1 /* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Copyright 2003 PathScale, Inc. 4 * Derived from include/asm-i386/pgtable.h 5 * Licensed under the GPL 6 */ 7 8 #ifndef __UM_PGTABLE_H 9 #define __UM_PGTABLE_H 10 11 #include <asm/fixmap.h> 12 13 #define _PAGE_PRESENT 0x001 14 #define _PAGE_NEWPAGE 0x002 15 #define _PAGE_NEWPROT 0x004 16 #define _PAGE_RW 0x020 17 #define _PAGE_USER 0x040 18 #define _PAGE_ACCESSED 0x080 19 #define _PAGE_DIRTY 0x100 20 /* If _PAGE_PRESENT is clear, we use these: */ 21 #define _PAGE_FILE 0x008 /* nonlinear file mapping, saved PTE; unset:swap */ 22 #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE; 23 pte_present gives true */ 24 25 #ifdef CONFIG_3_LEVEL_PGTABLES 26 #include "asm/pgtable-3level.h" 27 #else 28 #include "asm/pgtable-2level.h" 29 #endif 30 31 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 32 33 /* zero page used for uninitialized stuff */ 34 extern unsigned long *empty_zero_page; 35 36 #define pgtable_cache_init() do ; while (0) 37 38 /* Just any arbitrary offset to the start of the vmalloc VM area: the 39 * current 8MB value just means that there will be a 8MB "hole" after the 40 * physical memory until the kernel virtual memory starts. That means that 41 * any out-of-bounds memory accesses will hopefully be caught. 42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 43 * area for the same reason. ;) 44 */ 45 46 extern unsigned long end_iomem; 47 48 #define VMALLOC_OFFSET (__va_space) 49 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) 50 #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK) 51 #ifdef CONFIG_HIGHMEM 52 # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE) 53 #else 54 # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) 55 #endif 56 57 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) 58 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) 59 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 60 61 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 62 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) 63 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 64 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 65 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 66 67 /* 68 * The i386 can't do page protection for execute, and considers that the same 69 * are read. 70 * Also, write permissions imply read permissions. This is the closest we can 71 * get.. 72 */ 73 #define __P000 PAGE_NONE 74 #define __P001 PAGE_READONLY 75 #define __P010 PAGE_COPY 76 #define __P011 PAGE_COPY 77 #define __P100 PAGE_READONLY 78 #define __P101 PAGE_READONLY 79 #define __P110 PAGE_COPY 80 #define __P111 PAGE_COPY 81 82 #define __S000 PAGE_NONE 83 #define __S001 PAGE_READONLY 84 #define __S010 PAGE_SHARED 85 #define __S011 PAGE_SHARED 86 #define __S100 PAGE_READONLY 87 #define __S101 PAGE_READONLY 88 #define __S110 PAGE_SHARED 89 #define __S111 PAGE_SHARED 90 91 /* 92 * ZERO_PAGE is a global shared page that is always zero: used 93 * for zero-mapped memory areas etc.. 94 */ 95 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) 96 97 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE)) 98 99 #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE)) 100 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) 101 102 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 103 #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0) 104 105 #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE) 106 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE) 107 108 #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE) 109 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE) 110 111 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK) 112 113 #define pte_page(x) pfn_to_page(pte_pfn(x)) 114 115 #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE)) 116 117 /* 118 * ================================= 119 * Flags checking section. 120 * ================================= 121 */ 122 123 static inline int pte_none(pte_t pte) 124 { 125 return pte_is_zero(pte); 126 } 127 128 /* 129 * The following only work if pte_present() is true. 130 * Undefined behaviour if not.. 131 */ 132 static inline int pte_read(pte_t pte) 133 { 134 return((pte_get_bits(pte, _PAGE_USER)) && 135 !(pte_get_bits(pte, _PAGE_PROTNONE))); 136 } 137 138 static inline int pte_exec(pte_t pte){ 139 return((pte_get_bits(pte, _PAGE_USER)) && 140 !(pte_get_bits(pte, _PAGE_PROTNONE))); 141 } 142 143 static inline int pte_write(pte_t pte) 144 { 145 return((pte_get_bits(pte, _PAGE_RW)) && 146 !(pte_get_bits(pte, _PAGE_PROTNONE))); 147 } 148 149 /* 150 * The following only works if pte_present() is not true. 151 */ 152 static inline int pte_file(pte_t pte) 153 { 154 return pte_get_bits(pte, _PAGE_FILE); 155 } 156 157 static inline int pte_dirty(pte_t pte) 158 { 159 return pte_get_bits(pte, _PAGE_DIRTY); 160 } 161 162 static inline int pte_young(pte_t pte) 163 { 164 return pte_get_bits(pte, _PAGE_ACCESSED); 165 } 166 167 static inline int pte_newpage(pte_t pte) 168 { 169 return pte_get_bits(pte, _PAGE_NEWPAGE); 170 } 171 172 static inline int pte_newprot(pte_t pte) 173 { 174 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT))); 175 } 176 177 static inline int pte_special(pte_t pte) 178 { 179 return 0; 180 } 181 182 /* 183 * ================================= 184 * Flags setting section. 185 * ================================= 186 */ 187 188 static inline pte_t pte_mknewprot(pte_t pte) 189 { 190 pte_set_bits(pte, _PAGE_NEWPROT); 191 return(pte); 192 } 193 194 static inline pte_t pte_mkclean(pte_t pte) 195 { 196 pte_clear_bits(pte, _PAGE_DIRTY); 197 return(pte); 198 } 199 200 static inline pte_t pte_mkold(pte_t pte) 201 { 202 pte_clear_bits(pte, _PAGE_ACCESSED); 203 return(pte); 204 } 205 206 static inline pte_t pte_wrprotect(pte_t pte) 207 { 208 pte_clear_bits(pte, _PAGE_RW); 209 return(pte_mknewprot(pte)); 210 } 211 212 static inline pte_t pte_mkread(pte_t pte) 213 { 214 pte_set_bits(pte, _PAGE_USER); 215 return(pte_mknewprot(pte)); 216 } 217 218 static inline pte_t pte_mkdirty(pte_t pte) 219 { 220 pte_set_bits(pte, _PAGE_DIRTY); 221 return(pte); 222 } 223 224 static inline pte_t pte_mkyoung(pte_t pte) 225 { 226 pte_set_bits(pte, _PAGE_ACCESSED); 227 return(pte); 228 } 229 230 static inline pte_t pte_mkwrite(pte_t pte) 231 { 232 pte_set_bits(pte, _PAGE_RW); 233 return(pte_mknewprot(pte)); 234 } 235 236 static inline pte_t pte_mkuptodate(pte_t pte) 237 { 238 pte_clear_bits(pte, _PAGE_NEWPAGE); 239 if(pte_present(pte)) 240 pte_clear_bits(pte, _PAGE_NEWPROT); 241 return(pte); 242 } 243 244 static inline pte_t pte_mknewpage(pte_t pte) 245 { 246 pte_set_bits(pte, _PAGE_NEWPAGE); 247 return(pte); 248 } 249 250 static inline pte_t pte_mkspecial(pte_t pte) 251 { 252 return(pte); 253 } 254 255 static inline void set_pte(pte_t *pteptr, pte_t pteval) 256 { 257 pte_copy(*pteptr, pteval); 258 259 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so 260 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to 261 * mapped pages. 262 */ 263 264 *pteptr = pte_mknewpage(*pteptr); 265 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr); 266 } 267 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 268 269 /* 270 * Conversion functions: convert a page and protection to a page entry, 271 * and a page entry and page directory to the page they refer to. 272 */ 273 274 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys)) 275 #define __virt_to_page(virt) phys_to_page(__pa(virt)) 276 #define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page)) 277 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr) 278 279 #define mk_pte(page, pgprot) \ 280 ({ pte_t pte; \ 281 \ 282 pte_set_val(pte, page_to_phys(page), (pgprot)); \ 283 if (pte_present(pte)) \ 284 pte_mknewprot(pte_mknewpage(pte)); \ 285 pte;}) 286 287 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 288 { 289 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot); 290 return pte; 291 } 292 293 /* 294 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 295 * 296 * this macro returns the index of the entry in the pgd page which would 297 * control the given virtual address 298 */ 299 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 300 301 /* 302 * pgd_offset() returns a (pgd_t *) 303 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 304 */ 305 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 306 307 /* 308 * a shortcut which implies the use of the kernel's pgd, instead 309 * of a process's 310 */ 311 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 312 313 /* 314 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 315 * 316 * this macro returns the index of the entry in the pmd page which would 317 * control the given virtual address 318 */ 319 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 320 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 321 322 #define pmd_page_vaddr(pmd) \ 323 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 324 325 /* 326 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 327 * 328 * this macro returns the index of the entry in the pte page which would 329 * control the given virtual address 330 */ 331 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 332 #define pte_offset_kernel(dir, address) \ 333 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) 334 #define pte_offset_map(dir, address) \ 335 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) 336 #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address) 337 #define pte_unmap(pte) do { } while (0) 338 #define pte_unmap_nested(pte) do { } while (0) 339 340 struct mm_struct; 341 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr); 342 343 #define update_mmu_cache(vma,address,pte) do ; while (0) 344 345 /* Encode and de-code a swap entry */ 346 #define __swp_type(x) (((x).val >> 4) & 0x3f) 347 #define __swp_offset(x) ((x).val >> 11) 348 349 #define __swp_entry(type, offset) \ 350 ((swp_entry_t) { ((type) << 4) | ((offset) << 11) }) 351 #define __pte_to_swp_entry(pte) \ 352 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) }) 353 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 354 355 #define kern_addr_valid(addr) (1) 356 357 #include <asm-generic/pgtable.h> 358 359 /* Clear a kernel PTE and flush it from the TLB */ 360 #define kpte_clear_flush(ptep, vaddr) \ 361 do { \ 362 pte_clear(&init_mm, (vaddr), (ptep)); \ 363 __flush_tlb_one((vaddr)); \ 364 } while (0) 365 366 #endif 367