_mkuptodate(pte_t pte) 234 { 235 pte_clear_bits(pte, _PAGE_NEWPAGE); 236 if(pte_present(pte)) 237 pte_clear_bits(pte, _PAGE_NEWPROT); 238 return(pte); 239 } 240 241 static inline pte_t pte_mknewpage(pte_t pte) 242 { 243 pte_set_bits(pte, _PAGE_NEWPAGE); 244 return(pte); 245 } 246 247 static inline pte_t pte_mkspecial(pte_t pte) 248 { 249 return(pte); 250 } 251 252 static inline void set_pte(pte_t *pteptr, pte_t pteval) 253 { 254 pte_copy(*pteptr, pteval); 255 256 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so 257 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to 258 * mapped pages. 259 */ 260 261 *pteptr = pte_mknewpage(*pteptr); 262 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr); 263 } 264 265 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 266 pte_t *pteptr, pte_t pteval) 267 { 268 set_pte(pteptr, pteval); 269 } 270 271 #define __HAVE_ARCH_PTE_SAME 272 static inline int pte_same(pte_t pte_a, pte_t pte_b) 273 { 274 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE); 275 } 276 277 /* 278 * Conversion functions: convert a page and protection to a page entry, 279 * and a page entry and page directory to the page they refer to. 280 */ 281 282 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys)) 283 #define __virt_to_page(virt) phys_to_page(__pa(virt)) 284 #define page_to_phys(page) pfn_to_phys(page_to_pfn(page)) 285 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr) 286 287 #define mk_pte(page, pgprot) \ 288 ({ pte_t pte; \ 289 \ 290 pte_set_val(pte, page_to_phys(page), (pgprot)); \ 291 if (pte_present(pte)) \ 292 pte_mknewprot(pte_mknewpage(pte)); \ 293 pte;}) 294 295 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 296 { 297 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot); 298 return pte; 299 } 300 301 /* 302 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 303 * 304 * this macro returns the index of the entry in the pgd page which would 305 * control the given virtual address 306 */ 307 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 308 309 /* 310 * pgd_offset() returns a (pgd_t *) 311 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 312 */ 313 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 314 315 /* 316 * a shortcut which implies the use of the kernel's pgd, instead 317 * of a process's 318 */ 319 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 320 321 /* 322 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 323 * 324 * this macro returns the index of the entry in the pmd page which would 325 * control the given virtual address 326 */ 327 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 328 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 329 330 #define pmd_page_vaddr(pmd) \ 331 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 332 333 /* 334 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 335 * 336 * this macro returns the index of the entry in the pte page which would 337 * control the given virtual address 338 */ 339 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 340 #define pte_offset_kernel(dir, address) \ 341 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) 342 #define pte_offset_map(dir, address) \ 343 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) 344 #define pte_unmap(pte) do { } while (0) 345 346 struct mm_struct; 347 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr); 348 349 #define update_mmu_cache(vma,address,ptep) do ; while (0) 350 351 /* Encode and de-code a swap entry */ 352 #define __swp_type(x) (((x).val >> 5) & 0x1f) 353 #define __swp_offset(x) ((x).val >> 11) 354 355 #define __swp_entry(type, offset) \ 356 ((swp_entry_t) { ((type) << 5) | ((offset) << 11) }) 357 #define __pte_to_swp_entry(pte) \ 358 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) }) 359 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 360 361 #define kern_addr_valid(addr) (1) 362 363 #include <asm-generic/pgtable.h> 364 365 /* Clear a kernel PTE and flush it from the TLB */ 366 #define kpte_clear_flush(ptep, vaddr) \ 367 do { \ 368 pte_clear(&init_mm, (vaddr), (ptep)); \ 369 __flush_tlb_one((vaddr)); \ 370 } while (0) 371 372 #endif 373