1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2017 - Cambridge Greys Limited 4 * Copyright (C) 2011 - 2014 Cisco Systems Inc 5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and 7 * James Leu (jleu@mindspring.net). 8 * Copyright (C) 2001 by various other people who didn't put their name here. 9 */ 10 11 #include <linux/version.h> 12 #include <linux/memblock.h> 13 #include <linux/etherdevice.h> 14 #include <linux/ethtool.h> 15 #include <linux/inetdevice.h> 16 #include <linux/init.h> 17 #include <linux/list.h> 18 #include <linux/netdevice.h> 19 #include <linux/platform_device.h> 20 #include <linux/rtnetlink.h> 21 #include <linux/skbuff.h> 22 #include <linux/slab.h> 23 #include <linux/interrupt.h> 24 #include <init.h> 25 #include <irq_kern.h> 26 #include <irq_user.h> 27 #include <net_kern.h> 28 #include <os.h> 29 #include "mconsole_kern.h" 30 #include "vector_user.h" 31 #include "vector_kern.h" 32 33 /* 34 * Adapted from network devices with the following major changes: 35 * All transports are static - simplifies the code significantly 36 * Multiple FDs/IRQs per device 37 * Vector IO optionally used for read/write, falling back to legacy 38 * based on configuration and/or availability 39 * Configuration is no longer positional - L2TPv3 and GRE require up to 40 * 10 parameters, passing this as positional is not fit for purpose. 41 * Only socket transports are supported 42 */ 43 44 45 #define DRIVER_NAME "uml-vector" 46 #define DRIVER_VERSION "01" 47 struct vector_cmd_line_arg { 48 struct list_head list; 49 int unit; 50 char *arguments; 51 }; 52 53 struct vector_device { 54 struct list_head list; 55 struct net_device *dev; 56 struct platform_device pdev; 57 int unit; 58 int opened; 59 }; 60 61 static LIST_HEAD(vec_cmd_line); 62 63 static DEFINE_SPINLOCK(vector_devices_lock); 64 static LIST_HEAD(vector_devices); 65 66 static int driver_registered; 67 68 static void vector_eth_configure(int n, struct arglist *def); 69 70 /* Argument accessors to set variables (and/or set default values) 71 * mtu, buffer sizing, default headroom, etc 72 */ 73 74 #define DEFAULT_HEADROOM 2 75 #define SAFETY_MARGIN 32 76 #define DEFAULT_VECTOR_SIZE 64 77 #define TX_SMALL_PACKET 128 78 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1) 79 #define MAX_ITERATIONS 64 80 81 static const struct { 82 const char string[ETH_GSTRING_LEN]; 83 } ethtool_stats_keys[] = { 84 { "rx_queue_max" }, 85 { "rx_queue_running_average" }, 86 { "tx_queue_max" }, 87 { "tx_queue_running_average" }, 88 { "rx_encaps_errors" }, 89 { "tx_timeout_count" }, 90 { "tx_restart_queue" }, 91 { "tx_kicks" }, 92 { "tx_flow_control_xon" }, 93 { "tx_flow_control_xoff" }, 94 { "rx_csum_offload_good" }, 95 { "rx_csum_offload_errors"}, 96 { "sg_ok"}, 97 { "sg_linearized"}, 98 }; 99 100 #define VECTOR_NUM_STATS ARRAY_SIZE(ethtool_stats_keys) 101 102 static void vector_reset_stats(struct vector_private *vp) 103 { 104 vp->estats.rx_queue_max = 0; 105 vp->estats.rx_queue_running_average = 0; 106 vp->estats.tx_queue_max = 0; 107 vp->estats.tx_queue_running_average = 0; 108 vp->estats.rx_encaps_errors = 0; 109 vp->estats.tx_timeout_count = 0; 110 vp->estats.tx_restart_queue = 0; 111 vp->estats.tx_kicks = 0; 112 vp->estats.tx_flow_control_xon = 0; 113 vp->estats.tx_flow_control_xoff = 0; 114 vp->estats.sg_ok = 0; 115 vp->estats.sg_linearized = 0; 116 } 117 118 static int get_mtu(struct arglist *def) 119 { 120 char *mtu = uml_vector_fetch_arg(def, "mtu"); 121 long result; 122 123 if (mtu != NULL) { 124 if (kstrtoul(mtu, 10, &result) == 0) 125 if ((result < (1 << 16) - 1) && (result >= 576)) 126 return result; 127 } 128 return ETH_MAX_PACKET; 129 } 130 131 static int get_depth(struct arglist *def) 132 { 133 char *mtu = uml_vector_fetch_arg(def, "depth"); 134 long result; 135 136 if (mtu != NULL) { 137 if (kstrtoul(mtu, 10, &result) == 0) 138 return result; 139 } 140 return DEFAULT_VECTOR_SIZE; 141 } 142 143 static int get_headroom(struct arglist *def) 144 { 145 char *mtu = uml_vector_fetch_arg(def, "headroom"); 146 long result; 147 148 if (mtu != NULL) { 149 if (kstrtoul(mtu, 10, &result) == 0) 150 return result; 151 } 152 return DEFAULT_HEADROOM; 153 } 154 155 static int get_req_size(struct arglist *def) 156 { 157 char *gro = uml_vector_fetch_arg(def, "gro"); 158 long result; 159 160 if (gro != NULL) { 161 if (kstrtoul(gro, 10, &result) == 0) { 162 if (result > 0) 163 return 65536; 164 } 165 } 166 return get_mtu(def) + ETH_HEADER_OTHER + 167 get_headroom(def) + SAFETY_MARGIN; 168 } 169 170 171 static int get_transport_options(struct arglist *def) 172 { 173 char *transport = uml_vector_fetch_arg(def, "transport"); 174 char *vector = uml_vector_fetch_arg(def, "vec"); 175 176 int vec_rx = VECTOR_RX; 177 int vec_tx = VECTOR_TX; 178 long parsed; 179 180 if (vector != NULL) { 181 if (kstrtoul(vector, 10, &parsed) == 0) { 182 if (parsed == 0) { 183 vec_rx = 0; 184 vec_tx = 0; 185 } 186 } 187 } 188 189 190 if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0) 191 return 0; 192 if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0) 193 return (vec_rx | VECTOR_BPF); 194 if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0) 195 return (vec_rx | vec_tx | VECTOR_QDISC_BYPASS); 196 return (vec_rx | vec_tx); 197 } 198 199 200 /* A mini-buffer for packet drop read 201 * All of our supported transports are datagram oriented and we always 202 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller 203 * than the packet size it still counts as full packet read and will 204 * clean the incoming stream to keep sigio/epoll happy 205 */ 206 207 #define DROP_BUFFER_SIZE 32 208 209 static char *drop_buffer; 210 211 /* Array backed queues optimized for bulk enqueue/dequeue and 212 * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios. 213 * For more details and full design rationale see 214 * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt 215 */ 216 217 218 /* 219 * Advance the mmsg queue head by n = advance. Resets the queue to 220 * maximum enqueue/dequeue-at-once capacity if possible. Called by 221 * dequeuers. Caller must hold the head_lock! 222 */ 223 224 static int vector_advancehead(struct vector_queue *qi, int advance) 225 { 226 int queue_depth; 227 228 qi->head = 229 (qi->head + advance) 230 % qi->max_depth; 231 232 233 spin_lock(&qi->tail_lock); 234 qi->queue_depth -= advance; 235 236 /* we are at 0, use this to 237 * reset head and tail so we can use max size vectors 238 */ 239 240 if (qi->queue_depth == 0) { 241 qi->head = 0; 242 qi->tail = 0; 243 } 244 queue_depth = qi->queue_depth; 245 spin_unlock(&qi->tail_lock); 246 return queue_depth; 247 } 248 249 /* Advance the queue tail by n = advance. 250 * This is called by enqueuers which should hold the 251 * head lock already 252 */ 253 254 static int vector_advancetail(struct vector_queue *qi, int advance) 255 { 256 int queue_depth; 257 258 qi->tail = 259 (qi->tail + advance) 260 % qi->max_depth; 261 spin_lock(&qi->head_lock); 262 qi->queue_depth += advance; 263 queue_depth = qi->queue_depth; 264 spin_unlock(&qi->head_lock); 265 return queue_depth; 266 } 267 268 static int prep_msg(struct vector_private *vp, 269 struct sk_buff *skb, 270 struct iovec *iov) 271 { 272 int iov_index = 0; 273 int nr_frags, frag; 274 skb_frag_t *skb_frag; 275 276 nr_frags = skb_shinfo(skb)->nr_frags; 277 if (nr_frags > MAX_IOV_SIZE) { 278 if (skb_linearize(skb) != 0) 279 goto drop; 280 } 281 if (vp->header_size > 0) { 282 iov[iov_index].iov_len = vp->header_size; 283 vp->form_header(iov[iov_index].iov_base, skb, vp); 284 iov_index++; 285 } 286 iov[iov_index].iov_base = skb->data; 287 if (nr_frags > 0) { 288 iov[iov_index].iov_len = skb->len - skb->data_len; 289 vp->estats.sg_ok++; 290 } else 291 iov[iov_index].iov_len = skb->len; 292 iov_index++; 293 for (frag = 0; frag < nr_frags; frag++) { 294 skb_frag = &skb_shinfo(skb)->frags[frag]; 295 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); 296 iov[iov_index].iov_len = skb_frag_size(skb_frag); 297 iov_index++; 298 } 299 return iov_index; 300 drop: 301 return -1; 302 } 303 /* 304 * Generic vector enqueue with support for forming headers using transport 305 * specific callback. Allows GRE, L2TPv3, RAW and other transports 306 * to use a common enqueue procedure in vector mode 307 */ 308 309 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb) 310 { 311 struct vector_private *vp = netdev_priv(qi->dev); 312 int queue_depth; 313 int packet_len; 314 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 315 int iov_count; 316 317 spin_lock(&qi->tail_lock); 318 spin_lock(&qi->head_lock); 319 queue_depth = qi->queue_depth; 320 spin_unlock(&qi->head_lock); 321 322 if (skb) 323 packet_len = skb->len; 324 325 if (queue_depth < qi->max_depth) { 326 327 *(qi->skbuff_vector + qi->tail) = skb; 328 mmsg_vector += qi->tail; 329 iov_count = prep_msg( 330 vp, 331 skb, 332 mmsg_vector->msg_hdr.msg_iov 333 ); 334 if (iov_count < 1) 335 goto drop; 336 mmsg_vector->msg_hdr.msg_iovlen = iov_count; 337 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr; 338 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size; 339 queue_depth = vector_advancetail(qi, 1); 340 } else 341 goto drop; 342 spin_unlock(&qi->tail_lock); 343 return queue_depth; 344 drop: 345 qi->dev->stats.tx_dropped++; 346 if (skb != NULL) { 347 packet_len = skb->len; 348 dev_consume_skb_any(skb); 349 netdev_completed_queue(qi->dev, 1, packet_len); 350 } 351 spin_unlock(&qi->tail_lock); 352 return queue_depth; 353 } 354 355 static int consume_vector_skbs(struct vector_queue *qi, int count) 356 { 357 struct sk_buff *skb; 358 int skb_index; 359 int bytes_compl = 0; 360 361 for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) { 362 skb = *(qi->skbuff_vector + skb_index); 363 /* mark as empty to ensure correct destruction if 364 * needed 365 */ 366 bytes_compl += skb->len; 367 *(qi->skbuff_vector + skb_index) = NULL; 368 dev_consume_skb_any(skb); 369 } 370 qi->dev->stats.tx_bytes += bytes_compl; 371 qi->dev->stats.tx_packets += count; 372 netdev_completed_queue(qi->dev, count, bytes_compl); 373 return vector_advancehead(qi, count); 374 } 375 376 /* 377 * Generic vector deque via sendmmsg with support for forming headers 378 * using transport specific callback. Allows GRE, L2TPv3, RAW and 379 * other transports to use a common dequeue procedure in vector mode 380 */ 381 382 383 static int vector_send(struct vector_queue *qi) 384 { 385 struct vector_private *vp = netdev_priv(qi->dev); 386 struct mmsghdr *send_from; 387 int result = 0, send_len, queue_depth = qi->max_depth; 388 389 if (spin_trylock(&qi->head_lock)) { 390 if (spin_trylock(&qi->tail_lock)) { 391 /* update queue_depth to current value */ 392 queue_depth = qi->queue_depth; 393 spin_unlock(&qi->tail_lock); 394 while (queue_depth > 0) { 395 /* Calculate the start of the vector */ 396 send_len = queue_depth; 397 send_from = qi->mmsg_vector; 398 send_from += qi->head; 399 /* Adjust vector size if wraparound */ 400 if (send_len + qi->head > qi->max_depth) 401 send_len = qi->max_depth - qi->head; 402 /* Try to TX as many packets as possible */ 403 if (send_len > 0) { 404 result = uml_vector_sendmmsg( 405 vp->fds->tx_fd, 406 send_from, 407 send_len, 408 0 409 ); 410 vp->in_write_poll = 411 (result != send_len); 412 } 413 /* For some of the sendmmsg error scenarios 414 * we may end being unsure in the TX success 415 * for all packets. It is safer to declare 416 * them all TX-ed and blame the network. 417 */ 418 if (result < 0) { 419 if (net_ratelimit()) 420 netdev_err(vp->dev, "sendmmsg err=%i\n", 421 result); 422 vp->in_error = true; 423 result = send_len; 424 } 425 if (result > 0) { 426 queue_depth = 427 consume_vector_skbs(qi, result); 428 /* This is equivalent to an TX IRQ. 429 * Restart the upper layers to feed us 430 * more packets. 431 */ 432 if (result > vp->estats.tx_queue_max) 433 vp->estats.tx_queue_max = result; 434 vp->estats.tx_queue_running_average = 435 (vp->estats.tx_queue_running_average + result) >> 1; 436 } 437 netif_trans_update(qi->dev); 438 netif_wake_queue(qi->dev); 439 /* if TX is busy, break out of the send loop, 440 * poll write IRQ will reschedule xmit for us 441 */ 442 if (result != send_len) { 443 vp->estats.tx_restart_queue++; 444 break; 445 } 446 } 447 } 448 spin_unlock(&qi->head_lock); 449 } else { 450 tasklet_schedule(&vp->tx_poll); 451 } 452 return queue_depth; 453 } 454 455 /* Queue destructor. Deliberately stateless so we can use 456 * it in queue cleanup if initialization fails. 457 */ 458 459 static void destroy_queue(struct vector_queue *qi) 460 { 461 int i; 462 struct iovec *iov; 463 struct vector_private *vp = netdev_priv(qi->dev); 464 struct mmsghdr *mmsg_vector; 465 466 if (qi == NULL) 467 return; 468 /* deallocate any skbuffs - we rely on any unused to be 469 * set to NULL. 470 */ 471 if (qi->skbuff_vector != NULL) { 472 for (i = 0; i < qi->max_depth; i++) { 473 if (*(qi->skbuff_vector + i) != NULL) 474 dev_kfree_skb_any(*(qi->skbuff_vector + i)); 475 } 476 kfree(qi->skbuff_vector); 477 } 478 /* deallocate matching IOV structures including header buffs */ 479 if (qi->mmsg_vector != NULL) { 480 mmsg_vector = qi->mmsg_vector; 481 for (i = 0; i < qi->max_depth; i++) { 482 iov = mmsg_vector->msg_hdr.msg_iov; 483 if (iov != NULL) { 484 if ((vp->header_size > 0) && 485 (iov->iov_base != NULL)) 486 kfree(iov->iov_base); 487 kfree(iov); 488 } 489 mmsg_vector++; 490 } 491 kfree(qi->mmsg_vector); 492 } 493 kfree(qi); 494 } 495 496 /* 497 * Queue constructor. Create a queue with a given side. 498 */ 499 static struct vector_queue *create_queue( 500 struct vector_private *vp, 501 int max_size, 502 int header_size, 503 int num_extra_frags) 504 { 505 struct vector_queue *result; 506 int i; 507 struct iovec *iov; 508 struct mmsghdr *mmsg_vector; 509 510 result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL); 511 if (result == NULL) 512 return NULL; 513 result->max_depth = max_size; 514 result->dev = vp->dev; 515 result->mmsg_vector = kmalloc( 516 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL); 517 if (result->mmsg_vector == NULL) 518 goto out_mmsg_fail; 519 result->skbuff_vector = kmalloc( 520 (sizeof(void *) * max_size), GFP_KERNEL); 521 if (result->skbuff_vector == NULL) 522 goto out_skb_fail; 523 524 /* further failures can be handled safely by destroy_queue*/ 525 526 mmsg_vector = result->mmsg_vector; 527 for (i = 0; i < max_size; i++) { 528 /* Clear all pointers - we use non-NULL as marking on 529 * what to free on destruction 530 */ 531 *(result->skbuff_vector + i) = NULL; 532 mmsg_vector->msg_hdr.msg_iov = NULL; 533 mmsg_vector++; 534 } 535 mmsg_vector = result->mmsg_vector; 536 result->max_iov_frags = num_extra_frags; 537 for (i = 0; i < max_size; i++) { 538 if (vp->header_size > 0) 539 iov = kmalloc_array(3 + num_extra_frags, 540 sizeof(struct iovec), 541 GFP_KERNEL 542 ); 543 else 544 iov = kmalloc_array(2 + num_extra_frags, 545 sizeof(struct iovec), 546 GFP_KERNEL 547 ); 548 if (iov == NULL) 549 goto out_fail; 550 mmsg_vector->msg_hdr.msg_iov = iov; 551 mmsg_vector->msg_hdr.msg_iovlen = 1; 552 mmsg_vector->msg_hdr.msg_control = NULL; 553 mmsg_vector->msg_hdr.msg_controllen = 0; 554 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT; 555 mmsg_vector->msg_hdr.msg_name = NULL; 556 mmsg_vector->msg_hdr.msg_namelen = 0; 557 if (vp->header_size > 0) { 558 iov->iov_base = kmalloc(header_size, GFP_KERNEL); 559 if (iov->iov_base == NULL) 560 goto out_fail; 561 iov->iov_len = header_size; 562 mmsg_vector->msg_hdr.msg_iovlen = 2; 563 iov++; 564 } 565 iov->iov_base = NULL; 566 iov->iov_len = 0; 567 mmsg_vector++; 568 } 569 spin_lock_init(&result->head_lock); 570 spin_lock_init(&result->tail_lock); 571 result->queue_depth = 0; 572 result->head = 0; 573 result->tail = 0; 574 return result; 575 out_skb_fail: 576 kfree(result->mmsg_vector); 577 out_mmsg_fail: 578 kfree(result); 579 return NULL; 580 out_fail: 581 destroy_queue(result); 582 return NULL; 583 } 584 585 /* 586 * We do not use the RX queue as a proper wraparound queue for now 587 * This is not necessary because the consumption via netif_rx() 588 * happens in-line. While we can try using the return code of 589 * netif_rx() for flow control there are no drivers doing this today. 590 * For this RX specific use we ignore the tail/head locks and 591 * just read into a prepared queue filled with skbuffs. 592 */ 593 594 static struct sk_buff *prep_skb( 595 struct vector_private *vp, 596 struct user_msghdr *msg) 597 { 598 int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN; 599 struct sk_buff *result; 600 int iov_index = 0, len; 601 struct iovec *iov = msg->msg_iov; 602 int err, nr_frags, frag; 603 skb_frag_t *skb_frag; 604 605 if (vp->req_size <= linear) 606 len = linear; 607 else 608 len = vp->req_size; 609 result = alloc_skb_with_frags( 610 linear, 611 len - vp->max_packet, 612 3, 613 &err, 614 GFP_ATOMIC 615 ); 616 if (vp->header_size > 0) 617 iov_index++; 618 if (result == NULL) { 619 iov[iov_index].iov_base = NULL; 620 iov[iov_index].iov_len = 0; 621 goto done; 622 } 623 skb_reserve(result, vp->headroom); 624 result->dev = vp->dev; 625 skb_put(result, vp->max_packet); 626 result->data_len = len - vp->max_packet; 627 result->len += len - vp->max_packet; 628 skb_reset_mac_header(result); 629 result->ip_summed = CHECKSUM_NONE; 630 iov[iov_index].iov_base = result->data; 631 iov[iov_index].iov_len = vp->max_packet; 632 iov_index++; 633 634 nr_frags = skb_shinfo(result)->nr_frags; 635 for (frag = 0; frag < nr_frags; frag++) { 636 skb_frag = &skb_shinfo(result)->frags[frag]; 637 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); 638 if (iov[iov_index].iov_base != NULL) 639 iov[iov_index].iov_len = skb_frag_size(skb_frag); 640 else 641 iov[iov_index].iov_len = 0; 642 iov_index++; 643 } 644 done: 645 msg->msg_iovlen = iov_index; 646 return result; 647 } 648 649 650 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/ 651 652 static void prep_queue_for_rx(struct vector_queue *qi) 653 { 654 struct vector_private *vp = netdev_priv(qi->dev); 655 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 656 void **skbuff_vector = qi->skbuff_vector; 657 int i; 658 659 if (qi->queue_depth == 0) 660 return; 661 for (i = 0; i < qi->queue_depth; i++) { 662 /* it is OK if allocation fails - recvmmsg with NULL data in 663 * iov argument still performs an RX, just drops the packet 664 * This allows us stop faffing around with a "drop buffer" 665 */ 666 667 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr); 668 skbuff_vector++; 669 mmsg_vector++; 670 } 671 qi->queue_depth = 0; 672 } 673 674 static struct vector_device *find_device(int n) 675 { 676 struct vector_device *device; 677 struct list_head *ele; 678 679 spin_lock(&vector_devices_lock); 680 list_for_each(ele, &vector_devices) { 681 device = list_entry(ele, struct vector_device, list); 682 if (device->unit == n) 683 goto out; 684 } 685 device = NULL; 686 out: 687 spin_unlock(&vector_devices_lock); 688 return device; 689 } 690 691 static int vector_parse(char *str, int *index_out, char **str_out, 692 char **error_out) 693 { 694 int n, len, err; 695 char *start = str; 696 697 len = strlen(str); 698 699 while ((*str != ':') && (strlen(str) > 1)) 700 str++; 701 if (*str != ':') { 702 *error_out = "Expected ':' after device number"; 703 return -EINVAL; 704 } 705 *str = '\0'; 706 707 err = kstrtouint(start, 0, &n); 708 if (err < 0) { 709 *error_out = "Bad device number"; 710 return err; 711 } 712 713 str++; 714 if (find_device(n)) { 715 *error_out = "Device already configured"; 716 return -EINVAL; 717 } 718 719 *index_out = n; 720 *str_out = str; 721 return 0; 722 } 723 724 static int vector_config(char *str, char **error_out) 725 { 726 int err, n; 727 char *params; 728 struct arglist *parsed; 729 730 err = vector_parse(str, &n, ¶ms, error_out); 731 if (err != 0) 732 return err; 733 734 /* This string is broken up and the pieces used by the underlying 735 * driver. We should copy it to make sure things do not go wrong 736 * later. 737 */ 738 739 params = kstrdup(params, GFP_KERNEL); 740 if (params == NULL) { 741 *error_out = "vector_config failed to strdup string"; 742 return -ENOMEM; 743 } 744 745 parsed = uml_parse_vector_ifspec(params); 746 747 if (parsed == NULL) { 748 *error_out = "vector_config failed to parse parameters"; 749 return -EINVAL; 750 } 751 752 vector_eth_configure(n, parsed); 753 return 0; 754 } 755 756 static int vector_id(char **str, int *start_out, int *end_out) 757 { 758 char *end; 759 int n; 760 761 n = simple_strtoul(*str, &end, 0); 762 if ((*end != '\0') || (end == *str)) 763 return -1; 764 765 *start_out = n; 766 *end_out = n; 767 *str = end; 768 return n; 769 } 770 771 static int vector_remove(int n, char **error_out) 772 { 773 struct vector_device *vec_d; 774 struct net_device *dev; 775 struct vector_private *vp; 776 777 vec_d = find_device(n); 778 if (vec_d == NULL) 779 return -ENODEV; 780 dev = vec_d->dev; 781 vp = netdev_priv(dev); 782 if (vp->fds != NULL) 783 return -EBUSY; 784 unregister_netdev(dev); 785 platform_device_unregister(&vec_d->pdev); 786 return 0; 787 } 788 789 /* 790 * There is no shared per-transport initialization code, so 791 * we will just initialize each interface one by one and 792 * add them to a list 793 */ 794 795 static struct platform_driver uml_net_driver = { 796 .driver = { 797 .name = DRIVER_NAME, 798 }, 799 }; 800 801 802 static void vector_device_release(struct device *dev) 803 { 804 struct vector_device *device = dev_get_drvdata(dev); 805 struct net_device *netdev = device->dev; 806 807 list_del(&device->list); 808 kfree(device); 809 free_netdev(netdev); 810 } 811 812 /* Bog standard recv using recvmsg - not used normally unless the user 813 * explicitly specifies not to use recvmmsg vector RX. 814 */ 815 816 static int vector_legacy_rx(struct vector_private *vp) 817 { 818 int pkt_len; 819 struct user_msghdr hdr; 820 struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */ 821 int iovpos = 0; 822 struct sk_buff *skb; 823 int header_check; 824 825 hdr.msg_name = NULL; 826 hdr.msg_namelen = 0; 827 hdr.msg_iov = (struct iovec *) &iov; 828 hdr.msg_control = NULL; 829 hdr.msg_controllen = 0; 830 hdr.msg_flags = 0; 831 832 if (vp->header_size > 0) { 833 iov[0].iov_base = vp->header_rxbuffer; 834 iov[0].iov_len = vp->header_size; 835 } 836 837 skb = prep_skb(vp, &hdr); 838 839 if (skb == NULL) { 840 /* Read a packet into drop_buffer and don't do 841 * anything with it. 842 */ 843 iov[iovpos].iov_base = drop_buffer; 844 iov[iovpos].iov_len = DROP_BUFFER_SIZE; 845 hdr.msg_iovlen = 1; 846 vp->dev->stats.rx_dropped++; 847 } 848 849 pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0); 850 if (pkt_len < 0) { 851 vp->in_error = true; 852 return pkt_len; 853 } 854 855 if (skb != NULL) { 856 if (pkt_len > vp->header_size) { 857 if (vp->header_size > 0) { 858 header_check = vp->verify_header( 859 vp->header_rxbuffer, skb, vp); 860 if (header_check < 0) { 861 dev_kfree_skb_irq(skb); 862 vp->dev->stats.rx_dropped++; 863 vp->estats.rx_encaps_errors++; 864 return 0; 865 } 866 if (header_check > 0) { 867 vp->estats.rx_csum_offload_good++; 868 skb->ip_summed = CHECKSUM_UNNECESSARY; 869 } 870 } 871 pskb_trim(skb, pkt_len - vp->rx_header_size); 872 skb->protocol = eth_type_trans(skb, skb->dev); 873 vp->dev->stats.rx_bytes += skb->len; 874 vp->dev->stats.rx_packets++; 875 netif_rx(skb); 876 } else { 877 dev_kfree_skb_irq(skb); 878 } 879 } 880 return pkt_len; 881 } 882 883 /* 884 * Packet at a time TX which falls back to vector TX if the 885 * underlying transport is busy. 886 */ 887 888 889 890 static int writev_tx(struct vector_private *vp, struct sk_buff *skb) 891 { 892 struct iovec iov[3 + MAX_IOV_SIZE]; 893 int iov_count, pkt_len = 0; 894 895 iov[0].iov_base = vp->header_txbuffer; 896 iov_count = prep_msg(vp, skb, (struct iovec *) &iov); 897 898 if (iov_count < 1) 899 goto drop; 900 901 pkt_len = uml_vector_writev( 902 vp->fds->tx_fd, 903 (struct iovec *) &iov, 904 iov_count 905 ); 906 907 if (pkt_len < 0) 908 goto drop; 909 910 netif_trans_update(vp->dev); 911 netif_wake_queue(vp->dev); 912 913 if (pkt_len > 0) { 914 vp->dev->stats.tx_bytes += skb->len; 915 vp->dev->stats.tx_packets++; 916 } else { 917 vp->dev->stats.tx_dropped++; 918 } 919 consume_skb(skb); 920 return pkt_len; 921 drop: 922 vp->dev->stats.tx_dropped++; 923 consume_skb(skb); 924 if (pkt_len < 0) 925 vp->in_error = true; 926 return pkt_len; 927 } 928 929 /* 930 * Receive as many messages as we can in one call using the special 931 * mmsg vector matched to an skb vector which we prepared earlier. 932 */ 933 934 static int vector_mmsg_rx(struct vector_private *vp) 935 { 936 int packet_count, i; 937 struct vector_queue *qi = vp->rx_queue; 938 struct sk_buff *skb; 939 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 940 void **skbuff_vector = qi->skbuff_vector; 941 int header_check; 942 943 /* Refresh the vector and make sure it is with new skbs and the 944 * iovs are updated to point to them. 945 */ 946 947 prep_queue_for_rx(qi); 948 949 /* Fire the Lazy Gun - get as many packets as we can in one go. */ 950 951 packet_count = uml_vector_recvmmsg( 952 vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0); 953 954 if (packet_count < 0) 955 vp->in_error = true; 956 957 if (packet_count <= 0) 958 return packet_count; 959 960 /* We treat packet processing as enqueue, buffer refresh as dequeue 961 * The queue_depth tells us how many buffers have been used and how 962 * many do we need to prep the next time prep_queue_for_rx() is called. 963 */ 964 965 qi->queue_depth = packet_count; 966 967 for (i = 0; i < packet_count; i++) { 968 skb = (*skbuff_vector); 969 if (mmsg_vector->msg_len > vp->header_size) { 970 if (vp->header_size > 0) { 971 header_check = vp->verify_header( 972 mmsg_vector->msg_hdr.msg_iov->iov_base, 973 skb, 974 vp 975 ); 976 if (header_check < 0) { 977 /* Overlay header failed to verify - discard. 978 * We can actually keep this skb and reuse it, 979 * but that will make the prep logic too 980 * complex. 981 */ 982 dev_kfree_skb_irq(skb); 983 vp->estats.rx_encaps_errors++; 984 continue; 985 } 986 if (header_check > 0) { 987 vp->estats.rx_csum_offload_good++; 988 skb->ip_summed = CHECKSUM_UNNECESSARY; 989 } 990 } 991 pskb_trim(skb, 992 mmsg_vector->msg_len - vp->rx_header_size); 993 skb->protocol = eth_type_trans(skb, skb->dev); 994 /* 995 * We do not need to lock on updating stats here 996 * The interrupt loop is non-reentrant. 997 */ 998 vp->dev->stats.rx_bytes += skb->len; 999 vp->dev->stats.rx_packets++; 1000 netif_rx(skb); 1001 } else { 1002 /* Overlay header too short to do anything - discard. 1003 * We can actually keep this skb and reuse it, 1004 * but that will make the prep logic too complex. 1005 */ 1006 if (skb != NULL) 1007 dev_kfree_skb_irq(skb); 1008 } 1009 (*skbuff_vector) = NULL; 1010 /* Move to the next buffer element */ 1011 mmsg_vector++; 1012 skbuff_vector++; 1013 } 1014 if (packet_count > 0) { 1015 if (vp->estats.rx_queue_max < packet_count) 1016 vp->estats.rx_queue_max = packet_count; 1017 vp->estats.rx_queue_running_average = 1018 (vp->estats.rx_queue_running_average + packet_count) >> 1; 1019 } 1020 return packet_count; 1021 } 1022 1023 static void vector_rx(struct vector_private *vp) 1024 { 1025 int err; 1026 int iter = 0; 1027 1028 if ((vp->options & VECTOR_RX) > 0) 1029 while (((err = vector_mmsg_rx(vp)) > 0) && (iter < MAX_ITERATIONS)) 1030 iter++; 1031 else 1032 while (((err = vector_legacy_rx(vp)) > 0) && (iter < MAX_ITERATIONS)) 1033 iter++; 1034 if ((err != 0) && net_ratelimit()) 1035 netdev_err(vp->dev, "vector_rx: error(%d)\n", err); 1036 if (iter == MAX_ITERATIONS) 1037 netdev_err(vp->dev, "vector_rx: device stuck, remote end may have closed the connection\n"); 1038 } 1039 1040 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev) 1041 { 1042 struct vector_private *vp = netdev_priv(dev); 1043 int queue_depth = 0; 1044 1045 if (vp->in_error) { 1046 deactivate_fd(vp->fds->rx_fd, vp->rx_irq); 1047 if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0)) 1048 deactivate_fd(vp->fds->tx_fd, vp->tx_irq); 1049 return NETDEV_TX_BUSY; 1050 } 1051 1052 if ((vp->options & VECTOR_TX) == 0) { 1053 writev_tx(vp, skb); 1054 return NETDEV_TX_OK; 1055 } 1056 1057 /* We do BQL only in the vector path, no point doing it in 1058 * packet at a time mode as there is no device queue 1059 */ 1060 1061 netdev_sent_queue(vp->dev, skb->len); 1062 queue_depth = vector_enqueue(vp->tx_queue, skb); 1063 1064 /* if the device queue is full, stop the upper layers and 1065 * flush it. 1066 */ 1067 1068 if (queue_depth >= vp->tx_queue->max_depth - 1) { 1069 vp->estats.tx_kicks++; 1070 netif_stop_queue(dev); 1071 vector_send(vp->tx_queue); 1072 return NETDEV_TX_OK; 1073 } 1074 if (netdev_xmit_more()) { 1075 mod_timer(&vp->tl, vp->coalesce); 1076 return NETDEV_TX_OK; 1077 } 1078 if (skb->len < TX_SMALL_PACKET) { 1079 vp->estats.tx_kicks++; 1080 vector_send(vp->tx_queue); 1081 } else 1082 tasklet_schedule(&vp->tx_poll); 1083 return NETDEV_TX_OK; 1084 } 1085 1086 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id) 1087 { 1088 struct net_device *dev = dev_id; 1089 struct vector_private *vp = netdev_priv(dev); 1090 1091 if (!netif_running(dev)) 1092 return IRQ_NONE; 1093 vector_rx(vp); 1094 return IRQ_HANDLED; 1095 1096 } 1097 1098 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id) 1099 { 1100 struct net_device *dev = dev_id; 1101 struct vector_private *vp = netdev_priv(dev); 1102 1103 if (!netif_running(dev)) 1104 return IRQ_NONE; 1105 /* We need to pay attention to it only if we got 1106 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise 1107 * we ignore it. In the future, it may be worth 1108 * it to improve the IRQ controller a bit to make 1109 * tweaking the IRQ mask less costly 1110 */ 1111 1112 if (vp->in_write_poll) 1113 tasklet_schedule(&vp->tx_poll); 1114 return IRQ_HANDLED; 1115 1116 } 1117 1118 static int irq_rr; 1119 1120 static int vector_net_close(struct net_device *dev) 1121 { 1122 struct vector_private *vp = netdev_priv(dev); 1123 unsigned long flags; 1124 1125 netif_stop_queue(dev); 1126 del_timer(&vp->tl); 1127 1128 if (vp->fds == NULL) 1129 return 0; 1130 1131 /* Disable and free all IRQS */ 1132 if (vp->rx_irq > 0) { 1133 um_free_irq(vp->rx_irq, dev); 1134 vp->rx_irq = 0; 1135 } 1136 if (vp->tx_irq > 0) { 1137 um_free_irq(vp->tx_irq, dev); 1138 vp->tx_irq = 0; 1139 } 1140 tasklet_kill(&vp->tx_poll); 1141 if (vp->fds->rx_fd > 0) { 1142 os_close_file(vp->fds->rx_fd); 1143 vp->fds->rx_fd = -1; 1144 } 1145 if (vp->fds->tx_fd > 0) { 1146 os_close_file(vp->fds->tx_fd); 1147 vp->fds->tx_fd = -1; 1148 } 1149 kfree(vp->bpf); 1150 kfree(vp->fds->remote_addr); 1151 kfree(vp->transport_data); 1152 kfree(vp->header_rxbuffer); 1153 kfree(vp->header_txbuffer); 1154 if (vp->rx_queue != NULL) 1155 destroy_queue(vp->rx_queue); 1156 if (vp->tx_queue != NULL) 1157 destroy_queue(vp->tx_queue); 1158 kfree(vp->fds); 1159 vp->fds = NULL; 1160 spin_lock_irqsave(&vp->lock, flags); 1161 vp->opened = false; 1162 vp->in_error = false; 1163 spin_unlock_irqrestore(&vp->lock, flags); 1164 return 0; 1165 } 1166 1167 /* TX tasklet */ 1168 1169 static void vector_tx_poll(unsigned long data) 1170 { 1171 struct vector_private *vp = (struct vector_private *)data; 1172 1173 vp->estats.tx_kicks++; 1174 vector_send(vp->tx_queue); 1175 } 1176 static void vector_reset_tx(struct work_struct *work) 1177 { 1178 struct vector_private *vp = 1179 container_of(work, struct vector_private, reset_tx); 1180 netdev_reset_queue(vp->dev); 1181 netif_start_queue(vp->dev); 1182 netif_wake_queue(vp->dev); 1183 } 1184 static int vector_net_open(struct net_device *dev) 1185 { 1186 struct vector_private *vp = netdev_priv(dev); 1187 unsigned long flags; 1188 int err = -EINVAL; 1189 struct vector_device *vdevice; 1190 1191 spin_lock_irqsave(&vp->lock, flags); 1192 if (vp->opened) { 1193 spin_unlock_irqrestore(&vp->lock, flags); 1194 return -ENXIO; 1195 } 1196 vp->opened = true; 1197 spin_unlock_irqrestore(&vp->lock, flags); 1198 1199 vp->fds = uml_vector_user_open(vp->unit, vp->parsed); 1200 1201 if (vp->fds == NULL) 1202 goto out_close; 1203 1204 if (build_transport_data(vp) < 0) 1205 goto out_close; 1206 1207 if ((vp->options & VECTOR_RX) > 0) { 1208 vp->rx_queue = create_queue( 1209 vp, 1210 get_depth(vp->parsed), 1211 vp->rx_header_size, 1212 MAX_IOV_SIZE 1213 ); 1214 vp->rx_queue->queue_depth = get_depth(vp->parsed); 1215 } else { 1216 vp->header_rxbuffer = kmalloc( 1217 vp->rx_header_size, 1218 GFP_KERNEL 1219 ); 1220 if (vp->header_rxbuffer == NULL) 1221 goto out_close; 1222 } 1223 if ((vp->options & VECTOR_TX) > 0) { 1224 vp->tx_queue = create_queue( 1225 vp, 1226 get_depth(vp->parsed), 1227 vp->header_size, 1228 MAX_IOV_SIZE 1229 ); 1230 } else { 1231 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL); 1232 if (vp->header_txbuffer == NULL) 1233 goto out_close; 1234 } 1235 1236 /* READ IRQ */ 1237 err = um_request_irq( 1238 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd, 1239 IRQ_READ, vector_rx_interrupt, 1240 IRQF_SHARED, dev->name, dev); 1241 if (err != 0) { 1242 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err); 1243 err = -ENETUNREACH; 1244 goto out_close; 1245 } 1246 vp->rx_irq = irq_rr + VECTOR_BASE_IRQ; 1247 dev->irq = irq_rr + VECTOR_BASE_IRQ; 1248 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; 1249 1250 /* WRITE IRQ - we need it only if we have vector TX */ 1251 if ((vp->options & VECTOR_TX) > 0) { 1252 err = um_request_irq( 1253 irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd, 1254 IRQ_WRITE, vector_tx_interrupt, 1255 IRQF_SHARED, dev->name, dev); 1256 if (err != 0) { 1257 netdev_err(dev, 1258 "vector_open: failed to get tx irq(%d)\n", err); 1259 err = -ENETUNREACH; 1260 goto out_close; 1261 } 1262 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ; 1263 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; 1264 } 1265 1266 if ((vp->options & VECTOR_QDISC_BYPASS) != 0) { 1267 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd)) 1268 vp->options |= VECTOR_BPF; 1269 } 1270 if ((vp->options & VECTOR_BPF) != 0) 1271 vp->bpf = uml_vector_default_bpf(vp->fds->rx_fd, dev->dev_addr); 1272 1273 netif_start_queue(dev); 1274 1275 /* clear buffer - it can happen that the host side of the interface 1276 * is full when we get here. In this case, new data is never queued, 1277 * SIGIOs never arrive, and the net never works. 1278 */ 1279 1280 vector_rx(vp); 1281 1282 vector_reset_stats(vp); 1283 vdevice = find_device(vp->unit); 1284 vdevice->opened = 1; 1285 1286 if ((vp->options & VECTOR_TX) != 0) 1287 add_timer(&vp->tl); 1288 return 0; 1289 out_close: 1290 vector_net_close(dev); 1291 return err; 1292 } 1293 1294 1295 static void vector_net_set_multicast_list(struct net_device *dev) 1296 { 1297 /* TODO: - we can do some BPF games here */ 1298 return; 1299 } 1300 1301 static void vector_net_tx_timeout(struct net_device *dev) 1302 { 1303 struct vector_private *vp = netdev_priv(dev); 1304 1305 vp->estats.tx_timeout_count++; 1306 netif_trans_update(dev); 1307 schedule_work(&vp->reset_tx); 1308 } 1309 1310 static netdev_features_t vector_fix_features(struct net_device *dev, 1311 netdev_features_t features) 1312 { 1313 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 1314 return features; 1315 } 1316 1317 static int vector_set_features(struct net_device *dev, 1318 netdev_features_t features) 1319 { 1320 struct vector_private *vp = netdev_priv(dev); 1321 /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is 1322 * no way to negotiate it on raw sockets, so we can change 1323 * only our side. 1324 */ 1325 if (features & NETIF_F_GRO) 1326 /* All new frame buffers will be GRO-sized */ 1327 vp->req_size = 65536; 1328 else 1329 /* All new frame buffers will be normal sized */ 1330 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN; 1331 return 0; 1332 } 1333 1334 #ifdef CONFIG_NET_POLL_CONTROLLER 1335 static void vector_net_poll_controller(struct net_device *dev) 1336 { 1337 disable_irq(dev->irq); 1338 vector_rx_interrupt(dev->irq, dev); 1339 enable_irq(dev->irq); 1340 } 1341 #endif 1342 1343 static void vector_net_get_drvinfo(struct net_device *dev, 1344 struct ethtool_drvinfo *info) 1345 { 1346 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver)); 1347 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version)); 1348 } 1349 1350 static void vector_get_ringparam(struct net_device *netdev, 1351 struct ethtool_ringparam *ring) 1352 { 1353 struct vector_private *vp = netdev_priv(netdev); 1354 1355 ring->rx_max_pending = vp->rx_queue->max_depth; 1356 ring->tx_max_pending = vp->tx_queue->max_depth; 1357 ring->rx_pending = vp->rx_queue->max_depth; 1358 ring->tx_pending = vp->tx_queue->max_depth; 1359 } 1360 1361 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf) 1362 { 1363 switch (stringset) { 1364 case ETH_SS_TEST: 1365 *buf = '\0'; 1366 break; 1367 case ETH_SS_STATS: 1368 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 1369 break; 1370 default: 1371 WARN_ON(1); 1372 break; 1373 } 1374 } 1375 1376 static int vector_get_sset_count(struct net_device *dev, int sset) 1377 { 1378 switch (sset) { 1379 case ETH_SS_TEST: 1380 return 0; 1381 case ETH_SS_STATS: 1382 return VECTOR_NUM_STATS; 1383 default: 1384 return -EOPNOTSUPP; 1385 } 1386 } 1387 1388 static void vector_get_ethtool_stats(struct net_device *dev, 1389 struct ethtool_stats *estats, 1390 u64 *tmp_stats) 1391 { 1392 struct vector_private *vp = netdev_priv(dev); 1393 1394 memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats)); 1395 } 1396 1397 static int vector_get_coalesce(struct net_device *netdev, 1398 struct ethtool_coalesce *ec) 1399 { 1400 struct vector_private *vp = netdev_priv(netdev); 1401 1402 ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ; 1403 return 0; 1404 } 1405 1406 static int vector_set_coalesce(struct net_device *netdev, 1407 struct ethtool_coalesce *ec) 1408 { 1409 struct vector_private *vp = netdev_priv(netdev); 1410 1411 vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000; 1412 if (vp->coalesce == 0) 1413 vp->coalesce = 1; 1414 return 0; 1415 } 1416 1417 static const struct ethtool_ops vector_net_ethtool_ops = { 1418 .get_drvinfo = vector_net_get_drvinfo, 1419 .get_link = ethtool_op_get_link, 1420 .get_ts_info = ethtool_op_get_ts_info, 1421 .get_ringparam = vector_get_ringparam, 1422 .get_strings = vector_get_strings, 1423 .get_sset_count = vector_get_sset_count, 1424 .get_ethtool_stats = vector_get_ethtool_stats, 1425 .get_coalesce = vector_get_coalesce, 1426 .set_coalesce = vector_set_coalesce, 1427 }; 1428 1429 1430 static const struct net_device_ops vector_netdev_ops = { 1431 .ndo_open = vector_net_open, 1432 .ndo_stop = vector_net_close, 1433 .ndo_start_xmit = vector_net_start_xmit, 1434 .ndo_set_rx_mode = vector_net_set_multicast_list, 1435 .ndo_tx_timeout = vector_net_tx_timeout, 1436 .ndo_set_mac_address = eth_mac_addr, 1437 .ndo_validate_addr = eth_validate_addr, 1438 .ndo_fix_features = vector_fix_features, 1439 .ndo_set_features = vector_set_features, 1440 #ifdef CONFIG_NET_POLL_CONTROLLER 1441 .ndo_poll_controller = vector_net_poll_controller, 1442 #endif 1443 }; 1444 1445 1446 static void vector_timer_expire(struct timer_list *t) 1447 { 1448 struct vector_private *vp = from_timer(vp, t, tl); 1449 1450 vp->estats.tx_kicks++; 1451 vector_send(vp->tx_queue); 1452 } 1453 1454 static void vector_eth_configure( 1455 int n, 1456 struct arglist *def 1457 ) 1458 { 1459 struct vector_device *device; 1460 struct net_device *dev; 1461 struct vector_private *vp; 1462 int err; 1463 1464 device = kzalloc(sizeof(*device), GFP_KERNEL); 1465 if (device == NULL) { 1466 printk(KERN_ERR "eth_configure failed to allocate struct " 1467 "vector_device\n"); 1468 return; 1469 } 1470 dev = alloc_etherdev(sizeof(struct vector_private)); 1471 if (dev == NULL) { 1472 printk(KERN_ERR "eth_configure: failed to allocate struct " 1473 "net_device for vec%d\n", n); 1474 goto out_free_device; 1475 } 1476 1477 dev->mtu = get_mtu(def); 1478 1479 INIT_LIST_HEAD(&device->list); 1480 device->unit = n; 1481 1482 /* If this name ends up conflicting with an existing registered 1483 * netdevice, that is OK, register_netdev{,ice}() will notice this 1484 * and fail. 1485 */ 1486 snprintf(dev->name, sizeof(dev->name), "vec%d", n); 1487 uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac")); 1488 vp = netdev_priv(dev); 1489 1490 /* sysfs register */ 1491 if (!driver_registered) { 1492 platform_driver_register(¨_net_driver); 1493 driver_registered = 1; 1494 } 1495 device->pdev.id = n; 1496 device->pdev.name = DRIVER_NAME; 1497 device->pdev.dev.release = vector_device_release; 1498 dev_set_drvdata(&device->pdev.dev, device); 1499 if (platform_device_register(&device->pdev)) 1500 goto out_free_netdev; 1501 SET_NETDEV_DEV(dev, &device->pdev.dev); 1502 1503 device->dev = dev; 1504 1505 *vp = ((struct vector_private) 1506 { 1507 .list = LIST_HEAD_INIT(vp->list), 1508 .dev = dev, 1509 .unit = n, 1510 .options = get_transport_options(def), 1511 .rx_irq = 0, 1512 .tx_irq = 0, 1513 .parsed = def, 1514 .max_packet = get_mtu(def) + ETH_HEADER_OTHER, 1515 /* TODO - we need to calculate headroom so that ip header 1516 * is 16 byte aligned all the time 1517 */ 1518 .headroom = get_headroom(def), 1519 .form_header = NULL, 1520 .verify_header = NULL, 1521 .header_rxbuffer = NULL, 1522 .header_txbuffer = NULL, 1523 .header_size = 0, 1524 .rx_header_size = 0, 1525 .rexmit_scheduled = false, 1526 .opened = false, 1527 .transport_data = NULL, 1528 .in_write_poll = false, 1529 .coalesce = 2, 1530 .req_size = get_req_size(def), 1531 .in_error = false 1532 }); 1533 1534 dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST); 1535 tasklet_init(&vp->tx_poll, vector_tx_poll, (unsigned long)vp); 1536 INIT_WORK(&vp->reset_tx, vector_reset_tx); 1537 1538 timer_setup(&vp->tl, vector_timer_expire, 0); 1539 spin_lock_init(&vp->lock); 1540 1541 /* FIXME */ 1542 dev->netdev_ops = &vector_netdev_ops; 1543 dev->ethtool_ops = &vector_net_ethtool_ops; 1544 dev->watchdog_timeo = (HZ >> 1); 1545 /* primary IRQ - fixme */ 1546 dev->irq = 0; /* we will adjust this once opened */ 1547 1548 rtnl_lock(); 1549 err = register_netdevice(dev); 1550 rtnl_unlock(); 1551 if (err) 1552 goto out_undo_user_init; 1553 1554 spin_lock(&vector_devices_lock); 1555 list_add(&device->list, &vector_devices); 1556 spin_unlock(&vector_devices_lock); 1557 1558 return; 1559 1560 out_undo_user_init: 1561 return; 1562 out_free_netdev: 1563 free_netdev(dev); 1564 out_free_device: 1565 kfree(device); 1566 } 1567 1568 1569 1570 1571 /* 1572 * Invoked late in the init 1573 */ 1574 1575 static int __init vector_init(void) 1576 { 1577 struct list_head *ele; 1578 struct vector_cmd_line_arg *def; 1579 struct arglist *parsed; 1580 1581 list_for_each(ele, &vec_cmd_line) { 1582 def = list_entry(ele, struct vector_cmd_line_arg, list); 1583 parsed = uml_parse_vector_ifspec(def->arguments); 1584 if (parsed != NULL) 1585 vector_eth_configure(def->unit, parsed); 1586 } 1587 return 0; 1588 } 1589 1590 1591 /* Invoked at initial argument parsing, only stores 1592 * arguments until a proper vector_init is called 1593 * later 1594 */ 1595 1596 static int __init vector_setup(char *str) 1597 { 1598 char *error; 1599 int n, err; 1600 struct vector_cmd_line_arg *new; 1601 1602 err = vector_parse(str, &n, &str, &error); 1603 if (err) { 1604 printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n", 1605 str, error); 1606 return 1; 1607 } 1608 new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES); 1609 if (!new) 1610 panic("%s: Failed to allocate %zu bytes\n", __func__, 1611 sizeof(*new)); 1612 INIT_LIST_HEAD(&new->list); 1613 new->unit = n; 1614 new->arguments = str; 1615 list_add_tail(&new->list, &vec_cmd_line); 1616 return 1; 1617 } 1618 1619 __setup("vec", vector_setup); 1620 __uml_help(vector_setup, 1621 "vec[0-9]+:<option>=<value>,<option>=<value>\n" 1622 " Configure a vector io network device.\n\n" 1623 ); 1624 1625 late_initcall(vector_init); 1626 1627 static struct mc_device vector_mc = { 1628 .list = LIST_HEAD_INIT(vector_mc.list), 1629 .name = "vec", 1630 .config = vector_config, 1631 .get_config = NULL, 1632 .id = vector_id, 1633 .remove = vector_remove, 1634 }; 1635 1636 #ifdef CONFIG_INET 1637 static int vector_inetaddr_event( 1638 struct notifier_block *this, 1639 unsigned long event, 1640 void *ptr) 1641 { 1642 return NOTIFY_DONE; 1643 } 1644 1645 static struct notifier_block vector_inetaddr_notifier = { 1646 .notifier_call = vector_inetaddr_event, 1647 }; 1648 1649 static void inet_register(void) 1650 { 1651 register_inetaddr_notifier(&vector_inetaddr_notifier); 1652 } 1653 #else 1654 static inline void inet_register(void) 1655 { 1656 } 1657 #endif 1658 1659 static int vector_net_init(void) 1660 { 1661 mconsole_register_dev(&vector_mc); 1662 inet_register(); 1663 return 0; 1664 } 1665 1666 __initcall(vector_net_init); 1667 1668 1669 1670