1 /* 2 * Copyright (C) 2017 - Cambridge Greys Limited 3 * Copyright (C) 2011 - 2014 Cisco Systems Inc 4 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 5 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and 6 * James Leu (jleu@mindspring.net). 7 * Copyright (C) 2001 by various other people who didn't put their name here. 8 * Licensed under the GPL. 9 */ 10 11 #include <linux/version.h> 12 #include <linux/memblock.h> 13 #include <linux/etherdevice.h> 14 #include <linux/ethtool.h> 15 #include <linux/inetdevice.h> 16 #include <linux/init.h> 17 #include <linux/list.h> 18 #include <linux/netdevice.h> 19 #include <linux/platform_device.h> 20 #include <linux/rtnetlink.h> 21 #include <linux/skbuff.h> 22 #include <linux/slab.h> 23 #include <linux/interrupt.h> 24 #include <init.h> 25 #include <irq_kern.h> 26 #include <irq_user.h> 27 #include <net_kern.h> 28 #include <os.h> 29 #include "mconsole_kern.h" 30 #include "vector_user.h" 31 #include "vector_kern.h" 32 33 /* 34 * Adapted from network devices with the following major changes: 35 * All transports are static - simplifies the code significantly 36 * Multiple FDs/IRQs per device 37 * Vector IO optionally used for read/write, falling back to legacy 38 * based on configuration and/or availability 39 * Configuration is no longer positional - L2TPv3 and GRE require up to 40 * 10 parameters, passing this as positional is not fit for purpose. 41 * Only socket transports are supported 42 */ 43 44 45 #define DRIVER_NAME "uml-vector" 46 #define DRIVER_VERSION "01" 47 struct vector_cmd_line_arg { 48 struct list_head list; 49 int unit; 50 char *arguments; 51 }; 52 53 struct vector_device { 54 struct list_head list; 55 struct net_device *dev; 56 struct platform_device pdev; 57 int unit; 58 int opened; 59 }; 60 61 static LIST_HEAD(vec_cmd_line); 62 63 static DEFINE_SPINLOCK(vector_devices_lock); 64 static LIST_HEAD(vector_devices); 65 66 static int driver_registered; 67 68 static void vector_eth_configure(int n, struct arglist *def); 69 70 /* Argument accessors to set variables (and/or set default values) 71 * mtu, buffer sizing, default headroom, etc 72 */ 73 74 #define DEFAULT_HEADROOM 2 75 #define SAFETY_MARGIN 32 76 #define DEFAULT_VECTOR_SIZE 64 77 #define TX_SMALL_PACKET 128 78 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1) 79 80 static const struct { 81 const char string[ETH_GSTRING_LEN]; 82 } ethtool_stats_keys[] = { 83 { "rx_queue_max" }, 84 { "rx_queue_running_average" }, 85 { "tx_queue_max" }, 86 { "tx_queue_running_average" }, 87 { "rx_encaps_errors" }, 88 { "tx_timeout_count" }, 89 { "tx_restart_queue" }, 90 { "tx_kicks" }, 91 { "tx_flow_control_xon" }, 92 { "tx_flow_control_xoff" }, 93 { "rx_csum_offload_good" }, 94 { "rx_csum_offload_errors"}, 95 { "sg_ok"}, 96 { "sg_linearized"}, 97 }; 98 99 #define VECTOR_NUM_STATS ARRAY_SIZE(ethtool_stats_keys) 100 101 static void vector_reset_stats(struct vector_private *vp) 102 { 103 vp->estats.rx_queue_max = 0; 104 vp->estats.rx_queue_running_average = 0; 105 vp->estats.tx_queue_max = 0; 106 vp->estats.tx_queue_running_average = 0; 107 vp->estats.rx_encaps_errors = 0; 108 vp->estats.tx_timeout_count = 0; 109 vp->estats.tx_restart_queue = 0; 110 vp->estats.tx_kicks = 0; 111 vp->estats.tx_flow_control_xon = 0; 112 vp->estats.tx_flow_control_xoff = 0; 113 vp->estats.sg_ok = 0; 114 vp->estats.sg_linearized = 0; 115 } 116 117 static int get_mtu(struct arglist *def) 118 { 119 char *mtu = uml_vector_fetch_arg(def, "mtu"); 120 long result; 121 122 if (mtu != NULL) { 123 if (kstrtoul(mtu, 10, &result) == 0) 124 return result; 125 } 126 return ETH_MAX_PACKET; 127 } 128 129 static int get_depth(struct arglist *def) 130 { 131 char *mtu = uml_vector_fetch_arg(def, "depth"); 132 long result; 133 134 if (mtu != NULL) { 135 if (kstrtoul(mtu, 10, &result) == 0) 136 return result; 137 } 138 return DEFAULT_VECTOR_SIZE; 139 } 140 141 static int get_headroom(struct arglist *def) 142 { 143 char *mtu = uml_vector_fetch_arg(def, "headroom"); 144 long result; 145 146 if (mtu != NULL) { 147 if (kstrtoul(mtu, 10, &result) == 0) 148 return result; 149 } 150 return DEFAULT_HEADROOM; 151 } 152 153 static int get_req_size(struct arglist *def) 154 { 155 char *gro = uml_vector_fetch_arg(def, "gro"); 156 long result; 157 158 if (gro != NULL) { 159 if (kstrtoul(gro, 10, &result) == 0) { 160 if (result > 0) 161 return 65536; 162 } 163 } 164 return get_mtu(def) + ETH_HEADER_OTHER + 165 get_headroom(def) + SAFETY_MARGIN; 166 } 167 168 169 static int get_transport_options(struct arglist *def) 170 { 171 char *transport = uml_vector_fetch_arg(def, "transport"); 172 char *vector = uml_vector_fetch_arg(def, "vec"); 173 174 int vec_rx = VECTOR_RX; 175 int vec_tx = VECTOR_TX; 176 long parsed; 177 178 if (vector != NULL) { 179 if (kstrtoul(vector, 10, &parsed) == 0) { 180 if (parsed == 0) { 181 vec_rx = 0; 182 vec_tx = 0; 183 } 184 } 185 } 186 187 188 if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0) 189 return (vec_rx | VECTOR_BPF); 190 if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0) 191 return (vec_rx | vec_tx | VECTOR_QDISC_BYPASS); 192 return (vec_rx | vec_tx); 193 } 194 195 196 /* A mini-buffer for packet drop read 197 * All of our supported transports are datagram oriented and we always 198 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller 199 * than the packet size it still counts as full packet read and will 200 * clean the incoming stream to keep sigio/epoll happy 201 */ 202 203 #define DROP_BUFFER_SIZE 32 204 205 static char *drop_buffer; 206 207 /* Array backed queues optimized for bulk enqueue/dequeue and 208 * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios. 209 * For more details and full design rationale see 210 * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt 211 */ 212 213 214 /* 215 * Advance the mmsg queue head by n = advance. Resets the queue to 216 * maximum enqueue/dequeue-at-once capacity if possible. Called by 217 * dequeuers. Caller must hold the head_lock! 218 */ 219 220 static int vector_advancehead(struct vector_queue *qi, int advance) 221 { 222 int queue_depth; 223 224 qi->head = 225 (qi->head + advance) 226 % qi->max_depth; 227 228 229 spin_lock(&qi->tail_lock); 230 qi->queue_depth -= advance; 231 232 /* we are at 0, use this to 233 * reset head and tail so we can use max size vectors 234 */ 235 236 if (qi->queue_depth == 0) { 237 qi->head = 0; 238 qi->tail = 0; 239 } 240 queue_depth = qi->queue_depth; 241 spin_unlock(&qi->tail_lock); 242 return queue_depth; 243 } 244 245 /* Advance the queue tail by n = advance. 246 * This is called by enqueuers which should hold the 247 * head lock already 248 */ 249 250 static int vector_advancetail(struct vector_queue *qi, int advance) 251 { 252 int queue_depth; 253 254 qi->tail = 255 (qi->tail + advance) 256 % qi->max_depth; 257 spin_lock(&qi->head_lock); 258 qi->queue_depth += advance; 259 queue_depth = qi->queue_depth; 260 spin_unlock(&qi->head_lock); 261 return queue_depth; 262 } 263 264 static int prep_msg(struct vector_private *vp, 265 struct sk_buff *skb, 266 struct iovec *iov) 267 { 268 int iov_index = 0; 269 int nr_frags, frag; 270 skb_frag_t *skb_frag; 271 272 nr_frags = skb_shinfo(skb)->nr_frags; 273 if (nr_frags > MAX_IOV_SIZE) { 274 if (skb_linearize(skb) != 0) 275 goto drop; 276 } 277 if (vp->header_size > 0) { 278 iov[iov_index].iov_len = vp->header_size; 279 vp->form_header(iov[iov_index].iov_base, skb, vp); 280 iov_index++; 281 } 282 iov[iov_index].iov_base = skb->data; 283 if (nr_frags > 0) { 284 iov[iov_index].iov_len = skb->len - skb->data_len; 285 vp->estats.sg_ok++; 286 } else 287 iov[iov_index].iov_len = skb->len; 288 iov_index++; 289 for (frag = 0; frag < nr_frags; frag++) { 290 skb_frag = &skb_shinfo(skb)->frags[frag]; 291 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); 292 iov[iov_index].iov_len = skb_frag_size(skb_frag); 293 iov_index++; 294 } 295 return iov_index; 296 drop: 297 return -1; 298 } 299 /* 300 * Generic vector enqueue with support for forming headers using transport 301 * specific callback. Allows GRE, L2TPv3, RAW and other transports 302 * to use a common enqueue procedure in vector mode 303 */ 304 305 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb) 306 { 307 struct vector_private *vp = netdev_priv(qi->dev); 308 int queue_depth; 309 int packet_len; 310 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 311 int iov_count; 312 313 spin_lock(&qi->tail_lock); 314 spin_lock(&qi->head_lock); 315 queue_depth = qi->queue_depth; 316 spin_unlock(&qi->head_lock); 317 318 if (skb) 319 packet_len = skb->len; 320 321 if (queue_depth < qi->max_depth) { 322 323 *(qi->skbuff_vector + qi->tail) = skb; 324 mmsg_vector += qi->tail; 325 iov_count = prep_msg( 326 vp, 327 skb, 328 mmsg_vector->msg_hdr.msg_iov 329 ); 330 if (iov_count < 1) 331 goto drop; 332 mmsg_vector->msg_hdr.msg_iovlen = iov_count; 333 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr; 334 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size; 335 queue_depth = vector_advancetail(qi, 1); 336 } else 337 goto drop; 338 spin_unlock(&qi->tail_lock); 339 return queue_depth; 340 drop: 341 qi->dev->stats.tx_dropped++; 342 if (skb != NULL) { 343 packet_len = skb->len; 344 dev_consume_skb_any(skb); 345 netdev_completed_queue(qi->dev, 1, packet_len); 346 } 347 spin_unlock(&qi->tail_lock); 348 return queue_depth; 349 } 350 351 static int consume_vector_skbs(struct vector_queue *qi, int count) 352 { 353 struct sk_buff *skb; 354 int skb_index; 355 int bytes_compl = 0; 356 357 for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) { 358 skb = *(qi->skbuff_vector + skb_index); 359 /* mark as empty to ensure correct destruction if 360 * needed 361 */ 362 bytes_compl += skb->len; 363 *(qi->skbuff_vector + skb_index) = NULL; 364 dev_consume_skb_any(skb); 365 } 366 qi->dev->stats.tx_bytes += bytes_compl; 367 qi->dev->stats.tx_packets += count; 368 netdev_completed_queue(qi->dev, count, bytes_compl); 369 return vector_advancehead(qi, count); 370 } 371 372 /* 373 * Generic vector deque via sendmmsg with support for forming headers 374 * using transport specific callback. Allows GRE, L2TPv3, RAW and 375 * other transports to use a common dequeue procedure in vector mode 376 */ 377 378 379 static int vector_send(struct vector_queue *qi) 380 { 381 struct vector_private *vp = netdev_priv(qi->dev); 382 struct mmsghdr *send_from; 383 int result = 0, send_len, queue_depth = qi->max_depth; 384 385 if (spin_trylock(&qi->head_lock)) { 386 if (spin_trylock(&qi->tail_lock)) { 387 /* update queue_depth to current value */ 388 queue_depth = qi->queue_depth; 389 spin_unlock(&qi->tail_lock); 390 while (queue_depth > 0) { 391 /* Calculate the start of the vector */ 392 send_len = queue_depth; 393 send_from = qi->mmsg_vector; 394 send_from += qi->head; 395 /* Adjust vector size if wraparound */ 396 if (send_len + qi->head > qi->max_depth) 397 send_len = qi->max_depth - qi->head; 398 /* Try to TX as many packets as possible */ 399 if (send_len > 0) { 400 result = uml_vector_sendmmsg( 401 vp->fds->tx_fd, 402 send_from, 403 send_len, 404 0 405 ); 406 vp->in_write_poll = 407 (result != send_len); 408 } 409 /* For some of the sendmmsg error scenarios 410 * we may end being unsure in the TX success 411 * for all packets. It is safer to declare 412 * them all TX-ed and blame the network. 413 */ 414 if (result < 0) { 415 if (net_ratelimit()) 416 netdev_err(vp->dev, "sendmmsg err=%i\n", 417 result); 418 result = send_len; 419 } 420 if (result > 0) { 421 queue_depth = 422 consume_vector_skbs(qi, result); 423 /* This is equivalent to an TX IRQ. 424 * Restart the upper layers to feed us 425 * more packets. 426 */ 427 if (result > vp->estats.tx_queue_max) 428 vp->estats.tx_queue_max = result; 429 vp->estats.tx_queue_running_average = 430 (vp->estats.tx_queue_running_average + result) >> 1; 431 } 432 netif_trans_update(qi->dev); 433 netif_wake_queue(qi->dev); 434 /* if TX is busy, break out of the send loop, 435 * poll write IRQ will reschedule xmit for us 436 */ 437 if (result != send_len) { 438 vp->estats.tx_restart_queue++; 439 break; 440 } 441 } 442 } 443 spin_unlock(&qi->head_lock); 444 } else { 445 tasklet_schedule(&vp->tx_poll); 446 } 447 return queue_depth; 448 } 449 450 /* Queue destructor. Deliberately stateless so we can use 451 * it in queue cleanup if initialization fails. 452 */ 453 454 static void destroy_queue(struct vector_queue *qi) 455 { 456 int i; 457 struct iovec *iov; 458 struct vector_private *vp = netdev_priv(qi->dev); 459 struct mmsghdr *mmsg_vector; 460 461 if (qi == NULL) 462 return; 463 /* deallocate any skbuffs - we rely on any unused to be 464 * set to NULL. 465 */ 466 if (qi->skbuff_vector != NULL) { 467 for (i = 0; i < qi->max_depth; i++) { 468 if (*(qi->skbuff_vector + i) != NULL) 469 dev_kfree_skb_any(*(qi->skbuff_vector + i)); 470 } 471 kfree(qi->skbuff_vector); 472 } 473 /* deallocate matching IOV structures including header buffs */ 474 if (qi->mmsg_vector != NULL) { 475 mmsg_vector = qi->mmsg_vector; 476 for (i = 0; i < qi->max_depth; i++) { 477 iov = mmsg_vector->msg_hdr.msg_iov; 478 if (iov != NULL) { 479 if ((vp->header_size > 0) && 480 (iov->iov_base != NULL)) 481 kfree(iov->iov_base); 482 kfree(iov); 483 } 484 mmsg_vector++; 485 } 486 kfree(qi->mmsg_vector); 487 } 488 kfree(qi); 489 } 490 491 /* 492 * Queue constructor. Create a queue with a given side. 493 */ 494 static struct vector_queue *create_queue( 495 struct vector_private *vp, 496 int max_size, 497 int header_size, 498 int num_extra_frags) 499 { 500 struct vector_queue *result; 501 int i; 502 struct iovec *iov; 503 struct mmsghdr *mmsg_vector; 504 505 result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL); 506 if (result == NULL) 507 return NULL; 508 result->max_depth = max_size; 509 result->dev = vp->dev; 510 result->mmsg_vector = kmalloc( 511 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL); 512 if (result->mmsg_vector == NULL) 513 goto out_mmsg_fail; 514 result->skbuff_vector = kmalloc( 515 (sizeof(void *) * max_size), GFP_KERNEL); 516 if (result->skbuff_vector == NULL) 517 goto out_skb_fail; 518 519 /* further failures can be handled safely by destroy_queue*/ 520 521 mmsg_vector = result->mmsg_vector; 522 for (i = 0; i < max_size; i++) { 523 /* Clear all pointers - we use non-NULL as marking on 524 * what to free on destruction 525 */ 526 *(result->skbuff_vector + i) = NULL; 527 mmsg_vector->msg_hdr.msg_iov = NULL; 528 mmsg_vector++; 529 } 530 mmsg_vector = result->mmsg_vector; 531 result->max_iov_frags = num_extra_frags; 532 for (i = 0; i < max_size; i++) { 533 if (vp->header_size > 0) 534 iov = kmalloc_array(3 + num_extra_frags, 535 sizeof(struct iovec), 536 GFP_KERNEL 537 ); 538 else 539 iov = kmalloc_array(2 + num_extra_frags, 540 sizeof(struct iovec), 541 GFP_KERNEL 542 ); 543 if (iov == NULL) 544 goto out_fail; 545 mmsg_vector->msg_hdr.msg_iov = iov; 546 mmsg_vector->msg_hdr.msg_iovlen = 1; 547 mmsg_vector->msg_hdr.msg_control = NULL; 548 mmsg_vector->msg_hdr.msg_controllen = 0; 549 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT; 550 mmsg_vector->msg_hdr.msg_name = NULL; 551 mmsg_vector->msg_hdr.msg_namelen = 0; 552 if (vp->header_size > 0) { 553 iov->iov_base = kmalloc(header_size, GFP_KERNEL); 554 if (iov->iov_base == NULL) 555 goto out_fail; 556 iov->iov_len = header_size; 557 mmsg_vector->msg_hdr.msg_iovlen = 2; 558 iov++; 559 } 560 iov->iov_base = NULL; 561 iov->iov_len = 0; 562 mmsg_vector++; 563 } 564 spin_lock_init(&result->head_lock); 565 spin_lock_init(&result->tail_lock); 566 result->queue_depth = 0; 567 result->head = 0; 568 result->tail = 0; 569 return result; 570 out_skb_fail: 571 kfree(result->mmsg_vector); 572 out_mmsg_fail: 573 kfree(result); 574 return NULL; 575 out_fail: 576 destroy_queue(result); 577 return NULL; 578 } 579 580 /* 581 * We do not use the RX queue as a proper wraparound queue for now 582 * This is not necessary because the consumption via netif_rx() 583 * happens in-line. While we can try using the return code of 584 * netif_rx() for flow control there are no drivers doing this today. 585 * For this RX specific use we ignore the tail/head locks and 586 * just read into a prepared queue filled with skbuffs. 587 */ 588 589 static struct sk_buff *prep_skb( 590 struct vector_private *vp, 591 struct user_msghdr *msg) 592 { 593 int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN; 594 struct sk_buff *result; 595 int iov_index = 0, len; 596 struct iovec *iov = msg->msg_iov; 597 int err, nr_frags, frag; 598 skb_frag_t *skb_frag; 599 600 if (vp->req_size <= linear) 601 len = linear; 602 else 603 len = vp->req_size; 604 result = alloc_skb_with_frags( 605 linear, 606 len - vp->max_packet, 607 3, 608 &err, 609 GFP_ATOMIC 610 ); 611 if (vp->header_size > 0) 612 iov_index++; 613 if (result == NULL) { 614 iov[iov_index].iov_base = NULL; 615 iov[iov_index].iov_len = 0; 616 goto done; 617 } 618 skb_reserve(result, vp->headroom); 619 result->dev = vp->dev; 620 skb_put(result, vp->max_packet); 621 result->data_len = len - vp->max_packet; 622 result->len += len - vp->max_packet; 623 skb_reset_mac_header(result); 624 result->ip_summed = CHECKSUM_NONE; 625 iov[iov_index].iov_base = result->data; 626 iov[iov_index].iov_len = vp->max_packet; 627 iov_index++; 628 629 nr_frags = skb_shinfo(result)->nr_frags; 630 for (frag = 0; frag < nr_frags; frag++) { 631 skb_frag = &skb_shinfo(result)->frags[frag]; 632 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); 633 if (iov[iov_index].iov_base != NULL) 634 iov[iov_index].iov_len = skb_frag_size(skb_frag); 635 else 636 iov[iov_index].iov_len = 0; 637 iov_index++; 638 } 639 done: 640 msg->msg_iovlen = iov_index; 641 return result; 642 } 643 644 645 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/ 646 647 static void prep_queue_for_rx(struct vector_queue *qi) 648 { 649 struct vector_private *vp = netdev_priv(qi->dev); 650 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 651 void **skbuff_vector = qi->skbuff_vector; 652 int i; 653 654 if (qi->queue_depth == 0) 655 return; 656 for (i = 0; i < qi->queue_depth; i++) { 657 /* it is OK if allocation fails - recvmmsg with NULL data in 658 * iov argument still performs an RX, just drops the packet 659 * This allows us stop faffing around with a "drop buffer" 660 */ 661 662 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr); 663 skbuff_vector++; 664 mmsg_vector++; 665 } 666 qi->queue_depth = 0; 667 } 668 669 static struct vector_device *find_device(int n) 670 { 671 struct vector_device *device; 672 struct list_head *ele; 673 674 spin_lock(&vector_devices_lock); 675 list_for_each(ele, &vector_devices) { 676 device = list_entry(ele, struct vector_device, list); 677 if (device->unit == n) 678 goto out; 679 } 680 device = NULL; 681 out: 682 spin_unlock(&vector_devices_lock); 683 return device; 684 } 685 686 static int vector_parse(char *str, int *index_out, char **str_out, 687 char **error_out) 688 { 689 int n, len, err; 690 char *start = str; 691 692 len = strlen(str); 693 694 while ((*str != ':') && (strlen(str) > 1)) 695 str++; 696 if (*str != ':') { 697 *error_out = "Expected ':' after device number"; 698 return -EINVAL; 699 } 700 *str = '\0'; 701 702 err = kstrtouint(start, 0, &n); 703 if (err < 0) { 704 *error_out = "Bad device number"; 705 return err; 706 } 707 708 str++; 709 if (find_device(n)) { 710 *error_out = "Device already configured"; 711 return -EINVAL; 712 } 713 714 *index_out = n; 715 *str_out = str; 716 return 0; 717 } 718 719 static int vector_config(char *str, char **error_out) 720 { 721 int err, n; 722 char *params; 723 struct arglist *parsed; 724 725 err = vector_parse(str, &n, ¶ms, error_out); 726 if (err != 0) 727 return err; 728 729 /* This string is broken up and the pieces used by the underlying 730 * driver. We should copy it to make sure things do not go wrong 731 * later. 732 */ 733 734 params = kstrdup(params, GFP_KERNEL); 735 if (params == NULL) { 736 *error_out = "vector_config failed to strdup string"; 737 return -ENOMEM; 738 } 739 740 parsed = uml_parse_vector_ifspec(params); 741 742 if (parsed == NULL) { 743 *error_out = "vector_config failed to parse parameters"; 744 return -EINVAL; 745 } 746 747 vector_eth_configure(n, parsed); 748 return 0; 749 } 750 751 static int vector_id(char **str, int *start_out, int *end_out) 752 { 753 char *end; 754 int n; 755 756 n = simple_strtoul(*str, &end, 0); 757 if ((*end != '\0') || (end == *str)) 758 return -1; 759 760 *start_out = n; 761 *end_out = n; 762 *str = end; 763 return n; 764 } 765 766 static int vector_remove(int n, char **error_out) 767 { 768 struct vector_device *vec_d; 769 struct net_device *dev; 770 struct vector_private *vp; 771 772 vec_d = find_device(n); 773 if (vec_d == NULL) 774 return -ENODEV; 775 dev = vec_d->dev; 776 vp = netdev_priv(dev); 777 if (vp->fds != NULL) 778 return -EBUSY; 779 unregister_netdev(dev); 780 platform_device_unregister(&vec_d->pdev); 781 return 0; 782 } 783 784 /* 785 * There is no shared per-transport initialization code, so 786 * we will just initialize each interface one by one and 787 * add them to a list 788 */ 789 790 static struct platform_driver uml_net_driver = { 791 .driver = { 792 .name = DRIVER_NAME, 793 }, 794 }; 795 796 797 static void vector_device_release(struct device *dev) 798 { 799 struct vector_device *device = dev_get_drvdata(dev); 800 struct net_device *netdev = device->dev; 801 802 list_del(&device->list); 803 kfree(device); 804 free_netdev(netdev); 805 } 806 807 /* Bog standard recv using recvmsg - not used normally unless the user 808 * explicitly specifies not to use recvmmsg vector RX. 809 */ 810 811 static int vector_legacy_rx(struct vector_private *vp) 812 { 813 int pkt_len; 814 struct user_msghdr hdr; 815 struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */ 816 int iovpos = 0; 817 struct sk_buff *skb; 818 int header_check; 819 820 hdr.msg_name = NULL; 821 hdr.msg_namelen = 0; 822 hdr.msg_iov = (struct iovec *) &iov; 823 hdr.msg_control = NULL; 824 hdr.msg_controllen = 0; 825 hdr.msg_flags = 0; 826 827 if (vp->header_size > 0) { 828 iov[0].iov_base = vp->header_rxbuffer; 829 iov[0].iov_len = vp->header_size; 830 } 831 832 skb = prep_skb(vp, &hdr); 833 834 if (skb == NULL) { 835 /* Read a packet into drop_buffer and don't do 836 * anything with it. 837 */ 838 iov[iovpos].iov_base = drop_buffer; 839 iov[iovpos].iov_len = DROP_BUFFER_SIZE; 840 hdr.msg_iovlen = 1; 841 vp->dev->stats.rx_dropped++; 842 } 843 844 pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0); 845 846 if (skb != NULL) { 847 if (pkt_len > vp->header_size) { 848 if (vp->header_size > 0) { 849 header_check = vp->verify_header( 850 vp->header_rxbuffer, skb, vp); 851 if (header_check < 0) { 852 dev_kfree_skb_irq(skb); 853 vp->dev->stats.rx_dropped++; 854 vp->estats.rx_encaps_errors++; 855 return 0; 856 } 857 if (header_check > 0) { 858 vp->estats.rx_csum_offload_good++; 859 skb->ip_summed = CHECKSUM_UNNECESSARY; 860 } 861 } 862 pskb_trim(skb, pkt_len - vp->rx_header_size); 863 skb->protocol = eth_type_trans(skb, skb->dev); 864 vp->dev->stats.rx_bytes += skb->len; 865 vp->dev->stats.rx_packets++; 866 netif_rx(skb); 867 } else { 868 dev_kfree_skb_irq(skb); 869 } 870 } 871 return pkt_len; 872 } 873 874 /* 875 * Packet at a time TX which falls back to vector TX if the 876 * underlying transport is busy. 877 */ 878 879 880 881 static int writev_tx(struct vector_private *vp, struct sk_buff *skb) 882 { 883 struct iovec iov[3 + MAX_IOV_SIZE]; 884 int iov_count, pkt_len = 0; 885 886 iov[0].iov_base = vp->header_txbuffer; 887 iov_count = prep_msg(vp, skb, (struct iovec *) &iov); 888 889 if (iov_count < 1) 890 goto drop; 891 pkt_len = uml_vector_writev( 892 vp->fds->tx_fd, 893 (struct iovec *) &iov, 894 iov_count 895 ); 896 897 netif_trans_update(vp->dev); 898 netif_wake_queue(vp->dev); 899 900 if (pkt_len > 0) { 901 vp->dev->stats.tx_bytes += skb->len; 902 vp->dev->stats.tx_packets++; 903 } else { 904 vp->dev->stats.tx_dropped++; 905 } 906 consume_skb(skb); 907 return pkt_len; 908 drop: 909 vp->dev->stats.tx_dropped++; 910 consume_skb(skb); 911 return pkt_len; 912 } 913 914 /* 915 * Receive as many messages as we can in one call using the special 916 * mmsg vector matched to an skb vector which we prepared earlier. 917 */ 918 919 static int vector_mmsg_rx(struct vector_private *vp) 920 { 921 int packet_count, i; 922 struct vector_queue *qi = vp->rx_queue; 923 struct sk_buff *skb; 924 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 925 void **skbuff_vector = qi->skbuff_vector; 926 int header_check; 927 928 /* Refresh the vector and make sure it is with new skbs and the 929 * iovs are updated to point to them. 930 */ 931 932 prep_queue_for_rx(qi); 933 934 /* Fire the Lazy Gun - get as many packets as we can in one go. */ 935 936 packet_count = uml_vector_recvmmsg( 937 vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0); 938 939 if (packet_count <= 0) 940 return packet_count; 941 942 /* We treat packet processing as enqueue, buffer refresh as dequeue 943 * The queue_depth tells us how many buffers have been used and how 944 * many do we need to prep the next time prep_queue_for_rx() is called. 945 */ 946 947 qi->queue_depth = packet_count; 948 949 for (i = 0; i < packet_count; i++) { 950 skb = (*skbuff_vector); 951 if (mmsg_vector->msg_len > vp->header_size) { 952 if (vp->header_size > 0) { 953 header_check = vp->verify_header( 954 mmsg_vector->msg_hdr.msg_iov->iov_base, 955 skb, 956 vp 957 ); 958 if (header_check < 0) { 959 /* Overlay header failed to verify - discard. 960 * We can actually keep this skb and reuse it, 961 * but that will make the prep logic too 962 * complex. 963 */ 964 dev_kfree_skb_irq(skb); 965 vp->estats.rx_encaps_errors++; 966 continue; 967 } 968 if (header_check > 0) { 969 vp->estats.rx_csum_offload_good++; 970 skb->ip_summed = CHECKSUM_UNNECESSARY; 971 } 972 } 973 pskb_trim(skb, 974 mmsg_vector->msg_len - vp->rx_header_size); 975 skb->protocol = eth_type_trans(skb, skb->dev); 976 /* 977 * We do not need to lock on updating stats here 978 * The interrupt loop is non-reentrant. 979 */ 980 vp->dev->stats.rx_bytes += skb->len; 981 vp->dev->stats.rx_packets++; 982 netif_rx(skb); 983 } else { 984 /* Overlay header too short to do anything - discard. 985 * We can actually keep this skb and reuse it, 986 * but that will make the prep logic too complex. 987 */ 988 if (skb != NULL) 989 dev_kfree_skb_irq(skb); 990 } 991 (*skbuff_vector) = NULL; 992 /* Move to the next buffer element */ 993 mmsg_vector++; 994 skbuff_vector++; 995 } 996 if (packet_count > 0) { 997 if (vp->estats.rx_queue_max < packet_count) 998 vp->estats.rx_queue_max = packet_count; 999 vp->estats.rx_queue_running_average = 1000 (vp->estats.rx_queue_running_average + packet_count) >> 1; 1001 } 1002 return packet_count; 1003 } 1004 1005 static void vector_rx(struct vector_private *vp) 1006 { 1007 int err; 1008 1009 if ((vp->options & VECTOR_RX) > 0) 1010 while ((err = vector_mmsg_rx(vp)) > 0) 1011 ; 1012 else 1013 while ((err = vector_legacy_rx(vp)) > 0) 1014 ; 1015 if ((err != 0) && net_ratelimit()) 1016 netdev_err(vp->dev, "vector_rx: error(%d)\n", err); 1017 } 1018 1019 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev) 1020 { 1021 struct vector_private *vp = netdev_priv(dev); 1022 int queue_depth = 0; 1023 1024 if ((vp->options & VECTOR_TX) == 0) { 1025 writev_tx(vp, skb); 1026 return NETDEV_TX_OK; 1027 } 1028 1029 /* We do BQL only in the vector path, no point doing it in 1030 * packet at a time mode as there is no device queue 1031 */ 1032 1033 netdev_sent_queue(vp->dev, skb->len); 1034 queue_depth = vector_enqueue(vp->tx_queue, skb); 1035 1036 /* if the device queue is full, stop the upper layers and 1037 * flush it. 1038 */ 1039 1040 if (queue_depth >= vp->tx_queue->max_depth - 1) { 1041 vp->estats.tx_kicks++; 1042 netif_stop_queue(dev); 1043 vector_send(vp->tx_queue); 1044 return NETDEV_TX_OK; 1045 } 1046 if (netdev_xmit_more()) { 1047 mod_timer(&vp->tl, vp->coalesce); 1048 return NETDEV_TX_OK; 1049 } 1050 if (skb->len < TX_SMALL_PACKET) { 1051 vp->estats.tx_kicks++; 1052 vector_send(vp->tx_queue); 1053 } else 1054 tasklet_schedule(&vp->tx_poll); 1055 return NETDEV_TX_OK; 1056 } 1057 1058 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id) 1059 { 1060 struct net_device *dev = dev_id; 1061 struct vector_private *vp = netdev_priv(dev); 1062 1063 if (!netif_running(dev)) 1064 return IRQ_NONE; 1065 vector_rx(vp); 1066 return IRQ_HANDLED; 1067 1068 } 1069 1070 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id) 1071 { 1072 struct net_device *dev = dev_id; 1073 struct vector_private *vp = netdev_priv(dev); 1074 1075 if (!netif_running(dev)) 1076 return IRQ_NONE; 1077 /* We need to pay attention to it only if we got 1078 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise 1079 * we ignore it. In the future, it may be worth 1080 * it to improve the IRQ controller a bit to make 1081 * tweaking the IRQ mask less costly 1082 */ 1083 1084 if (vp->in_write_poll) 1085 tasklet_schedule(&vp->tx_poll); 1086 return IRQ_HANDLED; 1087 1088 } 1089 1090 static int irq_rr; 1091 1092 static int vector_net_close(struct net_device *dev) 1093 { 1094 struct vector_private *vp = netdev_priv(dev); 1095 unsigned long flags; 1096 1097 netif_stop_queue(dev); 1098 del_timer(&vp->tl); 1099 1100 if (vp->fds == NULL) 1101 return 0; 1102 1103 /* Disable and free all IRQS */ 1104 if (vp->rx_irq > 0) { 1105 um_free_irq(vp->rx_irq, dev); 1106 vp->rx_irq = 0; 1107 } 1108 if (vp->tx_irq > 0) { 1109 um_free_irq(vp->tx_irq, dev); 1110 vp->tx_irq = 0; 1111 } 1112 tasklet_kill(&vp->tx_poll); 1113 if (vp->fds->rx_fd > 0) { 1114 os_close_file(vp->fds->rx_fd); 1115 vp->fds->rx_fd = -1; 1116 } 1117 if (vp->fds->tx_fd > 0) { 1118 os_close_file(vp->fds->tx_fd); 1119 vp->fds->tx_fd = -1; 1120 } 1121 kfree(vp->bpf); 1122 kfree(vp->fds->remote_addr); 1123 kfree(vp->transport_data); 1124 kfree(vp->header_rxbuffer); 1125 kfree(vp->header_txbuffer); 1126 if (vp->rx_queue != NULL) 1127 destroy_queue(vp->rx_queue); 1128 if (vp->tx_queue != NULL) 1129 destroy_queue(vp->tx_queue); 1130 kfree(vp->fds); 1131 vp->fds = NULL; 1132 spin_lock_irqsave(&vp->lock, flags); 1133 vp->opened = false; 1134 spin_unlock_irqrestore(&vp->lock, flags); 1135 return 0; 1136 } 1137 1138 /* TX tasklet */ 1139 1140 static void vector_tx_poll(unsigned long data) 1141 { 1142 struct vector_private *vp = (struct vector_private *)data; 1143 1144 vp->estats.tx_kicks++; 1145 vector_send(vp->tx_queue); 1146 } 1147 static void vector_reset_tx(struct work_struct *work) 1148 { 1149 struct vector_private *vp = 1150 container_of(work, struct vector_private, reset_tx); 1151 netdev_reset_queue(vp->dev); 1152 netif_start_queue(vp->dev); 1153 netif_wake_queue(vp->dev); 1154 } 1155 static int vector_net_open(struct net_device *dev) 1156 { 1157 struct vector_private *vp = netdev_priv(dev); 1158 unsigned long flags; 1159 int err = -EINVAL; 1160 struct vector_device *vdevice; 1161 1162 spin_lock_irqsave(&vp->lock, flags); 1163 if (vp->opened) { 1164 spin_unlock_irqrestore(&vp->lock, flags); 1165 return -ENXIO; 1166 } 1167 vp->opened = true; 1168 spin_unlock_irqrestore(&vp->lock, flags); 1169 1170 vp->fds = uml_vector_user_open(vp->unit, vp->parsed); 1171 1172 if (vp->fds == NULL) 1173 goto out_close; 1174 1175 if (build_transport_data(vp) < 0) 1176 goto out_close; 1177 1178 if ((vp->options & VECTOR_RX) > 0) { 1179 vp->rx_queue = create_queue( 1180 vp, 1181 get_depth(vp->parsed), 1182 vp->rx_header_size, 1183 MAX_IOV_SIZE 1184 ); 1185 vp->rx_queue->queue_depth = get_depth(vp->parsed); 1186 } else { 1187 vp->header_rxbuffer = kmalloc( 1188 vp->rx_header_size, 1189 GFP_KERNEL 1190 ); 1191 if (vp->header_rxbuffer == NULL) 1192 goto out_close; 1193 } 1194 if ((vp->options & VECTOR_TX) > 0) { 1195 vp->tx_queue = create_queue( 1196 vp, 1197 get_depth(vp->parsed), 1198 vp->header_size, 1199 MAX_IOV_SIZE 1200 ); 1201 } else { 1202 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL); 1203 if (vp->header_txbuffer == NULL) 1204 goto out_close; 1205 } 1206 1207 /* READ IRQ */ 1208 err = um_request_irq( 1209 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd, 1210 IRQ_READ, vector_rx_interrupt, 1211 IRQF_SHARED, dev->name, dev); 1212 if (err != 0) { 1213 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err); 1214 err = -ENETUNREACH; 1215 goto out_close; 1216 } 1217 vp->rx_irq = irq_rr + VECTOR_BASE_IRQ; 1218 dev->irq = irq_rr + VECTOR_BASE_IRQ; 1219 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; 1220 1221 /* WRITE IRQ - we need it only if we have vector TX */ 1222 if ((vp->options & VECTOR_TX) > 0) { 1223 err = um_request_irq( 1224 irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd, 1225 IRQ_WRITE, vector_tx_interrupt, 1226 IRQF_SHARED, dev->name, dev); 1227 if (err != 0) { 1228 netdev_err(dev, 1229 "vector_open: failed to get tx irq(%d)\n", err); 1230 err = -ENETUNREACH; 1231 goto out_close; 1232 } 1233 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ; 1234 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; 1235 } 1236 1237 if ((vp->options & VECTOR_QDISC_BYPASS) != 0) { 1238 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd)) 1239 vp->options |= VECTOR_BPF; 1240 } 1241 if ((vp->options & VECTOR_BPF) != 0) 1242 vp->bpf = uml_vector_default_bpf(vp->fds->rx_fd, dev->dev_addr); 1243 1244 netif_start_queue(dev); 1245 1246 /* clear buffer - it can happen that the host side of the interface 1247 * is full when we get here. In this case, new data is never queued, 1248 * SIGIOs never arrive, and the net never works. 1249 */ 1250 1251 vector_rx(vp); 1252 1253 vector_reset_stats(vp); 1254 vdevice = find_device(vp->unit); 1255 vdevice->opened = 1; 1256 1257 if ((vp->options & VECTOR_TX) != 0) 1258 add_timer(&vp->tl); 1259 return 0; 1260 out_close: 1261 vector_net_close(dev); 1262 return err; 1263 } 1264 1265 1266 static void vector_net_set_multicast_list(struct net_device *dev) 1267 { 1268 /* TODO: - we can do some BPF games here */ 1269 return; 1270 } 1271 1272 static void vector_net_tx_timeout(struct net_device *dev) 1273 { 1274 struct vector_private *vp = netdev_priv(dev); 1275 1276 vp->estats.tx_timeout_count++; 1277 netif_trans_update(dev); 1278 schedule_work(&vp->reset_tx); 1279 } 1280 1281 static netdev_features_t vector_fix_features(struct net_device *dev, 1282 netdev_features_t features) 1283 { 1284 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 1285 return features; 1286 } 1287 1288 static int vector_set_features(struct net_device *dev, 1289 netdev_features_t features) 1290 { 1291 struct vector_private *vp = netdev_priv(dev); 1292 /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is 1293 * no way to negotiate it on raw sockets, so we can change 1294 * only our side. 1295 */ 1296 if (features & NETIF_F_GRO) 1297 /* All new frame buffers will be GRO-sized */ 1298 vp->req_size = 65536; 1299 else 1300 /* All new frame buffers will be normal sized */ 1301 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN; 1302 return 0; 1303 } 1304 1305 #ifdef CONFIG_NET_POLL_CONTROLLER 1306 static void vector_net_poll_controller(struct net_device *dev) 1307 { 1308 disable_irq(dev->irq); 1309 vector_rx_interrupt(dev->irq, dev); 1310 enable_irq(dev->irq); 1311 } 1312 #endif 1313 1314 static void vector_net_get_drvinfo(struct net_device *dev, 1315 struct ethtool_drvinfo *info) 1316 { 1317 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver)); 1318 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version)); 1319 } 1320 1321 static void vector_get_ringparam(struct net_device *netdev, 1322 struct ethtool_ringparam *ring) 1323 { 1324 struct vector_private *vp = netdev_priv(netdev); 1325 1326 ring->rx_max_pending = vp->rx_queue->max_depth; 1327 ring->tx_max_pending = vp->tx_queue->max_depth; 1328 ring->rx_pending = vp->rx_queue->max_depth; 1329 ring->tx_pending = vp->tx_queue->max_depth; 1330 } 1331 1332 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf) 1333 { 1334 switch (stringset) { 1335 case ETH_SS_TEST: 1336 *buf = '\0'; 1337 break; 1338 case ETH_SS_STATS: 1339 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 1340 break; 1341 default: 1342 WARN_ON(1); 1343 break; 1344 } 1345 } 1346 1347 static int vector_get_sset_count(struct net_device *dev, int sset) 1348 { 1349 switch (sset) { 1350 case ETH_SS_TEST: 1351 return 0; 1352 case ETH_SS_STATS: 1353 return VECTOR_NUM_STATS; 1354 default: 1355 return -EOPNOTSUPP; 1356 } 1357 } 1358 1359 static void vector_get_ethtool_stats(struct net_device *dev, 1360 struct ethtool_stats *estats, 1361 u64 *tmp_stats) 1362 { 1363 struct vector_private *vp = netdev_priv(dev); 1364 1365 memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats)); 1366 } 1367 1368 static int vector_get_coalesce(struct net_device *netdev, 1369 struct ethtool_coalesce *ec) 1370 { 1371 struct vector_private *vp = netdev_priv(netdev); 1372 1373 ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ; 1374 return 0; 1375 } 1376 1377 static int vector_set_coalesce(struct net_device *netdev, 1378 struct ethtool_coalesce *ec) 1379 { 1380 struct vector_private *vp = netdev_priv(netdev); 1381 1382 vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000; 1383 if (vp->coalesce == 0) 1384 vp->coalesce = 1; 1385 return 0; 1386 } 1387 1388 static const struct ethtool_ops vector_net_ethtool_ops = { 1389 .get_drvinfo = vector_net_get_drvinfo, 1390 .get_link = ethtool_op_get_link, 1391 .get_ts_info = ethtool_op_get_ts_info, 1392 .get_ringparam = vector_get_ringparam, 1393 .get_strings = vector_get_strings, 1394 .get_sset_count = vector_get_sset_count, 1395 .get_ethtool_stats = vector_get_ethtool_stats, 1396 .get_coalesce = vector_get_coalesce, 1397 .set_coalesce = vector_set_coalesce, 1398 }; 1399 1400 1401 static const struct net_device_ops vector_netdev_ops = { 1402 .ndo_open = vector_net_open, 1403 .ndo_stop = vector_net_close, 1404 .ndo_start_xmit = vector_net_start_xmit, 1405 .ndo_set_rx_mode = vector_net_set_multicast_list, 1406 .ndo_tx_timeout = vector_net_tx_timeout, 1407 .ndo_set_mac_address = eth_mac_addr, 1408 .ndo_validate_addr = eth_validate_addr, 1409 .ndo_fix_features = vector_fix_features, 1410 .ndo_set_features = vector_set_features, 1411 #ifdef CONFIG_NET_POLL_CONTROLLER 1412 .ndo_poll_controller = vector_net_poll_controller, 1413 #endif 1414 }; 1415 1416 1417 static void vector_timer_expire(struct timer_list *t) 1418 { 1419 struct vector_private *vp = from_timer(vp, t, tl); 1420 1421 vp->estats.tx_kicks++; 1422 vector_send(vp->tx_queue); 1423 } 1424 1425 static void vector_eth_configure( 1426 int n, 1427 struct arglist *def 1428 ) 1429 { 1430 struct vector_device *device; 1431 struct net_device *dev; 1432 struct vector_private *vp; 1433 int err; 1434 1435 device = kzalloc(sizeof(*device), GFP_KERNEL); 1436 if (device == NULL) { 1437 printk(KERN_ERR "eth_configure failed to allocate struct " 1438 "vector_device\n"); 1439 return; 1440 } 1441 dev = alloc_etherdev(sizeof(struct vector_private)); 1442 if (dev == NULL) { 1443 printk(KERN_ERR "eth_configure: failed to allocate struct " 1444 "net_device for vec%d\n", n); 1445 goto out_free_device; 1446 } 1447 1448 dev->mtu = get_mtu(def); 1449 1450 INIT_LIST_HEAD(&device->list); 1451 device->unit = n; 1452 1453 /* If this name ends up conflicting with an existing registered 1454 * netdevice, that is OK, register_netdev{,ice}() will notice this 1455 * and fail. 1456 */ 1457 snprintf(dev->name, sizeof(dev->name), "vec%d", n); 1458 uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac")); 1459 vp = netdev_priv(dev); 1460 1461 /* sysfs register */ 1462 if (!driver_registered) { 1463 platform_driver_register(¨_net_driver); 1464 driver_registered = 1; 1465 } 1466 device->pdev.id = n; 1467 device->pdev.name = DRIVER_NAME; 1468 device->pdev.dev.release = vector_device_release; 1469 dev_set_drvdata(&device->pdev.dev, device); 1470 if (platform_device_register(&device->pdev)) 1471 goto out_free_netdev; 1472 SET_NETDEV_DEV(dev, &device->pdev.dev); 1473 1474 device->dev = dev; 1475 1476 *vp = ((struct vector_private) 1477 { 1478 .list = LIST_HEAD_INIT(vp->list), 1479 .dev = dev, 1480 .unit = n, 1481 .options = get_transport_options(def), 1482 .rx_irq = 0, 1483 .tx_irq = 0, 1484 .parsed = def, 1485 .max_packet = get_mtu(def) + ETH_HEADER_OTHER, 1486 /* TODO - we need to calculate headroom so that ip header 1487 * is 16 byte aligned all the time 1488 */ 1489 .headroom = get_headroom(def), 1490 .form_header = NULL, 1491 .verify_header = NULL, 1492 .header_rxbuffer = NULL, 1493 .header_txbuffer = NULL, 1494 .header_size = 0, 1495 .rx_header_size = 0, 1496 .rexmit_scheduled = false, 1497 .opened = false, 1498 .transport_data = NULL, 1499 .in_write_poll = false, 1500 .coalesce = 2, 1501 .req_size = get_req_size(def) 1502 }); 1503 1504 dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST); 1505 tasklet_init(&vp->tx_poll, vector_tx_poll, (unsigned long)vp); 1506 INIT_WORK(&vp->reset_tx, vector_reset_tx); 1507 1508 timer_setup(&vp->tl, vector_timer_expire, 0); 1509 spin_lock_init(&vp->lock); 1510 1511 /* FIXME */ 1512 dev->netdev_ops = &vector_netdev_ops; 1513 dev->ethtool_ops = &vector_net_ethtool_ops; 1514 dev->watchdog_timeo = (HZ >> 1); 1515 /* primary IRQ - fixme */ 1516 dev->irq = 0; /* we will adjust this once opened */ 1517 1518 rtnl_lock(); 1519 err = register_netdevice(dev); 1520 rtnl_unlock(); 1521 if (err) 1522 goto out_undo_user_init; 1523 1524 spin_lock(&vector_devices_lock); 1525 list_add(&device->list, &vector_devices); 1526 spin_unlock(&vector_devices_lock); 1527 1528 return; 1529 1530 out_undo_user_init: 1531 return; 1532 out_free_netdev: 1533 free_netdev(dev); 1534 out_free_device: 1535 kfree(device); 1536 } 1537 1538 1539 1540 1541 /* 1542 * Invoked late in the init 1543 */ 1544 1545 static int __init vector_init(void) 1546 { 1547 struct list_head *ele; 1548 struct vector_cmd_line_arg *def; 1549 struct arglist *parsed; 1550 1551 list_for_each(ele, &vec_cmd_line) { 1552 def = list_entry(ele, struct vector_cmd_line_arg, list); 1553 parsed = uml_parse_vector_ifspec(def->arguments); 1554 if (parsed != NULL) 1555 vector_eth_configure(def->unit, parsed); 1556 } 1557 return 0; 1558 } 1559 1560 1561 /* Invoked at initial argument parsing, only stores 1562 * arguments until a proper vector_init is called 1563 * later 1564 */ 1565 1566 static int __init vector_setup(char *str) 1567 { 1568 char *error; 1569 int n, err; 1570 struct vector_cmd_line_arg *new; 1571 1572 err = vector_parse(str, &n, &str, &error); 1573 if (err) { 1574 printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n", 1575 str, error); 1576 return 1; 1577 } 1578 new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES); 1579 if (!new) 1580 panic("%s: Failed to allocate %zu bytes\n", __func__, 1581 sizeof(*new)); 1582 INIT_LIST_HEAD(&new->list); 1583 new->unit = n; 1584 new->arguments = str; 1585 list_add_tail(&new->list, &vec_cmd_line); 1586 return 1; 1587 } 1588 1589 __setup("vec", vector_setup); 1590 __uml_help(vector_setup, 1591 "vec[0-9]+:<option>=<value>,<option>=<value>\n" 1592 " Configure a vector io network device.\n\n" 1593 ); 1594 1595 late_initcall(vector_init); 1596 1597 static struct mc_device vector_mc = { 1598 .list = LIST_HEAD_INIT(vector_mc.list), 1599 .name = "vec", 1600 .config = vector_config, 1601 .get_config = NULL, 1602 .id = vector_id, 1603 .remove = vector_remove, 1604 }; 1605 1606 #ifdef CONFIG_INET 1607 static int vector_inetaddr_event( 1608 struct notifier_block *this, 1609 unsigned long event, 1610 void *ptr) 1611 { 1612 return NOTIFY_DONE; 1613 } 1614 1615 static struct notifier_block vector_inetaddr_notifier = { 1616 .notifier_call = vector_inetaddr_event, 1617 }; 1618 1619 static void inet_register(void) 1620 { 1621 register_inetaddr_notifier(&vector_inetaddr_notifier); 1622 } 1623 #else 1624 static inline void inet_register(void) 1625 { 1626 } 1627 #endif 1628 1629 static int vector_net_init(void) 1630 { 1631 mconsole_register_dev(&vector_mc); 1632 inet_register(); 1633 return 0; 1634 } 1635 1636 __initcall(vector_net_init); 1637 1638 1639 1640