1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 4 * Copyright 2003 PathScale, Inc. 5 * Derived from include/asm-i386/pgtable.h 6 */ 7 8 #ifndef __UM_PGTABLE_H 9 #define __UM_PGTABLE_H 10 11 #include <asm/fixmap.h> 12 13 #define _PAGE_PRESENT 0x001 14 #define _PAGE_NEWPAGE 0x002 15 #define _PAGE_NEWPROT 0x004 16 #define _PAGE_RW 0x020 17 #define _PAGE_USER 0x040 18 #define _PAGE_ACCESSED 0x080 19 #define _PAGE_DIRTY 0x100 20 /* If _PAGE_PRESENT is clear, we use these: */ 21 #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE; 22 pte_present gives true */ 23 24 #ifdef CONFIG_3_LEVEL_PGTABLES 25 #include <asm/pgtable-3level.h> 26 #else 27 #include <asm/pgtable-2level.h> 28 #endif 29 30 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 31 32 /* zero page used for uninitialized stuff */ 33 extern unsigned long *empty_zero_page; 34 35 /* Just any arbitrary offset to the start of the vmalloc VM area: the 36 * current 8MB value just means that there will be a 8MB "hole" after the 37 * physical memory until the kernel virtual memory starts. That means that 38 * any out-of-bounds memory accesses will hopefully be caught. 39 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 40 * area for the same reason. ;) 41 */ 42 43 extern unsigned long end_iomem; 44 45 #define VMALLOC_OFFSET (__va_space) 46 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) 47 #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK) 48 #define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) 49 #define MODULES_VADDR VMALLOC_START 50 #define MODULES_END VMALLOC_END 51 #define MODULES_LEN (MODULES_VADDR - MODULES_END) 52 53 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) 54 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) 55 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 56 #define __PAGE_KERNEL_EXEC \ 57 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 58 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 59 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) 60 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 61 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 62 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 63 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC) 64 65 /* 66 * The i386 can't do page protection for execute, and considers that the same 67 * are read. 68 * Also, write permissions imply read permissions. This is the closest we can 69 * get.. 70 */ 71 #define __P000 PAGE_NONE 72 #define __P001 PAGE_READONLY 73 #define __P010 PAGE_COPY 74 #define __P011 PAGE_COPY 75 #define __P100 PAGE_READONLY 76 #define __P101 PAGE_READONLY 77 #define __P110 PAGE_COPY 78 #define __P111 PAGE_COPY 79 80 #define __S000 PAGE_NONE 81 #define __S001 PAGE_READONLY 82 #define __S010 PAGE_SHARED 83 #define __S011 PAGE_SHARED 84 #define __S100 PAGE_READONLY 85 #define __S101 PAGE_READONLY 86 #define __S110 PAGE_SHARED 87 #define __S111 PAGE_SHARED 88 89 /* 90 * ZERO_PAGE is a global shared page that is always zero: used 91 * for zero-mapped memory areas etc.. 92 */ 93 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) 94 95 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE)) 96 97 #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE)) 98 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) 99 100 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 101 #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0) 102 103 #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE) 104 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE) 105 106 #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE) 107 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE) 108 109 #define p4d_newpage(x) (p4d_val(x) & _PAGE_NEWPAGE) 110 #define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEWPAGE) 111 112 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK) 113 114 #define pte_page(x) pfn_to_page(pte_pfn(x)) 115 116 #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE)) 117 118 /* 119 * ================================= 120 * Flags checking section. 121 * ================================= 122 */ 123 124 static inline int pte_none(pte_t pte) 125 { 126 return pte_is_zero(pte); 127 } 128 129 /* 130 * The following only work if pte_present() is true. 131 * Undefined behaviour if not.. 132 */ 133 static inline int pte_read(pte_t pte) 134 { 135 return((pte_get_bits(pte, _PAGE_USER)) && 136 !(pte_get_bits(pte, _PAGE_PROTNONE))); 137 } 138 139 static inline int pte_exec(pte_t pte){ 140 return((pte_get_bits(pte, _PAGE_USER)) && 141 !(pte_get_bits(pte, _PAGE_PROTNONE))); 142 } 143 144 static inline int pte_write(pte_t pte) 145 { 146 return((pte_get_bits(pte, _PAGE_RW)) && 147 !(pte_get_bits(pte, _PAGE_PROTNONE))); 148 } 149 150 static inline int pte_dirty(pte_t pte) 151 { 152 return pte_get_bits(pte, _PAGE_DIRTY); 153 } 154 155 static inline int pte_young(pte_t pte) 156 { 157 return pte_get_bits(pte, _PAGE_ACCESSED); 158 } 159 160 static inline int pte_newpage(pte_t pte) 161 { 162 return pte_get_bits(pte, _PAGE_NEWPAGE); 163 } 164 165 static inline int pte_newprot(pte_t pte) 166 { 167 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT))); 168 } 169 170 /* 171 * ================================= 172 * Flags setting section. 173 * ================================= 174 */ 175 176 static inline pte_t pte_mknewprot(pte_t pte) 177 { 178 pte_set_bits(pte, _PAGE_NEWPROT); 179 return(pte); 180 } 181 182 static inline pte_t pte_mkclean(pte_t pte) 183 { 184 pte_clear_bits(pte, _PAGE_DIRTY); 185 return(pte); 186 } 187 188 static inline pte_t pte_mkold(pte_t pte) 189 { 190 pte_clear_bits(pte, _PAGE_ACCESSED); 191 return(pte); 192 } 193 194 static inline pte_t pte_wrprotect(pte_t pte) 195 { 196 if (likely(pte_get_bits(pte, _PAGE_RW))) 197 pte_clear_bits(pte, _PAGE_RW); 198 else 199 return pte; 200 return(pte_mknewprot(pte)); 201 } 202 203 static inline pte_t pte_mkread(pte_t pte) 204 { 205 if (unlikely(pte_get_bits(pte, _PAGE_USER))) 206 return pte; 207 pte_set_bits(pte, _PAGE_USER); 208 return(pte_mknewprot(pte)); 209 } 210 211 static inline pte_t pte_mkdirty(pte_t pte) 212 { 213 pte_set_bits(pte, _PAGE_DIRTY); 214 return(pte); 215 } 216 217 static inline pte_t pte_mkyoung(pte_t pte) 218 { 219 pte_set_bits(pte, _PAGE_ACCESSED); 220 return(pte); 221 } 222 223 static inline pte_t pte_mkwrite(pte_t pte) 224 { 225 if (unlikely(pte_get_bits(pte, _PAGE_RW))) 226 return pte; 227 pte_set_bits(pte, _PAGE_RW); 228 return(pte_mknewprot(pte)); 229 } 230 231 static inline pte_t pte_mkuptodate(pte_t pte) 232 { 233 pte_clear_bits(pte, _PAGE_NEWPAGE); 234 if(pte_present(pte)) 235 pte_clear_bits(pte, _PAGE_NEWPROT); 236 return(pte); 237 } 238 239 static inline pte_t pte_mknewpage(pte_t pte) 240 { 241 pte_set_bits(pte, _PAGE_NEWPAGE); 242 return(pte); 243 } 244 245 static inline void set_pte(pte_t *pteptr, pte_t pteval) 246 { 247 pte_copy(*pteptr, pteval); 248 249 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so 250 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to 251 * mapped pages. 252 */ 253 254 *pteptr = pte_mknewpage(*pteptr); 255 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr); 256 } 257 258 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 259 pte_t *pteptr, pte_t pteval) 260 { 261 set_pte(pteptr, pteval); 262 } 263 264 #define __HAVE_ARCH_PTE_SAME 265 static inline int pte_same(pte_t pte_a, pte_t pte_b) 266 { 267 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE); 268 } 269 270 /* 271 * Conversion functions: convert a page and protection to a page entry, 272 * and a page entry and page directory to the page they refer to. 273 */ 274 275 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys)) 276 #define __virt_to_page(virt) phys_to_page(__pa(virt)) 277 #define page_to_phys(page) pfn_to_phys(page_to_pfn(page)) 278 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr) 279 280 #define mk_pte(page, pgprot) \ 281 ({ pte_t pte; \ 282 \ 283 pte_set_val(pte, page_to_phys(page), (pgprot)); \ 284 if (pte_present(pte)) \ 285 pte_mknewprot(pte_mknewpage(pte)); \ 286 pte;}) 287 288 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 289 { 290 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot); 291 return pte; 292 } 293 294 /* 295 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 296 * 297 * this macro returns the index of the entry in the pmd page which would 298 * control the given virtual address 299 */ 300 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 301 302 struct mm_struct; 303 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr); 304 305 #define update_mmu_cache(vma,address,ptep) do {} while (0) 306 307 /* Encode and de-code a swap entry */ 308 #define __swp_type(x) (((x).val >> 5) & 0x1f) 309 #define __swp_offset(x) ((x).val >> 11) 310 311 #define __swp_entry(type, offset) \ 312 ((swp_entry_t) { ((type) << 5) | ((offset) << 11) }) 313 #define __pte_to_swp_entry(pte) \ 314 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) }) 315 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 316 317 #define kern_addr_valid(addr) (1) 318 319 /* Clear a kernel PTE and flush it from the TLB */ 320 #define kpte_clear_flush(ptep, vaddr) \ 321 do { \ 322 pte_clear(&init_mm, (vaddr), (ptep)); \ 323 __flush_tlb_one((vaddr)); \ 324 } while (0) 325 326 #endif 327