xref: /openbmc/linux/arch/um/drivers/vector_kern.c (revision f5ad1c74)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017 - 2019 Cambridge Greys Limited
4  * Copyright (C) 2011 - 2014 Cisco Systems Inc
5  * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6  * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
7  * James Leu (jleu@mindspring.net).
8  * Copyright (C) 2001 by various other people who didn't put their name here.
9  */
10 
11 #include <linux/version.h>
12 #include <linux/memblock.h>
13 #include <linux/etherdevice.h>
14 #include <linux/ethtool.h>
15 #include <linux/inetdevice.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/netdevice.h>
19 #include <linux/platform_device.h>
20 #include <linux/rtnetlink.h>
21 #include <linux/skbuff.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/firmware.h>
25 #include <linux/fs.h>
26 #include <uapi/linux/filter.h>
27 #include <init.h>
28 #include <irq_kern.h>
29 #include <irq_user.h>
30 #include <net_kern.h>
31 #include <os.h>
32 #include "mconsole_kern.h"
33 #include "vector_user.h"
34 #include "vector_kern.h"
35 
36 /*
37  * Adapted from network devices with the following major changes:
38  * All transports are static - simplifies the code significantly
39  * Multiple FDs/IRQs per device
40  * Vector IO optionally used for read/write, falling back to legacy
41  * based on configuration and/or availability
42  * Configuration is no longer positional - L2TPv3 and GRE require up to
43  * 10 parameters, passing this as positional is not fit for purpose.
44  * Only socket transports are supported
45  */
46 
47 
48 #define DRIVER_NAME "uml-vector"
49 struct vector_cmd_line_arg {
50 	struct list_head list;
51 	int unit;
52 	char *arguments;
53 };
54 
55 struct vector_device {
56 	struct list_head list;
57 	struct net_device *dev;
58 	struct platform_device pdev;
59 	int unit;
60 	int opened;
61 };
62 
63 static LIST_HEAD(vec_cmd_line);
64 
65 static DEFINE_SPINLOCK(vector_devices_lock);
66 static LIST_HEAD(vector_devices);
67 
68 static int driver_registered;
69 
70 static void vector_eth_configure(int n, struct arglist *def);
71 
72 /* Argument accessors to set variables (and/or set default values)
73  * mtu, buffer sizing, default headroom, etc
74  */
75 
76 #define DEFAULT_HEADROOM 2
77 #define SAFETY_MARGIN 32
78 #define DEFAULT_VECTOR_SIZE 64
79 #define TX_SMALL_PACKET 128
80 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
81 #define MAX_ITERATIONS 64
82 
83 static const struct {
84 	const char string[ETH_GSTRING_LEN];
85 } ethtool_stats_keys[] = {
86 	{ "rx_queue_max" },
87 	{ "rx_queue_running_average" },
88 	{ "tx_queue_max" },
89 	{ "tx_queue_running_average" },
90 	{ "rx_encaps_errors" },
91 	{ "tx_timeout_count" },
92 	{ "tx_restart_queue" },
93 	{ "tx_kicks" },
94 	{ "tx_flow_control_xon" },
95 	{ "tx_flow_control_xoff" },
96 	{ "rx_csum_offload_good" },
97 	{ "rx_csum_offload_errors"},
98 	{ "sg_ok"},
99 	{ "sg_linearized"},
100 };
101 
102 #define VECTOR_NUM_STATS	ARRAY_SIZE(ethtool_stats_keys)
103 
104 static void vector_reset_stats(struct vector_private *vp)
105 {
106 	vp->estats.rx_queue_max = 0;
107 	vp->estats.rx_queue_running_average = 0;
108 	vp->estats.tx_queue_max = 0;
109 	vp->estats.tx_queue_running_average = 0;
110 	vp->estats.rx_encaps_errors = 0;
111 	vp->estats.tx_timeout_count = 0;
112 	vp->estats.tx_restart_queue = 0;
113 	vp->estats.tx_kicks = 0;
114 	vp->estats.tx_flow_control_xon = 0;
115 	vp->estats.tx_flow_control_xoff = 0;
116 	vp->estats.sg_ok = 0;
117 	vp->estats.sg_linearized = 0;
118 }
119 
120 static int get_mtu(struct arglist *def)
121 {
122 	char *mtu = uml_vector_fetch_arg(def, "mtu");
123 	long result;
124 
125 	if (mtu != NULL) {
126 		if (kstrtoul(mtu, 10, &result) == 0)
127 			if ((result < (1 << 16) - 1) && (result >= 576))
128 				return result;
129 	}
130 	return ETH_MAX_PACKET;
131 }
132 
133 static char *get_bpf_file(struct arglist *def)
134 {
135 	return uml_vector_fetch_arg(def, "bpffile");
136 }
137 
138 static bool get_bpf_flash(struct arglist *def)
139 {
140 	char *allow = uml_vector_fetch_arg(def, "bpfflash");
141 	long result;
142 
143 	if (allow != NULL) {
144 		if (kstrtoul(allow, 10, &result) == 0)
145 			return (allow > 0);
146 	}
147 	return false;
148 }
149 
150 static int get_depth(struct arglist *def)
151 {
152 	char *mtu = uml_vector_fetch_arg(def, "depth");
153 	long result;
154 
155 	if (mtu != NULL) {
156 		if (kstrtoul(mtu, 10, &result) == 0)
157 			return result;
158 	}
159 	return DEFAULT_VECTOR_SIZE;
160 }
161 
162 static int get_headroom(struct arglist *def)
163 {
164 	char *mtu = uml_vector_fetch_arg(def, "headroom");
165 	long result;
166 
167 	if (mtu != NULL) {
168 		if (kstrtoul(mtu, 10, &result) == 0)
169 			return result;
170 	}
171 	return DEFAULT_HEADROOM;
172 }
173 
174 static int get_req_size(struct arglist *def)
175 {
176 	char *gro = uml_vector_fetch_arg(def, "gro");
177 	long result;
178 
179 	if (gro != NULL) {
180 		if (kstrtoul(gro, 10, &result) == 0) {
181 			if (result > 0)
182 				return 65536;
183 		}
184 	}
185 	return get_mtu(def) + ETH_HEADER_OTHER +
186 		get_headroom(def) + SAFETY_MARGIN;
187 }
188 
189 
190 static int get_transport_options(struct arglist *def)
191 {
192 	char *transport = uml_vector_fetch_arg(def, "transport");
193 	char *vector = uml_vector_fetch_arg(def, "vec");
194 
195 	int vec_rx = VECTOR_RX;
196 	int vec_tx = VECTOR_TX;
197 	long parsed;
198 	int result = 0;
199 
200 	if (transport == NULL)
201 		return -EINVAL;
202 
203 	if (vector != NULL) {
204 		if (kstrtoul(vector, 10, &parsed) == 0) {
205 			if (parsed == 0) {
206 				vec_rx = 0;
207 				vec_tx = 0;
208 			}
209 		}
210 	}
211 
212 	if (get_bpf_flash(def))
213 		result = VECTOR_BPF_FLASH;
214 
215 	if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
216 		return result;
217 	if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
218 		return (result | vec_rx | VECTOR_BPF);
219 	if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
220 		return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
221 	return (result | vec_rx | vec_tx);
222 }
223 
224 
225 /* A mini-buffer for packet drop read
226  * All of our supported transports are datagram oriented and we always
227  * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
228  * than the packet size it still counts as full packet read and will
229  * clean the incoming stream to keep sigio/epoll happy
230  */
231 
232 #define DROP_BUFFER_SIZE 32
233 
234 static char *drop_buffer;
235 
236 /* Array backed queues optimized for bulk enqueue/dequeue and
237  * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
238  * For more details and full design rationale see
239  * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
240  */
241 
242 
243 /*
244  * Advance the mmsg queue head by n = advance. Resets the queue to
245  * maximum enqueue/dequeue-at-once capacity if possible. Called by
246  * dequeuers. Caller must hold the head_lock!
247  */
248 
249 static int vector_advancehead(struct vector_queue *qi, int advance)
250 {
251 	int queue_depth;
252 
253 	qi->head =
254 		(qi->head + advance)
255 			% qi->max_depth;
256 
257 
258 	spin_lock(&qi->tail_lock);
259 	qi->queue_depth -= advance;
260 
261 	/* we are at 0, use this to
262 	 * reset head and tail so we can use max size vectors
263 	 */
264 
265 	if (qi->queue_depth == 0) {
266 		qi->head = 0;
267 		qi->tail = 0;
268 	}
269 	queue_depth = qi->queue_depth;
270 	spin_unlock(&qi->tail_lock);
271 	return queue_depth;
272 }
273 
274 /*	Advance the queue tail by n = advance.
275  *	This is called by enqueuers which should hold the
276  *	head lock already
277  */
278 
279 static int vector_advancetail(struct vector_queue *qi, int advance)
280 {
281 	int queue_depth;
282 
283 	qi->tail =
284 		(qi->tail + advance)
285 			% qi->max_depth;
286 	spin_lock(&qi->head_lock);
287 	qi->queue_depth += advance;
288 	queue_depth = qi->queue_depth;
289 	spin_unlock(&qi->head_lock);
290 	return queue_depth;
291 }
292 
293 static int prep_msg(struct vector_private *vp,
294 	struct sk_buff *skb,
295 	struct iovec *iov)
296 {
297 	int iov_index = 0;
298 	int nr_frags, frag;
299 	skb_frag_t *skb_frag;
300 
301 	nr_frags = skb_shinfo(skb)->nr_frags;
302 	if (nr_frags > MAX_IOV_SIZE) {
303 		if (skb_linearize(skb) != 0)
304 			goto drop;
305 	}
306 	if (vp->header_size > 0) {
307 		iov[iov_index].iov_len = vp->header_size;
308 		vp->form_header(iov[iov_index].iov_base, skb, vp);
309 		iov_index++;
310 	}
311 	iov[iov_index].iov_base = skb->data;
312 	if (nr_frags > 0) {
313 		iov[iov_index].iov_len = skb->len - skb->data_len;
314 		vp->estats.sg_ok++;
315 	} else
316 		iov[iov_index].iov_len = skb->len;
317 	iov_index++;
318 	for (frag = 0; frag < nr_frags; frag++) {
319 		skb_frag = &skb_shinfo(skb)->frags[frag];
320 		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
321 		iov[iov_index].iov_len = skb_frag_size(skb_frag);
322 		iov_index++;
323 	}
324 	return iov_index;
325 drop:
326 	return -1;
327 }
328 /*
329  * Generic vector enqueue with support for forming headers using transport
330  * specific callback. Allows GRE, L2TPv3, RAW and other transports
331  * to use a common enqueue procedure in vector mode
332  */
333 
334 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
335 {
336 	struct vector_private *vp = netdev_priv(qi->dev);
337 	int queue_depth;
338 	int packet_len;
339 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
340 	int iov_count;
341 
342 	spin_lock(&qi->tail_lock);
343 	spin_lock(&qi->head_lock);
344 	queue_depth = qi->queue_depth;
345 	spin_unlock(&qi->head_lock);
346 
347 	if (skb)
348 		packet_len = skb->len;
349 
350 	if (queue_depth < qi->max_depth) {
351 
352 		*(qi->skbuff_vector + qi->tail) = skb;
353 		mmsg_vector += qi->tail;
354 		iov_count = prep_msg(
355 			vp,
356 			skb,
357 			mmsg_vector->msg_hdr.msg_iov
358 		);
359 		if (iov_count < 1)
360 			goto drop;
361 		mmsg_vector->msg_hdr.msg_iovlen = iov_count;
362 		mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
363 		mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
364 		queue_depth = vector_advancetail(qi, 1);
365 	} else
366 		goto drop;
367 	spin_unlock(&qi->tail_lock);
368 	return queue_depth;
369 drop:
370 	qi->dev->stats.tx_dropped++;
371 	if (skb != NULL) {
372 		packet_len = skb->len;
373 		dev_consume_skb_any(skb);
374 		netdev_completed_queue(qi->dev, 1, packet_len);
375 	}
376 	spin_unlock(&qi->tail_lock);
377 	return queue_depth;
378 }
379 
380 static int consume_vector_skbs(struct vector_queue *qi, int count)
381 {
382 	struct sk_buff *skb;
383 	int skb_index;
384 	int bytes_compl = 0;
385 
386 	for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
387 		skb = *(qi->skbuff_vector + skb_index);
388 		/* mark as empty to ensure correct destruction if
389 		 * needed
390 		 */
391 		bytes_compl += skb->len;
392 		*(qi->skbuff_vector + skb_index) = NULL;
393 		dev_consume_skb_any(skb);
394 	}
395 	qi->dev->stats.tx_bytes += bytes_compl;
396 	qi->dev->stats.tx_packets += count;
397 	netdev_completed_queue(qi->dev, count, bytes_compl);
398 	return vector_advancehead(qi, count);
399 }
400 
401 /*
402  * Generic vector deque via sendmmsg with support for forming headers
403  * using transport specific callback. Allows GRE, L2TPv3, RAW and
404  * other transports to use a common dequeue procedure in vector mode
405  */
406 
407 
408 static int vector_send(struct vector_queue *qi)
409 {
410 	struct vector_private *vp = netdev_priv(qi->dev);
411 	struct mmsghdr *send_from;
412 	int result = 0, send_len, queue_depth = qi->max_depth;
413 
414 	if (spin_trylock(&qi->head_lock)) {
415 		if (spin_trylock(&qi->tail_lock)) {
416 			/* update queue_depth to current value */
417 			queue_depth = qi->queue_depth;
418 			spin_unlock(&qi->tail_lock);
419 			while (queue_depth > 0) {
420 				/* Calculate the start of the vector */
421 				send_len = queue_depth;
422 				send_from = qi->mmsg_vector;
423 				send_from += qi->head;
424 				/* Adjust vector size if wraparound */
425 				if (send_len + qi->head > qi->max_depth)
426 					send_len = qi->max_depth - qi->head;
427 				/* Try to TX as many packets as possible */
428 				if (send_len > 0) {
429 					result = uml_vector_sendmmsg(
430 						 vp->fds->tx_fd,
431 						 send_from,
432 						 send_len,
433 						 0
434 					);
435 					vp->in_write_poll =
436 						(result != send_len);
437 				}
438 				/* For some of the sendmmsg error scenarios
439 				 * we may end being unsure in the TX success
440 				 * for all packets. It is safer to declare
441 				 * them all TX-ed and blame the network.
442 				 */
443 				if (result < 0) {
444 					if (net_ratelimit())
445 						netdev_err(vp->dev, "sendmmsg err=%i\n",
446 							result);
447 					vp->in_error = true;
448 					result = send_len;
449 				}
450 				if (result > 0) {
451 					queue_depth =
452 						consume_vector_skbs(qi, result);
453 					/* This is equivalent to an TX IRQ.
454 					 * Restart the upper layers to feed us
455 					 * more packets.
456 					 */
457 					if (result > vp->estats.tx_queue_max)
458 						vp->estats.tx_queue_max = result;
459 					vp->estats.tx_queue_running_average =
460 						(vp->estats.tx_queue_running_average + result) >> 1;
461 				}
462 				netif_trans_update(qi->dev);
463 				netif_wake_queue(qi->dev);
464 				/* if TX is busy, break out of the send loop,
465 				 *  poll write IRQ will reschedule xmit for us
466 				 */
467 				if (result != send_len) {
468 					vp->estats.tx_restart_queue++;
469 					break;
470 				}
471 			}
472 		}
473 		spin_unlock(&qi->head_lock);
474 	} else {
475 		tasklet_schedule(&vp->tx_poll);
476 	}
477 	return queue_depth;
478 }
479 
480 /* Queue destructor. Deliberately stateless so we can use
481  * it in queue cleanup if initialization fails.
482  */
483 
484 static void destroy_queue(struct vector_queue *qi)
485 {
486 	int i;
487 	struct iovec *iov;
488 	struct vector_private *vp = netdev_priv(qi->dev);
489 	struct mmsghdr *mmsg_vector;
490 
491 	if (qi == NULL)
492 		return;
493 	/* deallocate any skbuffs - we rely on any unused to be
494 	 * set to NULL.
495 	 */
496 	if (qi->skbuff_vector != NULL) {
497 		for (i = 0; i < qi->max_depth; i++) {
498 			if (*(qi->skbuff_vector + i) != NULL)
499 				dev_kfree_skb_any(*(qi->skbuff_vector + i));
500 		}
501 		kfree(qi->skbuff_vector);
502 	}
503 	/* deallocate matching IOV structures including header buffs */
504 	if (qi->mmsg_vector != NULL) {
505 		mmsg_vector = qi->mmsg_vector;
506 		for (i = 0; i < qi->max_depth; i++) {
507 			iov = mmsg_vector->msg_hdr.msg_iov;
508 			if (iov != NULL) {
509 				if ((vp->header_size > 0) &&
510 					(iov->iov_base != NULL))
511 					kfree(iov->iov_base);
512 				kfree(iov);
513 			}
514 			mmsg_vector++;
515 		}
516 		kfree(qi->mmsg_vector);
517 	}
518 	kfree(qi);
519 }
520 
521 /*
522  * Queue constructor. Create a queue with a given side.
523  */
524 static struct vector_queue *create_queue(
525 	struct vector_private *vp,
526 	int max_size,
527 	int header_size,
528 	int num_extra_frags)
529 {
530 	struct vector_queue *result;
531 	int i;
532 	struct iovec *iov;
533 	struct mmsghdr *mmsg_vector;
534 
535 	result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
536 	if (result == NULL)
537 		return NULL;
538 	result->max_depth = max_size;
539 	result->dev = vp->dev;
540 	result->mmsg_vector = kmalloc(
541 		(sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
542 	if (result->mmsg_vector == NULL)
543 		goto out_mmsg_fail;
544 	result->skbuff_vector = kmalloc(
545 		(sizeof(void *) * max_size), GFP_KERNEL);
546 	if (result->skbuff_vector == NULL)
547 		goto out_skb_fail;
548 
549 	/* further failures can be handled safely by destroy_queue*/
550 
551 	mmsg_vector = result->mmsg_vector;
552 	for (i = 0; i < max_size; i++) {
553 		/* Clear all pointers - we use non-NULL as marking on
554 		 * what to free on destruction
555 		 */
556 		*(result->skbuff_vector + i) = NULL;
557 		mmsg_vector->msg_hdr.msg_iov = NULL;
558 		mmsg_vector++;
559 	}
560 	mmsg_vector = result->mmsg_vector;
561 	result->max_iov_frags = num_extra_frags;
562 	for (i = 0; i < max_size; i++) {
563 		if (vp->header_size > 0)
564 			iov = kmalloc_array(3 + num_extra_frags,
565 					    sizeof(struct iovec),
566 					    GFP_KERNEL
567 			);
568 		else
569 			iov = kmalloc_array(2 + num_extra_frags,
570 					    sizeof(struct iovec),
571 					    GFP_KERNEL
572 			);
573 		if (iov == NULL)
574 			goto out_fail;
575 		mmsg_vector->msg_hdr.msg_iov = iov;
576 		mmsg_vector->msg_hdr.msg_iovlen = 1;
577 		mmsg_vector->msg_hdr.msg_control = NULL;
578 		mmsg_vector->msg_hdr.msg_controllen = 0;
579 		mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
580 		mmsg_vector->msg_hdr.msg_name = NULL;
581 		mmsg_vector->msg_hdr.msg_namelen = 0;
582 		if (vp->header_size > 0) {
583 			iov->iov_base = kmalloc(header_size, GFP_KERNEL);
584 			if (iov->iov_base == NULL)
585 				goto out_fail;
586 			iov->iov_len = header_size;
587 			mmsg_vector->msg_hdr.msg_iovlen = 2;
588 			iov++;
589 		}
590 		iov->iov_base = NULL;
591 		iov->iov_len = 0;
592 		mmsg_vector++;
593 	}
594 	spin_lock_init(&result->head_lock);
595 	spin_lock_init(&result->tail_lock);
596 	result->queue_depth = 0;
597 	result->head = 0;
598 	result->tail = 0;
599 	return result;
600 out_skb_fail:
601 	kfree(result->mmsg_vector);
602 out_mmsg_fail:
603 	kfree(result);
604 	return NULL;
605 out_fail:
606 	destroy_queue(result);
607 	return NULL;
608 }
609 
610 /*
611  * We do not use the RX queue as a proper wraparound queue for now
612  * This is not necessary because the consumption via netif_rx()
613  * happens in-line. While we can try using the return code of
614  * netif_rx() for flow control there are no drivers doing this today.
615  * For this RX specific use we ignore the tail/head locks and
616  * just read into a prepared queue filled with skbuffs.
617  */
618 
619 static struct sk_buff *prep_skb(
620 	struct vector_private *vp,
621 	struct user_msghdr *msg)
622 {
623 	int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
624 	struct sk_buff *result;
625 	int iov_index = 0, len;
626 	struct iovec *iov = msg->msg_iov;
627 	int err, nr_frags, frag;
628 	skb_frag_t *skb_frag;
629 
630 	if (vp->req_size <= linear)
631 		len = linear;
632 	else
633 		len = vp->req_size;
634 	result = alloc_skb_with_frags(
635 		linear,
636 		len - vp->max_packet,
637 		3,
638 		&err,
639 		GFP_ATOMIC
640 	);
641 	if (vp->header_size > 0)
642 		iov_index++;
643 	if (result == NULL) {
644 		iov[iov_index].iov_base = NULL;
645 		iov[iov_index].iov_len = 0;
646 		goto done;
647 	}
648 	skb_reserve(result, vp->headroom);
649 	result->dev = vp->dev;
650 	skb_put(result, vp->max_packet);
651 	result->data_len = len - vp->max_packet;
652 	result->len += len - vp->max_packet;
653 	skb_reset_mac_header(result);
654 	result->ip_summed = CHECKSUM_NONE;
655 	iov[iov_index].iov_base = result->data;
656 	iov[iov_index].iov_len = vp->max_packet;
657 	iov_index++;
658 
659 	nr_frags = skb_shinfo(result)->nr_frags;
660 	for (frag = 0; frag < nr_frags; frag++) {
661 		skb_frag = &skb_shinfo(result)->frags[frag];
662 		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
663 		if (iov[iov_index].iov_base != NULL)
664 			iov[iov_index].iov_len = skb_frag_size(skb_frag);
665 		else
666 			iov[iov_index].iov_len = 0;
667 		iov_index++;
668 	}
669 done:
670 	msg->msg_iovlen = iov_index;
671 	return result;
672 }
673 
674 
675 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
676 
677 static void prep_queue_for_rx(struct vector_queue *qi)
678 {
679 	struct vector_private *vp = netdev_priv(qi->dev);
680 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
681 	void **skbuff_vector = qi->skbuff_vector;
682 	int i;
683 
684 	if (qi->queue_depth == 0)
685 		return;
686 	for (i = 0; i < qi->queue_depth; i++) {
687 		/* it is OK if allocation fails - recvmmsg with NULL data in
688 		 * iov argument still performs an RX, just drops the packet
689 		 * This allows us stop faffing around with a "drop buffer"
690 		 */
691 
692 		*skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
693 		skbuff_vector++;
694 		mmsg_vector++;
695 	}
696 	qi->queue_depth = 0;
697 }
698 
699 static struct vector_device *find_device(int n)
700 {
701 	struct vector_device *device;
702 	struct list_head *ele;
703 
704 	spin_lock(&vector_devices_lock);
705 	list_for_each(ele, &vector_devices) {
706 		device = list_entry(ele, struct vector_device, list);
707 		if (device->unit == n)
708 			goto out;
709 	}
710 	device = NULL;
711  out:
712 	spin_unlock(&vector_devices_lock);
713 	return device;
714 }
715 
716 static int vector_parse(char *str, int *index_out, char **str_out,
717 			char **error_out)
718 {
719 	int n, len, err;
720 	char *start = str;
721 
722 	len = strlen(str);
723 
724 	while ((*str != ':') && (strlen(str) > 1))
725 		str++;
726 	if (*str != ':') {
727 		*error_out = "Expected ':' after device number";
728 		return -EINVAL;
729 	}
730 	*str = '\0';
731 
732 	err = kstrtouint(start, 0, &n);
733 	if (err < 0) {
734 		*error_out = "Bad device number";
735 		return err;
736 	}
737 
738 	str++;
739 	if (find_device(n)) {
740 		*error_out = "Device already configured";
741 		return -EINVAL;
742 	}
743 
744 	*index_out = n;
745 	*str_out = str;
746 	return 0;
747 }
748 
749 static int vector_config(char *str, char **error_out)
750 {
751 	int err, n;
752 	char *params;
753 	struct arglist *parsed;
754 
755 	err = vector_parse(str, &n, &params, error_out);
756 	if (err != 0)
757 		return err;
758 
759 	/* This string is broken up and the pieces used by the underlying
760 	 * driver. We should copy it to make sure things do not go wrong
761 	 * later.
762 	 */
763 
764 	params = kstrdup(params, GFP_KERNEL);
765 	if (params == NULL) {
766 		*error_out = "vector_config failed to strdup string";
767 		return -ENOMEM;
768 	}
769 
770 	parsed = uml_parse_vector_ifspec(params);
771 
772 	if (parsed == NULL) {
773 		*error_out = "vector_config failed to parse parameters";
774 		return -EINVAL;
775 	}
776 
777 	vector_eth_configure(n, parsed);
778 	return 0;
779 }
780 
781 static int vector_id(char **str, int *start_out, int *end_out)
782 {
783 	char *end;
784 	int n;
785 
786 	n = simple_strtoul(*str, &end, 0);
787 	if ((*end != '\0') || (end == *str))
788 		return -1;
789 
790 	*start_out = n;
791 	*end_out = n;
792 	*str = end;
793 	return n;
794 }
795 
796 static int vector_remove(int n, char **error_out)
797 {
798 	struct vector_device *vec_d;
799 	struct net_device *dev;
800 	struct vector_private *vp;
801 
802 	vec_d = find_device(n);
803 	if (vec_d == NULL)
804 		return -ENODEV;
805 	dev = vec_d->dev;
806 	vp = netdev_priv(dev);
807 	if (vp->fds != NULL)
808 		return -EBUSY;
809 	unregister_netdev(dev);
810 	platform_device_unregister(&vec_d->pdev);
811 	return 0;
812 }
813 
814 /*
815  * There is no shared per-transport initialization code, so
816  * we will just initialize each interface one by one and
817  * add them to a list
818  */
819 
820 static struct platform_driver uml_net_driver = {
821 	.driver = {
822 		.name = DRIVER_NAME,
823 	},
824 };
825 
826 
827 static void vector_device_release(struct device *dev)
828 {
829 	struct vector_device *device = dev_get_drvdata(dev);
830 	struct net_device *netdev = device->dev;
831 
832 	list_del(&device->list);
833 	kfree(device);
834 	free_netdev(netdev);
835 }
836 
837 /* Bog standard recv using recvmsg - not used normally unless the user
838  * explicitly specifies not to use recvmmsg vector RX.
839  */
840 
841 static int vector_legacy_rx(struct vector_private *vp)
842 {
843 	int pkt_len;
844 	struct user_msghdr hdr;
845 	struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
846 	int iovpos = 0;
847 	struct sk_buff *skb;
848 	int header_check;
849 
850 	hdr.msg_name = NULL;
851 	hdr.msg_namelen = 0;
852 	hdr.msg_iov = (struct iovec *) &iov;
853 	hdr.msg_control = NULL;
854 	hdr.msg_controllen = 0;
855 	hdr.msg_flags = 0;
856 
857 	if (vp->header_size > 0) {
858 		iov[0].iov_base = vp->header_rxbuffer;
859 		iov[0].iov_len = vp->header_size;
860 	}
861 
862 	skb = prep_skb(vp, &hdr);
863 
864 	if (skb == NULL) {
865 		/* Read a packet into drop_buffer and don't do
866 		 * anything with it.
867 		 */
868 		iov[iovpos].iov_base = drop_buffer;
869 		iov[iovpos].iov_len = DROP_BUFFER_SIZE;
870 		hdr.msg_iovlen = 1;
871 		vp->dev->stats.rx_dropped++;
872 	}
873 
874 	pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
875 	if (pkt_len < 0) {
876 		vp->in_error = true;
877 		return pkt_len;
878 	}
879 
880 	if (skb != NULL) {
881 		if (pkt_len > vp->header_size) {
882 			if (vp->header_size > 0) {
883 				header_check = vp->verify_header(
884 					vp->header_rxbuffer, skb, vp);
885 				if (header_check < 0) {
886 					dev_kfree_skb_irq(skb);
887 					vp->dev->stats.rx_dropped++;
888 					vp->estats.rx_encaps_errors++;
889 					return 0;
890 				}
891 				if (header_check > 0) {
892 					vp->estats.rx_csum_offload_good++;
893 					skb->ip_summed = CHECKSUM_UNNECESSARY;
894 				}
895 			}
896 			pskb_trim(skb, pkt_len - vp->rx_header_size);
897 			skb->protocol = eth_type_trans(skb, skb->dev);
898 			vp->dev->stats.rx_bytes += skb->len;
899 			vp->dev->stats.rx_packets++;
900 			netif_rx(skb);
901 		} else {
902 			dev_kfree_skb_irq(skb);
903 		}
904 	}
905 	return pkt_len;
906 }
907 
908 /*
909  * Packet at a time TX which falls back to vector TX if the
910  * underlying transport is busy.
911  */
912 
913 
914 
915 static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
916 {
917 	struct iovec iov[3 + MAX_IOV_SIZE];
918 	int iov_count, pkt_len = 0;
919 
920 	iov[0].iov_base = vp->header_txbuffer;
921 	iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
922 
923 	if (iov_count < 1)
924 		goto drop;
925 
926 	pkt_len = uml_vector_writev(
927 		vp->fds->tx_fd,
928 		(struct iovec *) &iov,
929 		iov_count
930 	);
931 
932 	if (pkt_len < 0)
933 		goto drop;
934 
935 	netif_trans_update(vp->dev);
936 	netif_wake_queue(vp->dev);
937 
938 	if (pkt_len > 0) {
939 		vp->dev->stats.tx_bytes += skb->len;
940 		vp->dev->stats.tx_packets++;
941 	} else {
942 		vp->dev->stats.tx_dropped++;
943 	}
944 	consume_skb(skb);
945 	return pkt_len;
946 drop:
947 	vp->dev->stats.tx_dropped++;
948 	consume_skb(skb);
949 	if (pkt_len < 0)
950 		vp->in_error = true;
951 	return pkt_len;
952 }
953 
954 /*
955  * Receive as many messages as we can in one call using the special
956  * mmsg vector matched to an skb vector which we prepared earlier.
957  */
958 
959 static int vector_mmsg_rx(struct vector_private *vp)
960 {
961 	int packet_count, i;
962 	struct vector_queue *qi = vp->rx_queue;
963 	struct sk_buff *skb;
964 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
965 	void **skbuff_vector = qi->skbuff_vector;
966 	int header_check;
967 
968 	/* Refresh the vector and make sure it is with new skbs and the
969 	 * iovs are updated to point to them.
970 	 */
971 
972 	prep_queue_for_rx(qi);
973 
974 	/* Fire the Lazy Gun - get as many packets as we can in one go. */
975 
976 	packet_count = uml_vector_recvmmsg(
977 		vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
978 
979 	if (packet_count < 0)
980 		vp->in_error = true;
981 
982 	if (packet_count <= 0)
983 		return packet_count;
984 
985 	/* We treat packet processing as enqueue, buffer refresh as dequeue
986 	 * The queue_depth tells us how many buffers have been used and how
987 	 * many do we need to prep the next time prep_queue_for_rx() is called.
988 	 */
989 
990 	qi->queue_depth = packet_count;
991 
992 	for (i = 0; i < packet_count; i++) {
993 		skb = (*skbuff_vector);
994 		if (mmsg_vector->msg_len > vp->header_size) {
995 			if (vp->header_size > 0) {
996 				header_check = vp->verify_header(
997 					mmsg_vector->msg_hdr.msg_iov->iov_base,
998 					skb,
999 					vp
1000 				);
1001 				if (header_check < 0) {
1002 				/* Overlay header failed to verify - discard.
1003 				 * We can actually keep this skb and reuse it,
1004 				 * but that will make the prep logic too
1005 				 * complex.
1006 				 */
1007 					dev_kfree_skb_irq(skb);
1008 					vp->estats.rx_encaps_errors++;
1009 					continue;
1010 				}
1011 				if (header_check > 0) {
1012 					vp->estats.rx_csum_offload_good++;
1013 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1014 				}
1015 			}
1016 			pskb_trim(skb,
1017 				mmsg_vector->msg_len - vp->rx_header_size);
1018 			skb->protocol = eth_type_trans(skb, skb->dev);
1019 			/*
1020 			 * We do not need to lock on updating stats here
1021 			 * The interrupt loop is non-reentrant.
1022 			 */
1023 			vp->dev->stats.rx_bytes += skb->len;
1024 			vp->dev->stats.rx_packets++;
1025 			netif_rx(skb);
1026 		} else {
1027 			/* Overlay header too short to do anything - discard.
1028 			 * We can actually keep this skb and reuse it,
1029 			 * but that will make the prep logic too complex.
1030 			 */
1031 			if (skb != NULL)
1032 				dev_kfree_skb_irq(skb);
1033 		}
1034 		(*skbuff_vector) = NULL;
1035 		/* Move to the next buffer element */
1036 		mmsg_vector++;
1037 		skbuff_vector++;
1038 	}
1039 	if (packet_count > 0) {
1040 		if (vp->estats.rx_queue_max < packet_count)
1041 			vp->estats.rx_queue_max = packet_count;
1042 		vp->estats.rx_queue_running_average =
1043 			(vp->estats.rx_queue_running_average + packet_count) >> 1;
1044 	}
1045 	return packet_count;
1046 }
1047 
1048 static void vector_rx(struct vector_private *vp)
1049 {
1050 	int err;
1051 	int iter = 0;
1052 
1053 	if ((vp->options & VECTOR_RX) > 0)
1054 		while (((err = vector_mmsg_rx(vp)) > 0) && (iter < MAX_ITERATIONS))
1055 			iter++;
1056 	else
1057 		while (((err = vector_legacy_rx(vp)) > 0) && (iter < MAX_ITERATIONS))
1058 			iter++;
1059 	if ((err != 0) && net_ratelimit())
1060 		netdev_err(vp->dev, "vector_rx: error(%d)\n", err);
1061 	if (iter == MAX_ITERATIONS)
1062 		netdev_err(vp->dev, "vector_rx: device stuck, remote end may have closed the connection\n");
1063 }
1064 
1065 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1066 {
1067 	struct vector_private *vp = netdev_priv(dev);
1068 	int queue_depth = 0;
1069 
1070 	if (vp->in_error) {
1071 		deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1072 		if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1073 			deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1074 		return NETDEV_TX_BUSY;
1075 	}
1076 
1077 	if ((vp->options & VECTOR_TX) == 0) {
1078 		writev_tx(vp, skb);
1079 		return NETDEV_TX_OK;
1080 	}
1081 
1082 	/* We do BQL only in the vector path, no point doing it in
1083 	 * packet at a time mode as there is no device queue
1084 	 */
1085 
1086 	netdev_sent_queue(vp->dev, skb->len);
1087 	queue_depth = vector_enqueue(vp->tx_queue, skb);
1088 
1089 	/* if the device queue is full, stop the upper layers and
1090 	 * flush it.
1091 	 */
1092 
1093 	if (queue_depth >= vp->tx_queue->max_depth - 1) {
1094 		vp->estats.tx_kicks++;
1095 		netif_stop_queue(dev);
1096 		vector_send(vp->tx_queue);
1097 		return NETDEV_TX_OK;
1098 	}
1099 	if (netdev_xmit_more()) {
1100 		mod_timer(&vp->tl, vp->coalesce);
1101 		return NETDEV_TX_OK;
1102 	}
1103 	if (skb->len < TX_SMALL_PACKET) {
1104 		vp->estats.tx_kicks++;
1105 		vector_send(vp->tx_queue);
1106 	} else
1107 		tasklet_schedule(&vp->tx_poll);
1108 	return NETDEV_TX_OK;
1109 }
1110 
1111 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1112 {
1113 	struct net_device *dev = dev_id;
1114 	struct vector_private *vp = netdev_priv(dev);
1115 
1116 	if (!netif_running(dev))
1117 		return IRQ_NONE;
1118 	vector_rx(vp);
1119 	return IRQ_HANDLED;
1120 
1121 }
1122 
1123 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1124 {
1125 	struct net_device *dev = dev_id;
1126 	struct vector_private *vp = netdev_priv(dev);
1127 
1128 	if (!netif_running(dev))
1129 		return IRQ_NONE;
1130 	/* We need to pay attention to it only if we got
1131 	 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1132 	 * we ignore it. In the future, it may be worth
1133 	 * it to improve the IRQ controller a bit to make
1134 	 * tweaking the IRQ mask less costly
1135 	 */
1136 
1137 	if (vp->in_write_poll)
1138 		tasklet_schedule(&vp->tx_poll);
1139 	return IRQ_HANDLED;
1140 
1141 }
1142 
1143 static int irq_rr;
1144 
1145 static int vector_net_close(struct net_device *dev)
1146 {
1147 	struct vector_private *vp = netdev_priv(dev);
1148 	unsigned long flags;
1149 
1150 	netif_stop_queue(dev);
1151 	del_timer(&vp->tl);
1152 
1153 	if (vp->fds == NULL)
1154 		return 0;
1155 
1156 	/* Disable and free all IRQS */
1157 	if (vp->rx_irq > 0) {
1158 		um_free_irq(vp->rx_irq, dev);
1159 		vp->rx_irq = 0;
1160 	}
1161 	if (vp->tx_irq > 0) {
1162 		um_free_irq(vp->tx_irq, dev);
1163 		vp->tx_irq = 0;
1164 	}
1165 	tasklet_kill(&vp->tx_poll);
1166 	if (vp->fds->rx_fd > 0) {
1167 		if (vp->bpf)
1168 			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1169 		os_close_file(vp->fds->rx_fd);
1170 		vp->fds->rx_fd = -1;
1171 	}
1172 	if (vp->fds->tx_fd > 0) {
1173 		os_close_file(vp->fds->tx_fd);
1174 		vp->fds->tx_fd = -1;
1175 	}
1176 	if (vp->bpf != NULL)
1177 		kfree(vp->bpf->filter);
1178 	kfree(vp->bpf);
1179 	vp->bpf = NULL;
1180 	kfree(vp->fds->remote_addr);
1181 	kfree(vp->transport_data);
1182 	kfree(vp->header_rxbuffer);
1183 	kfree(vp->header_txbuffer);
1184 	if (vp->rx_queue != NULL)
1185 		destroy_queue(vp->rx_queue);
1186 	if (vp->tx_queue != NULL)
1187 		destroy_queue(vp->tx_queue);
1188 	kfree(vp->fds);
1189 	vp->fds = NULL;
1190 	spin_lock_irqsave(&vp->lock, flags);
1191 	vp->opened = false;
1192 	vp->in_error = false;
1193 	spin_unlock_irqrestore(&vp->lock, flags);
1194 	return 0;
1195 }
1196 
1197 /* TX tasklet */
1198 
1199 static void vector_tx_poll(unsigned long data)
1200 {
1201 	struct vector_private *vp = (struct vector_private *)data;
1202 
1203 	vp->estats.tx_kicks++;
1204 	vector_send(vp->tx_queue);
1205 }
1206 static void vector_reset_tx(struct work_struct *work)
1207 {
1208 	struct vector_private *vp =
1209 		container_of(work, struct vector_private, reset_tx);
1210 	netdev_reset_queue(vp->dev);
1211 	netif_start_queue(vp->dev);
1212 	netif_wake_queue(vp->dev);
1213 }
1214 
1215 static int vector_net_open(struct net_device *dev)
1216 {
1217 	struct vector_private *vp = netdev_priv(dev);
1218 	unsigned long flags;
1219 	int err = -EINVAL;
1220 	struct vector_device *vdevice;
1221 
1222 	spin_lock_irqsave(&vp->lock, flags);
1223 	if (vp->opened) {
1224 		spin_unlock_irqrestore(&vp->lock, flags);
1225 		return -ENXIO;
1226 	}
1227 	vp->opened = true;
1228 	spin_unlock_irqrestore(&vp->lock, flags);
1229 
1230 	vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1231 
1232 	vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1233 
1234 	if (vp->fds == NULL)
1235 		goto out_close;
1236 
1237 	if (build_transport_data(vp) < 0)
1238 		goto out_close;
1239 
1240 	if ((vp->options & VECTOR_RX) > 0) {
1241 		vp->rx_queue = create_queue(
1242 			vp,
1243 			get_depth(vp->parsed),
1244 			vp->rx_header_size,
1245 			MAX_IOV_SIZE
1246 		);
1247 		vp->rx_queue->queue_depth = get_depth(vp->parsed);
1248 	} else {
1249 		vp->header_rxbuffer = kmalloc(
1250 			vp->rx_header_size,
1251 			GFP_KERNEL
1252 		);
1253 		if (vp->header_rxbuffer == NULL)
1254 			goto out_close;
1255 	}
1256 	if ((vp->options & VECTOR_TX) > 0) {
1257 		vp->tx_queue = create_queue(
1258 			vp,
1259 			get_depth(vp->parsed),
1260 			vp->header_size,
1261 			MAX_IOV_SIZE
1262 		);
1263 	} else {
1264 		vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1265 		if (vp->header_txbuffer == NULL)
1266 			goto out_close;
1267 	}
1268 
1269 	/* READ IRQ */
1270 	err = um_request_irq(
1271 		irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1272 			IRQ_READ, vector_rx_interrupt,
1273 			IRQF_SHARED, dev->name, dev);
1274 	if (err != 0) {
1275 		netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1276 		err = -ENETUNREACH;
1277 		goto out_close;
1278 	}
1279 	vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1280 	dev->irq = irq_rr + VECTOR_BASE_IRQ;
1281 	irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1282 
1283 	/* WRITE IRQ - we need it only if we have vector TX */
1284 	if ((vp->options & VECTOR_TX) > 0) {
1285 		err = um_request_irq(
1286 			irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1287 				IRQ_WRITE, vector_tx_interrupt,
1288 				IRQF_SHARED, dev->name, dev);
1289 		if (err != 0) {
1290 			netdev_err(dev,
1291 				"vector_open: failed to get tx irq(%d)\n", err);
1292 			err = -ENETUNREACH;
1293 			goto out_close;
1294 		}
1295 		vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1296 		irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1297 	}
1298 
1299 	if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1300 		if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1301 			vp->options |= VECTOR_BPF;
1302 	}
1303 	if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1304 		vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1305 
1306 	if (vp->bpf != NULL)
1307 		uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1308 
1309 	netif_start_queue(dev);
1310 
1311 	/* clear buffer - it can happen that the host side of the interface
1312 	 * is full when we get here. In this case, new data is never queued,
1313 	 * SIGIOs never arrive, and the net never works.
1314 	 */
1315 
1316 	vector_rx(vp);
1317 
1318 	vector_reset_stats(vp);
1319 	vdevice = find_device(vp->unit);
1320 	vdevice->opened = 1;
1321 
1322 	if ((vp->options & VECTOR_TX) != 0)
1323 		add_timer(&vp->tl);
1324 	return 0;
1325 out_close:
1326 	vector_net_close(dev);
1327 	return err;
1328 }
1329 
1330 
1331 static void vector_net_set_multicast_list(struct net_device *dev)
1332 {
1333 	/* TODO: - we can do some BPF games here */
1334 	return;
1335 }
1336 
1337 static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1338 {
1339 	struct vector_private *vp = netdev_priv(dev);
1340 
1341 	vp->estats.tx_timeout_count++;
1342 	netif_trans_update(dev);
1343 	schedule_work(&vp->reset_tx);
1344 }
1345 
1346 static netdev_features_t vector_fix_features(struct net_device *dev,
1347 	netdev_features_t features)
1348 {
1349 	features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1350 	return features;
1351 }
1352 
1353 static int vector_set_features(struct net_device *dev,
1354 	netdev_features_t features)
1355 {
1356 	struct vector_private *vp = netdev_priv(dev);
1357 	/* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1358 	 * no way to negotiate it on raw sockets, so we can change
1359 	 * only our side.
1360 	 */
1361 	if (features & NETIF_F_GRO)
1362 		/* All new frame buffers will be GRO-sized */
1363 		vp->req_size = 65536;
1364 	else
1365 		/* All new frame buffers will be normal sized */
1366 		vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1367 	return 0;
1368 }
1369 
1370 #ifdef CONFIG_NET_POLL_CONTROLLER
1371 static void vector_net_poll_controller(struct net_device *dev)
1372 {
1373 	disable_irq(dev->irq);
1374 	vector_rx_interrupt(dev->irq, dev);
1375 	enable_irq(dev->irq);
1376 }
1377 #endif
1378 
1379 static void vector_net_get_drvinfo(struct net_device *dev,
1380 				struct ethtool_drvinfo *info)
1381 {
1382 	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1383 }
1384 
1385 static int vector_net_load_bpf_flash(struct net_device *dev,
1386 				struct ethtool_flash *efl)
1387 {
1388 	struct vector_private *vp = netdev_priv(dev);
1389 	struct vector_device *vdevice;
1390 	const struct firmware *fw;
1391 	int result = 0;
1392 
1393 	if (!(vp->options & VECTOR_BPF_FLASH)) {
1394 		netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1395 		return -1;
1396 	}
1397 
1398 	spin_lock(&vp->lock);
1399 
1400 	if (vp->bpf != NULL) {
1401 		if (vp->opened)
1402 			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1403 		kfree(vp->bpf->filter);
1404 		vp->bpf->filter = NULL;
1405 	} else {
1406 		vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
1407 		if (vp->bpf == NULL) {
1408 			netdev_err(dev, "failed to allocate memory for firmware\n");
1409 			goto flash_fail;
1410 		}
1411 	}
1412 
1413 	vdevice = find_device(vp->unit);
1414 
1415 	if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1416 		goto flash_fail;
1417 
1418 	vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1419 	if (!vp->bpf->filter)
1420 		goto free_buffer;
1421 
1422 	vp->bpf->len = fw->size / sizeof(struct sock_filter);
1423 	release_firmware(fw);
1424 
1425 	if (vp->opened)
1426 		result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1427 
1428 	spin_unlock(&vp->lock);
1429 
1430 	return result;
1431 
1432 free_buffer:
1433 	release_firmware(fw);
1434 
1435 flash_fail:
1436 	spin_unlock(&vp->lock);
1437 	if (vp->bpf != NULL)
1438 		kfree(vp->bpf->filter);
1439 	kfree(vp->bpf);
1440 	vp->bpf = NULL;
1441 	return -1;
1442 }
1443 
1444 static void vector_get_ringparam(struct net_device *netdev,
1445 				struct ethtool_ringparam *ring)
1446 {
1447 	struct vector_private *vp = netdev_priv(netdev);
1448 
1449 	ring->rx_max_pending = vp->rx_queue->max_depth;
1450 	ring->tx_max_pending = vp->tx_queue->max_depth;
1451 	ring->rx_pending = vp->rx_queue->max_depth;
1452 	ring->tx_pending = vp->tx_queue->max_depth;
1453 }
1454 
1455 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1456 {
1457 	switch (stringset) {
1458 	case ETH_SS_TEST:
1459 		*buf = '\0';
1460 		break;
1461 	case ETH_SS_STATS:
1462 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1463 		break;
1464 	default:
1465 		WARN_ON(1);
1466 		break;
1467 	}
1468 }
1469 
1470 static int vector_get_sset_count(struct net_device *dev, int sset)
1471 {
1472 	switch (sset) {
1473 	case ETH_SS_TEST:
1474 		return 0;
1475 	case ETH_SS_STATS:
1476 		return VECTOR_NUM_STATS;
1477 	default:
1478 		return -EOPNOTSUPP;
1479 	}
1480 }
1481 
1482 static void vector_get_ethtool_stats(struct net_device *dev,
1483 	struct ethtool_stats *estats,
1484 	u64 *tmp_stats)
1485 {
1486 	struct vector_private *vp = netdev_priv(dev);
1487 
1488 	memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1489 }
1490 
1491 static int vector_get_coalesce(struct net_device *netdev,
1492 					struct ethtool_coalesce *ec)
1493 {
1494 	struct vector_private *vp = netdev_priv(netdev);
1495 
1496 	ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1497 	return 0;
1498 }
1499 
1500 static int vector_set_coalesce(struct net_device *netdev,
1501 					struct ethtool_coalesce *ec)
1502 {
1503 	struct vector_private *vp = netdev_priv(netdev);
1504 
1505 	vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1506 	if (vp->coalesce == 0)
1507 		vp->coalesce = 1;
1508 	return 0;
1509 }
1510 
1511 static const struct ethtool_ops vector_net_ethtool_ops = {
1512 	.supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1513 	.get_drvinfo	= vector_net_get_drvinfo,
1514 	.get_link	= ethtool_op_get_link,
1515 	.get_ts_info	= ethtool_op_get_ts_info,
1516 	.get_ringparam	= vector_get_ringparam,
1517 	.get_strings	= vector_get_strings,
1518 	.get_sset_count	= vector_get_sset_count,
1519 	.get_ethtool_stats = vector_get_ethtool_stats,
1520 	.get_coalesce	= vector_get_coalesce,
1521 	.set_coalesce	= vector_set_coalesce,
1522 	.flash_device	= vector_net_load_bpf_flash,
1523 };
1524 
1525 
1526 static const struct net_device_ops vector_netdev_ops = {
1527 	.ndo_open		= vector_net_open,
1528 	.ndo_stop		= vector_net_close,
1529 	.ndo_start_xmit		= vector_net_start_xmit,
1530 	.ndo_set_rx_mode	= vector_net_set_multicast_list,
1531 	.ndo_tx_timeout		= vector_net_tx_timeout,
1532 	.ndo_set_mac_address	= eth_mac_addr,
1533 	.ndo_validate_addr	= eth_validate_addr,
1534 	.ndo_fix_features	= vector_fix_features,
1535 	.ndo_set_features	= vector_set_features,
1536 #ifdef CONFIG_NET_POLL_CONTROLLER
1537 	.ndo_poll_controller = vector_net_poll_controller,
1538 #endif
1539 };
1540 
1541 
1542 static void vector_timer_expire(struct timer_list *t)
1543 {
1544 	struct vector_private *vp = from_timer(vp, t, tl);
1545 
1546 	vp->estats.tx_kicks++;
1547 	vector_send(vp->tx_queue);
1548 }
1549 
1550 static void vector_eth_configure(
1551 		int n,
1552 		struct arglist *def
1553 	)
1554 {
1555 	struct vector_device *device;
1556 	struct net_device *dev;
1557 	struct vector_private *vp;
1558 	int err;
1559 
1560 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1561 	if (device == NULL) {
1562 		printk(KERN_ERR "eth_configure failed to allocate struct "
1563 				 "vector_device\n");
1564 		return;
1565 	}
1566 	dev = alloc_etherdev(sizeof(struct vector_private));
1567 	if (dev == NULL) {
1568 		printk(KERN_ERR "eth_configure: failed to allocate struct "
1569 				 "net_device for vec%d\n", n);
1570 		goto out_free_device;
1571 	}
1572 
1573 	dev->mtu = get_mtu(def);
1574 
1575 	INIT_LIST_HEAD(&device->list);
1576 	device->unit = n;
1577 
1578 	/* If this name ends up conflicting with an existing registered
1579 	 * netdevice, that is OK, register_netdev{,ice}() will notice this
1580 	 * and fail.
1581 	 */
1582 	snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1583 	uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1584 	vp = netdev_priv(dev);
1585 
1586 	/* sysfs register */
1587 	if (!driver_registered) {
1588 		platform_driver_register(&uml_net_driver);
1589 		driver_registered = 1;
1590 	}
1591 	device->pdev.id = n;
1592 	device->pdev.name = DRIVER_NAME;
1593 	device->pdev.dev.release = vector_device_release;
1594 	dev_set_drvdata(&device->pdev.dev, device);
1595 	if (platform_device_register(&device->pdev))
1596 		goto out_free_netdev;
1597 	SET_NETDEV_DEV(dev, &device->pdev.dev);
1598 
1599 	device->dev = dev;
1600 
1601 	*vp = ((struct vector_private)
1602 		{
1603 		.list			= LIST_HEAD_INIT(vp->list),
1604 		.dev			= dev,
1605 		.unit			= n,
1606 		.options		= get_transport_options(def),
1607 		.rx_irq			= 0,
1608 		.tx_irq			= 0,
1609 		.parsed			= def,
1610 		.max_packet		= get_mtu(def) + ETH_HEADER_OTHER,
1611 		/* TODO - we need to calculate headroom so that ip header
1612 		 * is 16 byte aligned all the time
1613 		 */
1614 		.headroom		= get_headroom(def),
1615 		.form_header		= NULL,
1616 		.verify_header		= NULL,
1617 		.header_rxbuffer	= NULL,
1618 		.header_txbuffer	= NULL,
1619 		.header_size		= 0,
1620 		.rx_header_size		= 0,
1621 		.rexmit_scheduled	= false,
1622 		.opened			= false,
1623 		.transport_data		= NULL,
1624 		.in_write_poll		= false,
1625 		.coalesce		= 2,
1626 		.req_size		= get_req_size(def),
1627 		.in_error		= false,
1628 		.bpf			= NULL
1629 	});
1630 
1631 	dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1632 	tasklet_init(&vp->tx_poll, vector_tx_poll, (unsigned long)vp);
1633 	INIT_WORK(&vp->reset_tx, vector_reset_tx);
1634 
1635 	timer_setup(&vp->tl, vector_timer_expire, 0);
1636 	spin_lock_init(&vp->lock);
1637 
1638 	/* FIXME */
1639 	dev->netdev_ops = &vector_netdev_ops;
1640 	dev->ethtool_ops = &vector_net_ethtool_ops;
1641 	dev->watchdog_timeo = (HZ >> 1);
1642 	/* primary IRQ - fixme */
1643 	dev->irq = 0; /* we will adjust this once opened */
1644 
1645 	rtnl_lock();
1646 	err = register_netdevice(dev);
1647 	rtnl_unlock();
1648 	if (err)
1649 		goto out_undo_user_init;
1650 
1651 	spin_lock(&vector_devices_lock);
1652 	list_add(&device->list, &vector_devices);
1653 	spin_unlock(&vector_devices_lock);
1654 
1655 	return;
1656 
1657 out_undo_user_init:
1658 	return;
1659 out_free_netdev:
1660 	free_netdev(dev);
1661 out_free_device:
1662 	kfree(device);
1663 }
1664 
1665 
1666 
1667 
1668 /*
1669  * Invoked late in the init
1670  */
1671 
1672 static int __init vector_init(void)
1673 {
1674 	struct list_head *ele;
1675 	struct vector_cmd_line_arg *def;
1676 	struct arglist *parsed;
1677 
1678 	list_for_each(ele, &vec_cmd_line) {
1679 		def = list_entry(ele, struct vector_cmd_line_arg, list);
1680 		parsed = uml_parse_vector_ifspec(def->arguments);
1681 		if (parsed != NULL)
1682 			vector_eth_configure(def->unit, parsed);
1683 	}
1684 	return 0;
1685 }
1686 
1687 
1688 /* Invoked at initial argument parsing, only stores
1689  * arguments until a proper vector_init is called
1690  * later
1691  */
1692 
1693 static int __init vector_setup(char *str)
1694 {
1695 	char *error;
1696 	int n, err;
1697 	struct vector_cmd_line_arg *new;
1698 
1699 	err = vector_parse(str, &n, &str, &error);
1700 	if (err) {
1701 		printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1702 				 str, error);
1703 		return 1;
1704 	}
1705 	new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1706 	if (!new)
1707 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1708 		      sizeof(*new));
1709 	INIT_LIST_HEAD(&new->list);
1710 	new->unit = n;
1711 	new->arguments = str;
1712 	list_add_tail(&new->list, &vec_cmd_line);
1713 	return 1;
1714 }
1715 
1716 __setup("vec", vector_setup);
1717 __uml_help(vector_setup,
1718 "vec[0-9]+:<option>=<value>,<option>=<value>\n"
1719 "	 Configure a vector io network device.\n\n"
1720 );
1721 
1722 late_initcall(vector_init);
1723 
1724 static struct mc_device vector_mc = {
1725 	.list		= LIST_HEAD_INIT(vector_mc.list),
1726 	.name		= "vec",
1727 	.config		= vector_config,
1728 	.get_config	= NULL,
1729 	.id		= vector_id,
1730 	.remove		= vector_remove,
1731 };
1732 
1733 #ifdef CONFIG_INET
1734 static int vector_inetaddr_event(
1735 	struct notifier_block *this,
1736 	unsigned long event,
1737 	void *ptr)
1738 {
1739 	return NOTIFY_DONE;
1740 }
1741 
1742 static struct notifier_block vector_inetaddr_notifier = {
1743 	.notifier_call		= vector_inetaddr_event,
1744 };
1745 
1746 static void inet_register(void)
1747 {
1748 	register_inetaddr_notifier(&vector_inetaddr_notifier);
1749 }
1750 #else
1751 static inline void inet_register(void)
1752 {
1753 }
1754 #endif
1755 
1756 static int vector_net_init(void)
1757 {
1758 	mconsole_register_dev(&vector_mc);
1759 	inet_register();
1760 	return 0;
1761 }
1762 
1763 __initcall(vector_net_init);
1764 
1765 
1766 
1767