xref: /openbmc/linux/arch/um/drivers/vector_kern.c (revision b830f94f)
1 /*
2  * Copyright (C) 2017 - Cambridge Greys Limited
3  * Copyright (C) 2011 - 2014 Cisco Systems Inc
4  * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5  * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
6  * James Leu (jleu@mindspring.net).
7  * Copyright (C) 2001 by various other people who didn't put their name here.
8  * Licensed under the GPL.
9  */
10 
11 #include <linux/version.h>
12 #include <linux/memblock.h>
13 #include <linux/etherdevice.h>
14 #include <linux/ethtool.h>
15 #include <linux/inetdevice.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/netdevice.h>
19 #include <linux/platform_device.h>
20 #include <linux/rtnetlink.h>
21 #include <linux/skbuff.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <init.h>
25 #include <irq_kern.h>
26 #include <irq_user.h>
27 #include <net_kern.h>
28 #include <os.h>
29 #include "mconsole_kern.h"
30 #include "vector_user.h"
31 #include "vector_kern.h"
32 
33 /*
34  * Adapted from network devices with the following major changes:
35  * All transports are static - simplifies the code significantly
36  * Multiple FDs/IRQs per device
37  * Vector IO optionally used for read/write, falling back to legacy
38  * based on configuration and/or availability
39  * Configuration is no longer positional - L2TPv3 and GRE require up to
40  * 10 parameters, passing this as positional is not fit for purpose.
41  * Only socket transports are supported
42  */
43 
44 
45 #define DRIVER_NAME "uml-vector"
46 #define DRIVER_VERSION "01"
47 struct vector_cmd_line_arg {
48 	struct list_head list;
49 	int unit;
50 	char *arguments;
51 };
52 
53 struct vector_device {
54 	struct list_head list;
55 	struct net_device *dev;
56 	struct platform_device pdev;
57 	int unit;
58 	int opened;
59 };
60 
61 static LIST_HEAD(vec_cmd_line);
62 
63 static DEFINE_SPINLOCK(vector_devices_lock);
64 static LIST_HEAD(vector_devices);
65 
66 static int driver_registered;
67 
68 static void vector_eth_configure(int n, struct arglist *def);
69 
70 /* Argument accessors to set variables (and/or set default values)
71  * mtu, buffer sizing, default headroom, etc
72  */
73 
74 #define DEFAULT_HEADROOM 2
75 #define SAFETY_MARGIN 32
76 #define DEFAULT_VECTOR_SIZE 64
77 #define TX_SMALL_PACKET 128
78 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
79 
80 static const struct {
81 	const char string[ETH_GSTRING_LEN];
82 } ethtool_stats_keys[] = {
83 	{ "rx_queue_max" },
84 	{ "rx_queue_running_average" },
85 	{ "tx_queue_max" },
86 	{ "tx_queue_running_average" },
87 	{ "rx_encaps_errors" },
88 	{ "tx_timeout_count" },
89 	{ "tx_restart_queue" },
90 	{ "tx_kicks" },
91 	{ "tx_flow_control_xon" },
92 	{ "tx_flow_control_xoff" },
93 	{ "rx_csum_offload_good" },
94 	{ "rx_csum_offload_errors"},
95 	{ "sg_ok"},
96 	{ "sg_linearized"},
97 };
98 
99 #define VECTOR_NUM_STATS	ARRAY_SIZE(ethtool_stats_keys)
100 
101 static void vector_reset_stats(struct vector_private *vp)
102 {
103 	vp->estats.rx_queue_max = 0;
104 	vp->estats.rx_queue_running_average = 0;
105 	vp->estats.tx_queue_max = 0;
106 	vp->estats.tx_queue_running_average = 0;
107 	vp->estats.rx_encaps_errors = 0;
108 	vp->estats.tx_timeout_count = 0;
109 	vp->estats.tx_restart_queue = 0;
110 	vp->estats.tx_kicks = 0;
111 	vp->estats.tx_flow_control_xon = 0;
112 	vp->estats.tx_flow_control_xoff = 0;
113 	vp->estats.sg_ok = 0;
114 	vp->estats.sg_linearized = 0;
115 }
116 
117 static int get_mtu(struct arglist *def)
118 {
119 	char *mtu = uml_vector_fetch_arg(def, "mtu");
120 	long result;
121 
122 	if (mtu != NULL) {
123 		if (kstrtoul(mtu, 10, &result) == 0)
124 			return result;
125 	}
126 	return ETH_MAX_PACKET;
127 }
128 
129 static int get_depth(struct arglist *def)
130 {
131 	char *mtu = uml_vector_fetch_arg(def, "depth");
132 	long result;
133 
134 	if (mtu != NULL) {
135 		if (kstrtoul(mtu, 10, &result) == 0)
136 			return result;
137 	}
138 	return DEFAULT_VECTOR_SIZE;
139 }
140 
141 static int get_headroom(struct arglist *def)
142 {
143 	char *mtu = uml_vector_fetch_arg(def, "headroom");
144 	long result;
145 
146 	if (mtu != NULL) {
147 		if (kstrtoul(mtu, 10, &result) == 0)
148 			return result;
149 	}
150 	return DEFAULT_HEADROOM;
151 }
152 
153 static int get_req_size(struct arglist *def)
154 {
155 	char *gro = uml_vector_fetch_arg(def, "gro");
156 	long result;
157 
158 	if (gro != NULL) {
159 		if (kstrtoul(gro, 10, &result) == 0) {
160 			if (result > 0)
161 				return 65536;
162 		}
163 	}
164 	return get_mtu(def) + ETH_HEADER_OTHER +
165 		get_headroom(def) + SAFETY_MARGIN;
166 }
167 
168 
169 static int get_transport_options(struct arglist *def)
170 {
171 	char *transport = uml_vector_fetch_arg(def, "transport");
172 	char *vector = uml_vector_fetch_arg(def, "vec");
173 
174 	int vec_rx = VECTOR_RX;
175 	int vec_tx = VECTOR_TX;
176 	long parsed;
177 
178 	if (vector != NULL) {
179 		if (kstrtoul(vector, 10, &parsed) == 0) {
180 			if (parsed == 0) {
181 				vec_rx = 0;
182 				vec_tx = 0;
183 			}
184 		}
185 	}
186 
187 
188 	if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
189 		return (vec_rx | VECTOR_BPF);
190 	if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
191 		return (vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
192 	return (vec_rx | vec_tx);
193 }
194 
195 
196 /* A mini-buffer for packet drop read
197  * All of our supported transports are datagram oriented and we always
198  * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
199  * than the packet size it still counts as full packet read and will
200  * clean the incoming stream to keep sigio/epoll happy
201  */
202 
203 #define DROP_BUFFER_SIZE 32
204 
205 static char *drop_buffer;
206 
207 /* Array backed queues optimized for bulk enqueue/dequeue and
208  * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
209  * For more details and full design rationale see
210  * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
211  */
212 
213 
214 /*
215  * Advance the mmsg queue head by n = advance. Resets the queue to
216  * maximum enqueue/dequeue-at-once capacity if possible. Called by
217  * dequeuers. Caller must hold the head_lock!
218  */
219 
220 static int vector_advancehead(struct vector_queue *qi, int advance)
221 {
222 	int queue_depth;
223 
224 	qi->head =
225 		(qi->head + advance)
226 			% qi->max_depth;
227 
228 
229 	spin_lock(&qi->tail_lock);
230 	qi->queue_depth -= advance;
231 
232 	/* we are at 0, use this to
233 	 * reset head and tail so we can use max size vectors
234 	 */
235 
236 	if (qi->queue_depth == 0) {
237 		qi->head = 0;
238 		qi->tail = 0;
239 	}
240 	queue_depth = qi->queue_depth;
241 	spin_unlock(&qi->tail_lock);
242 	return queue_depth;
243 }
244 
245 /*	Advance the queue tail by n = advance.
246  *	This is called by enqueuers which should hold the
247  *	head lock already
248  */
249 
250 static int vector_advancetail(struct vector_queue *qi, int advance)
251 {
252 	int queue_depth;
253 
254 	qi->tail =
255 		(qi->tail + advance)
256 			% qi->max_depth;
257 	spin_lock(&qi->head_lock);
258 	qi->queue_depth += advance;
259 	queue_depth = qi->queue_depth;
260 	spin_unlock(&qi->head_lock);
261 	return queue_depth;
262 }
263 
264 static int prep_msg(struct vector_private *vp,
265 	struct sk_buff *skb,
266 	struct iovec *iov)
267 {
268 	int iov_index = 0;
269 	int nr_frags, frag;
270 	skb_frag_t *skb_frag;
271 
272 	nr_frags = skb_shinfo(skb)->nr_frags;
273 	if (nr_frags > MAX_IOV_SIZE) {
274 		if (skb_linearize(skb) != 0)
275 			goto drop;
276 	}
277 	if (vp->header_size > 0) {
278 		iov[iov_index].iov_len = vp->header_size;
279 		vp->form_header(iov[iov_index].iov_base, skb, vp);
280 		iov_index++;
281 	}
282 	iov[iov_index].iov_base = skb->data;
283 	if (nr_frags > 0) {
284 		iov[iov_index].iov_len = skb->len - skb->data_len;
285 		vp->estats.sg_ok++;
286 	} else
287 		iov[iov_index].iov_len = skb->len;
288 	iov_index++;
289 	for (frag = 0; frag < nr_frags; frag++) {
290 		skb_frag = &skb_shinfo(skb)->frags[frag];
291 		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
292 		iov[iov_index].iov_len = skb_frag_size(skb_frag);
293 		iov_index++;
294 	}
295 	return iov_index;
296 drop:
297 	return -1;
298 }
299 /*
300  * Generic vector enqueue with support for forming headers using transport
301  * specific callback. Allows GRE, L2TPv3, RAW and other transports
302  * to use a common enqueue procedure in vector mode
303  */
304 
305 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
306 {
307 	struct vector_private *vp = netdev_priv(qi->dev);
308 	int queue_depth;
309 	int packet_len;
310 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
311 	int iov_count;
312 
313 	spin_lock(&qi->tail_lock);
314 	spin_lock(&qi->head_lock);
315 	queue_depth = qi->queue_depth;
316 	spin_unlock(&qi->head_lock);
317 
318 	if (skb)
319 		packet_len = skb->len;
320 
321 	if (queue_depth < qi->max_depth) {
322 
323 		*(qi->skbuff_vector + qi->tail) = skb;
324 		mmsg_vector += qi->tail;
325 		iov_count = prep_msg(
326 			vp,
327 			skb,
328 			mmsg_vector->msg_hdr.msg_iov
329 		);
330 		if (iov_count < 1)
331 			goto drop;
332 		mmsg_vector->msg_hdr.msg_iovlen = iov_count;
333 		mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
334 		mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
335 		queue_depth = vector_advancetail(qi, 1);
336 	} else
337 		goto drop;
338 	spin_unlock(&qi->tail_lock);
339 	return queue_depth;
340 drop:
341 	qi->dev->stats.tx_dropped++;
342 	if (skb != NULL) {
343 		packet_len = skb->len;
344 		dev_consume_skb_any(skb);
345 		netdev_completed_queue(qi->dev, 1, packet_len);
346 	}
347 	spin_unlock(&qi->tail_lock);
348 	return queue_depth;
349 }
350 
351 static int consume_vector_skbs(struct vector_queue *qi, int count)
352 {
353 	struct sk_buff *skb;
354 	int skb_index;
355 	int bytes_compl = 0;
356 
357 	for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
358 		skb = *(qi->skbuff_vector + skb_index);
359 		/* mark as empty to ensure correct destruction if
360 		 * needed
361 		 */
362 		bytes_compl += skb->len;
363 		*(qi->skbuff_vector + skb_index) = NULL;
364 		dev_consume_skb_any(skb);
365 	}
366 	qi->dev->stats.tx_bytes += bytes_compl;
367 	qi->dev->stats.tx_packets += count;
368 	netdev_completed_queue(qi->dev, count, bytes_compl);
369 	return vector_advancehead(qi, count);
370 }
371 
372 /*
373  * Generic vector deque via sendmmsg with support for forming headers
374  * using transport specific callback. Allows GRE, L2TPv3, RAW and
375  * other transports to use a common dequeue procedure in vector mode
376  */
377 
378 
379 static int vector_send(struct vector_queue *qi)
380 {
381 	struct vector_private *vp = netdev_priv(qi->dev);
382 	struct mmsghdr *send_from;
383 	int result = 0, send_len, queue_depth = qi->max_depth;
384 
385 	if (spin_trylock(&qi->head_lock)) {
386 		if (spin_trylock(&qi->tail_lock)) {
387 			/* update queue_depth to current value */
388 			queue_depth = qi->queue_depth;
389 			spin_unlock(&qi->tail_lock);
390 			while (queue_depth > 0) {
391 				/* Calculate the start of the vector */
392 				send_len = queue_depth;
393 				send_from = qi->mmsg_vector;
394 				send_from += qi->head;
395 				/* Adjust vector size if wraparound */
396 				if (send_len + qi->head > qi->max_depth)
397 					send_len = qi->max_depth - qi->head;
398 				/* Try to TX as many packets as possible */
399 				if (send_len > 0) {
400 					result = uml_vector_sendmmsg(
401 						 vp->fds->tx_fd,
402 						 send_from,
403 						 send_len,
404 						 0
405 					);
406 					vp->in_write_poll =
407 						(result != send_len);
408 				}
409 				/* For some of the sendmmsg error scenarios
410 				 * we may end being unsure in the TX success
411 				 * for all packets. It is safer to declare
412 				 * them all TX-ed and blame the network.
413 				 */
414 				if (result < 0) {
415 					if (net_ratelimit())
416 						netdev_err(vp->dev, "sendmmsg err=%i\n",
417 							result);
418 					result = send_len;
419 				}
420 				if (result > 0) {
421 					queue_depth =
422 						consume_vector_skbs(qi, result);
423 					/* This is equivalent to an TX IRQ.
424 					 * Restart the upper layers to feed us
425 					 * more packets.
426 					 */
427 					if (result > vp->estats.tx_queue_max)
428 						vp->estats.tx_queue_max = result;
429 					vp->estats.tx_queue_running_average =
430 						(vp->estats.tx_queue_running_average + result) >> 1;
431 				}
432 				netif_trans_update(qi->dev);
433 				netif_wake_queue(qi->dev);
434 				/* if TX is busy, break out of the send loop,
435 				 *  poll write IRQ will reschedule xmit for us
436 				 */
437 				if (result != send_len) {
438 					vp->estats.tx_restart_queue++;
439 					break;
440 				}
441 			}
442 		}
443 		spin_unlock(&qi->head_lock);
444 	} else {
445 		tasklet_schedule(&vp->tx_poll);
446 	}
447 	return queue_depth;
448 }
449 
450 /* Queue destructor. Deliberately stateless so we can use
451  * it in queue cleanup if initialization fails.
452  */
453 
454 static void destroy_queue(struct vector_queue *qi)
455 {
456 	int i;
457 	struct iovec *iov;
458 	struct vector_private *vp = netdev_priv(qi->dev);
459 	struct mmsghdr *mmsg_vector;
460 
461 	if (qi == NULL)
462 		return;
463 	/* deallocate any skbuffs - we rely on any unused to be
464 	 * set to NULL.
465 	 */
466 	if (qi->skbuff_vector != NULL) {
467 		for (i = 0; i < qi->max_depth; i++) {
468 			if (*(qi->skbuff_vector + i) != NULL)
469 				dev_kfree_skb_any(*(qi->skbuff_vector + i));
470 		}
471 		kfree(qi->skbuff_vector);
472 	}
473 	/* deallocate matching IOV structures including header buffs */
474 	if (qi->mmsg_vector != NULL) {
475 		mmsg_vector = qi->mmsg_vector;
476 		for (i = 0; i < qi->max_depth; i++) {
477 			iov = mmsg_vector->msg_hdr.msg_iov;
478 			if (iov != NULL) {
479 				if ((vp->header_size > 0) &&
480 					(iov->iov_base != NULL))
481 					kfree(iov->iov_base);
482 				kfree(iov);
483 			}
484 			mmsg_vector++;
485 		}
486 		kfree(qi->mmsg_vector);
487 	}
488 	kfree(qi);
489 }
490 
491 /*
492  * Queue constructor. Create a queue with a given side.
493  */
494 static struct vector_queue *create_queue(
495 	struct vector_private *vp,
496 	int max_size,
497 	int header_size,
498 	int num_extra_frags)
499 {
500 	struct vector_queue *result;
501 	int i;
502 	struct iovec *iov;
503 	struct mmsghdr *mmsg_vector;
504 
505 	result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
506 	if (result == NULL)
507 		return NULL;
508 	result->max_depth = max_size;
509 	result->dev = vp->dev;
510 	result->mmsg_vector = kmalloc(
511 		(sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
512 	if (result->mmsg_vector == NULL)
513 		goto out_mmsg_fail;
514 	result->skbuff_vector = kmalloc(
515 		(sizeof(void *) * max_size), GFP_KERNEL);
516 	if (result->skbuff_vector == NULL)
517 		goto out_skb_fail;
518 
519 	/* further failures can be handled safely by destroy_queue*/
520 
521 	mmsg_vector = result->mmsg_vector;
522 	for (i = 0; i < max_size; i++) {
523 		/* Clear all pointers - we use non-NULL as marking on
524 		 * what to free on destruction
525 		 */
526 		*(result->skbuff_vector + i) = NULL;
527 		mmsg_vector->msg_hdr.msg_iov = NULL;
528 		mmsg_vector++;
529 	}
530 	mmsg_vector = result->mmsg_vector;
531 	result->max_iov_frags = num_extra_frags;
532 	for (i = 0; i < max_size; i++) {
533 		if (vp->header_size > 0)
534 			iov = kmalloc_array(3 + num_extra_frags,
535 					    sizeof(struct iovec),
536 					    GFP_KERNEL
537 			);
538 		else
539 			iov = kmalloc_array(2 + num_extra_frags,
540 					    sizeof(struct iovec),
541 					    GFP_KERNEL
542 			);
543 		if (iov == NULL)
544 			goto out_fail;
545 		mmsg_vector->msg_hdr.msg_iov = iov;
546 		mmsg_vector->msg_hdr.msg_iovlen = 1;
547 		mmsg_vector->msg_hdr.msg_control = NULL;
548 		mmsg_vector->msg_hdr.msg_controllen = 0;
549 		mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
550 		mmsg_vector->msg_hdr.msg_name = NULL;
551 		mmsg_vector->msg_hdr.msg_namelen = 0;
552 		if (vp->header_size > 0) {
553 			iov->iov_base = kmalloc(header_size, GFP_KERNEL);
554 			if (iov->iov_base == NULL)
555 				goto out_fail;
556 			iov->iov_len = header_size;
557 			mmsg_vector->msg_hdr.msg_iovlen = 2;
558 			iov++;
559 		}
560 		iov->iov_base = NULL;
561 		iov->iov_len = 0;
562 		mmsg_vector++;
563 	}
564 	spin_lock_init(&result->head_lock);
565 	spin_lock_init(&result->tail_lock);
566 	result->queue_depth = 0;
567 	result->head = 0;
568 	result->tail = 0;
569 	return result;
570 out_skb_fail:
571 	kfree(result->mmsg_vector);
572 out_mmsg_fail:
573 	kfree(result);
574 	return NULL;
575 out_fail:
576 	destroy_queue(result);
577 	return NULL;
578 }
579 
580 /*
581  * We do not use the RX queue as a proper wraparound queue for now
582  * This is not necessary because the consumption via netif_rx()
583  * happens in-line. While we can try using the return code of
584  * netif_rx() for flow control there are no drivers doing this today.
585  * For this RX specific use we ignore the tail/head locks and
586  * just read into a prepared queue filled with skbuffs.
587  */
588 
589 static struct sk_buff *prep_skb(
590 	struct vector_private *vp,
591 	struct user_msghdr *msg)
592 {
593 	int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
594 	struct sk_buff *result;
595 	int iov_index = 0, len;
596 	struct iovec *iov = msg->msg_iov;
597 	int err, nr_frags, frag;
598 	skb_frag_t *skb_frag;
599 
600 	if (vp->req_size <= linear)
601 		len = linear;
602 	else
603 		len = vp->req_size;
604 	result = alloc_skb_with_frags(
605 		linear,
606 		len - vp->max_packet,
607 		3,
608 		&err,
609 		GFP_ATOMIC
610 	);
611 	if (vp->header_size > 0)
612 		iov_index++;
613 	if (result == NULL) {
614 		iov[iov_index].iov_base = NULL;
615 		iov[iov_index].iov_len = 0;
616 		goto done;
617 	}
618 	skb_reserve(result, vp->headroom);
619 	result->dev = vp->dev;
620 	skb_put(result, vp->max_packet);
621 	result->data_len = len - vp->max_packet;
622 	result->len += len - vp->max_packet;
623 	skb_reset_mac_header(result);
624 	result->ip_summed = CHECKSUM_NONE;
625 	iov[iov_index].iov_base = result->data;
626 	iov[iov_index].iov_len = vp->max_packet;
627 	iov_index++;
628 
629 	nr_frags = skb_shinfo(result)->nr_frags;
630 	for (frag = 0; frag < nr_frags; frag++) {
631 		skb_frag = &skb_shinfo(result)->frags[frag];
632 		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
633 		if (iov[iov_index].iov_base != NULL)
634 			iov[iov_index].iov_len = skb_frag_size(skb_frag);
635 		else
636 			iov[iov_index].iov_len = 0;
637 		iov_index++;
638 	}
639 done:
640 	msg->msg_iovlen = iov_index;
641 	return result;
642 }
643 
644 
645 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
646 
647 static void prep_queue_for_rx(struct vector_queue *qi)
648 {
649 	struct vector_private *vp = netdev_priv(qi->dev);
650 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
651 	void **skbuff_vector = qi->skbuff_vector;
652 	int i;
653 
654 	if (qi->queue_depth == 0)
655 		return;
656 	for (i = 0; i < qi->queue_depth; i++) {
657 		/* it is OK if allocation fails - recvmmsg with NULL data in
658 		 * iov argument still performs an RX, just drops the packet
659 		 * This allows us stop faffing around with a "drop buffer"
660 		 */
661 
662 		*skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
663 		skbuff_vector++;
664 		mmsg_vector++;
665 	}
666 	qi->queue_depth = 0;
667 }
668 
669 static struct vector_device *find_device(int n)
670 {
671 	struct vector_device *device;
672 	struct list_head *ele;
673 
674 	spin_lock(&vector_devices_lock);
675 	list_for_each(ele, &vector_devices) {
676 		device = list_entry(ele, struct vector_device, list);
677 		if (device->unit == n)
678 			goto out;
679 	}
680 	device = NULL;
681  out:
682 	spin_unlock(&vector_devices_lock);
683 	return device;
684 }
685 
686 static int vector_parse(char *str, int *index_out, char **str_out,
687 			char **error_out)
688 {
689 	int n, len, err;
690 	char *start = str;
691 
692 	len = strlen(str);
693 
694 	while ((*str != ':') && (strlen(str) > 1))
695 		str++;
696 	if (*str != ':') {
697 		*error_out = "Expected ':' after device number";
698 		return -EINVAL;
699 	}
700 	*str = '\0';
701 
702 	err = kstrtouint(start, 0, &n);
703 	if (err < 0) {
704 		*error_out = "Bad device number";
705 		return err;
706 	}
707 
708 	str++;
709 	if (find_device(n)) {
710 		*error_out = "Device already configured";
711 		return -EINVAL;
712 	}
713 
714 	*index_out = n;
715 	*str_out = str;
716 	return 0;
717 }
718 
719 static int vector_config(char *str, char **error_out)
720 {
721 	int err, n;
722 	char *params;
723 	struct arglist *parsed;
724 
725 	err = vector_parse(str, &n, &params, error_out);
726 	if (err != 0)
727 		return err;
728 
729 	/* This string is broken up and the pieces used by the underlying
730 	 * driver. We should copy it to make sure things do not go wrong
731 	 * later.
732 	 */
733 
734 	params = kstrdup(params, GFP_KERNEL);
735 	if (params == NULL) {
736 		*error_out = "vector_config failed to strdup string";
737 		return -ENOMEM;
738 	}
739 
740 	parsed = uml_parse_vector_ifspec(params);
741 
742 	if (parsed == NULL) {
743 		*error_out = "vector_config failed to parse parameters";
744 		return -EINVAL;
745 	}
746 
747 	vector_eth_configure(n, parsed);
748 	return 0;
749 }
750 
751 static int vector_id(char **str, int *start_out, int *end_out)
752 {
753 	char *end;
754 	int n;
755 
756 	n = simple_strtoul(*str, &end, 0);
757 	if ((*end != '\0') || (end == *str))
758 		return -1;
759 
760 	*start_out = n;
761 	*end_out = n;
762 	*str = end;
763 	return n;
764 }
765 
766 static int vector_remove(int n, char **error_out)
767 {
768 	struct vector_device *vec_d;
769 	struct net_device *dev;
770 	struct vector_private *vp;
771 
772 	vec_d = find_device(n);
773 	if (vec_d == NULL)
774 		return -ENODEV;
775 	dev = vec_d->dev;
776 	vp = netdev_priv(dev);
777 	if (vp->fds != NULL)
778 		return -EBUSY;
779 	unregister_netdev(dev);
780 	platform_device_unregister(&vec_d->pdev);
781 	return 0;
782 }
783 
784 /*
785  * There is no shared per-transport initialization code, so
786  * we will just initialize each interface one by one and
787  * add them to a list
788  */
789 
790 static struct platform_driver uml_net_driver = {
791 	.driver = {
792 		.name = DRIVER_NAME,
793 	},
794 };
795 
796 
797 static void vector_device_release(struct device *dev)
798 {
799 	struct vector_device *device = dev_get_drvdata(dev);
800 	struct net_device *netdev = device->dev;
801 
802 	list_del(&device->list);
803 	kfree(device);
804 	free_netdev(netdev);
805 }
806 
807 /* Bog standard recv using recvmsg - not used normally unless the user
808  * explicitly specifies not to use recvmmsg vector RX.
809  */
810 
811 static int vector_legacy_rx(struct vector_private *vp)
812 {
813 	int pkt_len;
814 	struct user_msghdr hdr;
815 	struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
816 	int iovpos = 0;
817 	struct sk_buff *skb;
818 	int header_check;
819 
820 	hdr.msg_name = NULL;
821 	hdr.msg_namelen = 0;
822 	hdr.msg_iov = (struct iovec *) &iov;
823 	hdr.msg_control = NULL;
824 	hdr.msg_controllen = 0;
825 	hdr.msg_flags = 0;
826 
827 	if (vp->header_size > 0) {
828 		iov[0].iov_base = vp->header_rxbuffer;
829 		iov[0].iov_len = vp->header_size;
830 	}
831 
832 	skb = prep_skb(vp, &hdr);
833 
834 	if (skb == NULL) {
835 		/* Read a packet into drop_buffer and don't do
836 		 * anything with it.
837 		 */
838 		iov[iovpos].iov_base = drop_buffer;
839 		iov[iovpos].iov_len = DROP_BUFFER_SIZE;
840 		hdr.msg_iovlen = 1;
841 		vp->dev->stats.rx_dropped++;
842 	}
843 
844 	pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
845 
846 	if (skb != NULL) {
847 		if (pkt_len > vp->header_size) {
848 			if (vp->header_size > 0) {
849 				header_check = vp->verify_header(
850 					vp->header_rxbuffer, skb, vp);
851 				if (header_check < 0) {
852 					dev_kfree_skb_irq(skb);
853 					vp->dev->stats.rx_dropped++;
854 					vp->estats.rx_encaps_errors++;
855 					return 0;
856 				}
857 				if (header_check > 0) {
858 					vp->estats.rx_csum_offload_good++;
859 					skb->ip_summed = CHECKSUM_UNNECESSARY;
860 				}
861 			}
862 			pskb_trim(skb, pkt_len - vp->rx_header_size);
863 			skb->protocol = eth_type_trans(skb, skb->dev);
864 			vp->dev->stats.rx_bytes += skb->len;
865 			vp->dev->stats.rx_packets++;
866 			netif_rx(skb);
867 		} else {
868 			dev_kfree_skb_irq(skb);
869 		}
870 	}
871 	return pkt_len;
872 }
873 
874 /*
875  * Packet at a time TX which falls back to vector TX if the
876  * underlying transport is busy.
877  */
878 
879 
880 
881 static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
882 {
883 	struct iovec iov[3 + MAX_IOV_SIZE];
884 	int iov_count, pkt_len = 0;
885 
886 	iov[0].iov_base = vp->header_txbuffer;
887 	iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
888 
889 	if (iov_count < 1)
890 		goto drop;
891 	pkt_len = uml_vector_writev(
892 		vp->fds->tx_fd,
893 		(struct iovec *) &iov,
894 		iov_count
895 	);
896 
897 	netif_trans_update(vp->dev);
898 	netif_wake_queue(vp->dev);
899 
900 	if (pkt_len > 0) {
901 		vp->dev->stats.tx_bytes += skb->len;
902 		vp->dev->stats.tx_packets++;
903 	} else {
904 		vp->dev->stats.tx_dropped++;
905 	}
906 	consume_skb(skb);
907 	return pkt_len;
908 drop:
909 	vp->dev->stats.tx_dropped++;
910 	consume_skb(skb);
911 	return pkt_len;
912 }
913 
914 /*
915  * Receive as many messages as we can in one call using the special
916  * mmsg vector matched to an skb vector which we prepared earlier.
917  */
918 
919 static int vector_mmsg_rx(struct vector_private *vp)
920 {
921 	int packet_count, i;
922 	struct vector_queue *qi = vp->rx_queue;
923 	struct sk_buff *skb;
924 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
925 	void **skbuff_vector = qi->skbuff_vector;
926 	int header_check;
927 
928 	/* Refresh the vector and make sure it is with new skbs and the
929 	 * iovs are updated to point to them.
930 	 */
931 
932 	prep_queue_for_rx(qi);
933 
934 	/* Fire the Lazy Gun - get as many packets as we can in one go. */
935 
936 	packet_count = uml_vector_recvmmsg(
937 		vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
938 
939 	if (packet_count <= 0)
940 		return packet_count;
941 
942 	/* We treat packet processing as enqueue, buffer refresh as dequeue
943 	 * The queue_depth tells us how many buffers have been used and how
944 	 * many do we need to prep the next time prep_queue_for_rx() is called.
945 	 */
946 
947 	qi->queue_depth = packet_count;
948 
949 	for (i = 0; i < packet_count; i++) {
950 		skb = (*skbuff_vector);
951 		if (mmsg_vector->msg_len > vp->header_size) {
952 			if (vp->header_size > 0) {
953 				header_check = vp->verify_header(
954 					mmsg_vector->msg_hdr.msg_iov->iov_base,
955 					skb,
956 					vp
957 				);
958 				if (header_check < 0) {
959 				/* Overlay header failed to verify - discard.
960 				 * We can actually keep this skb and reuse it,
961 				 * but that will make the prep logic too
962 				 * complex.
963 				 */
964 					dev_kfree_skb_irq(skb);
965 					vp->estats.rx_encaps_errors++;
966 					continue;
967 				}
968 				if (header_check > 0) {
969 					vp->estats.rx_csum_offload_good++;
970 					skb->ip_summed = CHECKSUM_UNNECESSARY;
971 				}
972 			}
973 			pskb_trim(skb,
974 				mmsg_vector->msg_len - vp->rx_header_size);
975 			skb->protocol = eth_type_trans(skb, skb->dev);
976 			/*
977 			 * We do not need to lock on updating stats here
978 			 * The interrupt loop is non-reentrant.
979 			 */
980 			vp->dev->stats.rx_bytes += skb->len;
981 			vp->dev->stats.rx_packets++;
982 			netif_rx(skb);
983 		} else {
984 			/* Overlay header too short to do anything - discard.
985 			 * We can actually keep this skb and reuse it,
986 			 * but that will make the prep logic too complex.
987 			 */
988 			if (skb != NULL)
989 				dev_kfree_skb_irq(skb);
990 		}
991 		(*skbuff_vector) = NULL;
992 		/* Move to the next buffer element */
993 		mmsg_vector++;
994 		skbuff_vector++;
995 	}
996 	if (packet_count > 0) {
997 		if (vp->estats.rx_queue_max < packet_count)
998 			vp->estats.rx_queue_max = packet_count;
999 		vp->estats.rx_queue_running_average =
1000 			(vp->estats.rx_queue_running_average + packet_count) >> 1;
1001 	}
1002 	return packet_count;
1003 }
1004 
1005 static void vector_rx(struct vector_private *vp)
1006 {
1007 	int err;
1008 
1009 	if ((vp->options & VECTOR_RX) > 0)
1010 		while ((err = vector_mmsg_rx(vp)) > 0)
1011 			;
1012 	else
1013 		while ((err = vector_legacy_rx(vp)) > 0)
1014 			;
1015 	if ((err != 0) && net_ratelimit())
1016 		netdev_err(vp->dev, "vector_rx: error(%d)\n", err);
1017 }
1018 
1019 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1020 {
1021 	struct vector_private *vp = netdev_priv(dev);
1022 	int queue_depth = 0;
1023 
1024 	if ((vp->options & VECTOR_TX) == 0) {
1025 		writev_tx(vp, skb);
1026 		return NETDEV_TX_OK;
1027 	}
1028 
1029 	/* We do BQL only in the vector path, no point doing it in
1030 	 * packet at a time mode as there is no device queue
1031 	 */
1032 
1033 	netdev_sent_queue(vp->dev, skb->len);
1034 	queue_depth = vector_enqueue(vp->tx_queue, skb);
1035 
1036 	/* if the device queue is full, stop the upper layers and
1037 	 * flush it.
1038 	 */
1039 
1040 	if (queue_depth >= vp->tx_queue->max_depth - 1) {
1041 		vp->estats.tx_kicks++;
1042 		netif_stop_queue(dev);
1043 		vector_send(vp->tx_queue);
1044 		return NETDEV_TX_OK;
1045 	}
1046 	if (netdev_xmit_more()) {
1047 		mod_timer(&vp->tl, vp->coalesce);
1048 		return NETDEV_TX_OK;
1049 	}
1050 	if (skb->len < TX_SMALL_PACKET) {
1051 		vp->estats.tx_kicks++;
1052 		vector_send(vp->tx_queue);
1053 	} else
1054 		tasklet_schedule(&vp->tx_poll);
1055 	return NETDEV_TX_OK;
1056 }
1057 
1058 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1059 {
1060 	struct net_device *dev = dev_id;
1061 	struct vector_private *vp = netdev_priv(dev);
1062 
1063 	if (!netif_running(dev))
1064 		return IRQ_NONE;
1065 	vector_rx(vp);
1066 	return IRQ_HANDLED;
1067 
1068 }
1069 
1070 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1071 {
1072 	struct net_device *dev = dev_id;
1073 	struct vector_private *vp = netdev_priv(dev);
1074 
1075 	if (!netif_running(dev))
1076 		return IRQ_NONE;
1077 	/* We need to pay attention to it only if we got
1078 	 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1079 	 * we ignore it. In the future, it may be worth
1080 	 * it to improve the IRQ controller a bit to make
1081 	 * tweaking the IRQ mask less costly
1082 	 */
1083 
1084 	if (vp->in_write_poll)
1085 		tasklet_schedule(&vp->tx_poll);
1086 	return IRQ_HANDLED;
1087 
1088 }
1089 
1090 static int irq_rr;
1091 
1092 static int vector_net_close(struct net_device *dev)
1093 {
1094 	struct vector_private *vp = netdev_priv(dev);
1095 	unsigned long flags;
1096 
1097 	netif_stop_queue(dev);
1098 	del_timer(&vp->tl);
1099 
1100 	if (vp->fds == NULL)
1101 		return 0;
1102 
1103 	/* Disable and free all IRQS */
1104 	if (vp->rx_irq > 0) {
1105 		um_free_irq(vp->rx_irq, dev);
1106 		vp->rx_irq = 0;
1107 	}
1108 	if (vp->tx_irq > 0) {
1109 		um_free_irq(vp->tx_irq, dev);
1110 		vp->tx_irq = 0;
1111 	}
1112 	tasklet_kill(&vp->tx_poll);
1113 	if (vp->fds->rx_fd > 0) {
1114 		os_close_file(vp->fds->rx_fd);
1115 		vp->fds->rx_fd = -1;
1116 	}
1117 	if (vp->fds->tx_fd > 0) {
1118 		os_close_file(vp->fds->tx_fd);
1119 		vp->fds->tx_fd = -1;
1120 	}
1121 	kfree(vp->bpf);
1122 	kfree(vp->fds->remote_addr);
1123 	kfree(vp->transport_data);
1124 	kfree(vp->header_rxbuffer);
1125 	kfree(vp->header_txbuffer);
1126 	if (vp->rx_queue != NULL)
1127 		destroy_queue(vp->rx_queue);
1128 	if (vp->tx_queue != NULL)
1129 		destroy_queue(vp->tx_queue);
1130 	kfree(vp->fds);
1131 	vp->fds = NULL;
1132 	spin_lock_irqsave(&vp->lock, flags);
1133 	vp->opened = false;
1134 	spin_unlock_irqrestore(&vp->lock, flags);
1135 	return 0;
1136 }
1137 
1138 /* TX tasklet */
1139 
1140 static void vector_tx_poll(unsigned long data)
1141 {
1142 	struct vector_private *vp = (struct vector_private *)data;
1143 
1144 	vp->estats.tx_kicks++;
1145 	vector_send(vp->tx_queue);
1146 }
1147 static void vector_reset_tx(struct work_struct *work)
1148 {
1149 	struct vector_private *vp =
1150 		container_of(work, struct vector_private, reset_tx);
1151 	netdev_reset_queue(vp->dev);
1152 	netif_start_queue(vp->dev);
1153 	netif_wake_queue(vp->dev);
1154 }
1155 static int vector_net_open(struct net_device *dev)
1156 {
1157 	struct vector_private *vp = netdev_priv(dev);
1158 	unsigned long flags;
1159 	int err = -EINVAL;
1160 	struct vector_device *vdevice;
1161 
1162 	spin_lock_irqsave(&vp->lock, flags);
1163 	if (vp->opened) {
1164 		spin_unlock_irqrestore(&vp->lock, flags);
1165 		return -ENXIO;
1166 	}
1167 	vp->opened = true;
1168 	spin_unlock_irqrestore(&vp->lock, flags);
1169 
1170 	vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1171 
1172 	if (vp->fds == NULL)
1173 		goto out_close;
1174 
1175 	if (build_transport_data(vp) < 0)
1176 		goto out_close;
1177 
1178 	if ((vp->options & VECTOR_RX) > 0) {
1179 		vp->rx_queue = create_queue(
1180 			vp,
1181 			get_depth(vp->parsed),
1182 			vp->rx_header_size,
1183 			MAX_IOV_SIZE
1184 		);
1185 		vp->rx_queue->queue_depth = get_depth(vp->parsed);
1186 	} else {
1187 		vp->header_rxbuffer = kmalloc(
1188 			vp->rx_header_size,
1189 			GFP_KERNEL
1190 		);
1191 		if (vp->header_rxbuffer == NULL)
1192 			goto out_close;
1193 	}
1194 	if ((vp->options & VECTOR_TX) > 0) {
1195 		vp->tx_queue = create_queue(
1196 			vp,
1197 			get_depth(vp->parsed),
1198 			vp->header_size,
1199 			MAX_IOV_SIZE
1200 		);
1201 	} else {
1202 		vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1203 		if (vp->header_txbuffer == NULL)
1204 			goto out_close;
1205 	}
1206 
1207 	/* READ IRQ */
1208 	err = um_request_irq(
1209 		irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1210 			IRQ_READ, vector_rx_interrupt,
1211 			IRQF_SHARED, dev->name, dev);
1212 	if (err != 0) {
1213 		netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1214 		err = -ENETUNREACH;
1215 		goto out_close;
1216 	}
1217 	vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1218 	dev->irq = irq_rr + VECTOR_BASE_IRQ;
1219 	irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1220 
1221 	/* WRITE IRQ - we need it only if we have vector TX */
1222 	if ((vp->options & VECTOR_TX) > 0) {
1223 		err = um_request_irq(
1224 			irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1225 				IRQ_WRITE, vector_tx_interrupt,
1226 				IRQF_SHARED, dev->name, dev);
1227 		if (err != 0) {
1228 			netdev_err(dev,
1229 				"vector_open: failed to get tx irq(%d)\n", err);
1230 			err = -ENETUNREACH;
1231 			goto out_close;
1232 		}
1233 		vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1234 		irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1235 	}
1236 
1237 	if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1238 		if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1239 			vp->options |= VECTOR_BPF;
1240 	}
1241 	if ((vp->options & VECTOR_BPF) != 0)
1242 		vp->bpf = uml_vector_default_bpf(vp->fds->rx_fd, dev->dev_addr);
1243 
1244 	netif_start_queue(dev);
1245 
1246 	/* clear buffer - it can happen that the host side of the interface
1247 	 * is full when we get here. In this case, new data is never queued,
1248 	 * SIGIOs never arrive, and the net never works.
1249 	 */
1250 
1251 	vector_rx(vp);
1252 
1253 	vector_reset_stats(vp);
1254 	vdevice = find_device(vp->unit);
1255 	vdevice->opened = 1;
1256 
1257 	if ((vp->options & VECTOR_TX) != 0)
1258 		add_timer(&vp->tl);
1259 	return 0;
1260 out_close:
1261 	vector_net_close(dev);
1262 	return err;
1263 }
1264 
1265 
1266 static void vector_net_set_multicast_list(struct net_device *dev)
1267 {
1268 	/* TODO: - we can do some BPF games here */
1269 	return;
1270 }
1271 
1272 static void vector_net_tx_timeout(struct net_device *dev)
1273 {
1274 	struct vector_private *vp = netdev_priv(dev);
1275 
1276 	vp->estats.tx_timeout_count++;
1277 	netif_trans_update(dev);
1278 	schedule_work(&vp->reset_tx);
1279 }
1280 
1281 static netdev_features_t vector_fix_features(struct net_device *dev,
1282 	netdev_features_t features)
1283 {
1284 	features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1285 	return features;
1286 }
1287 
1288 static int vector_set_features(struct net_device *dev,
1289 	netdev_features_t features)
1290 {
1291 	struct vector_private *vp = netdev_priv(dev);
1292 	/* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1293 	 * no way to negotiate it on raw sockets, so we can change
1294 	 * only our side.
1295 	 */
1296 	if (features & NETIF_F_GRO)
1297 		/* All new frame buffers will be GRO-sized */
1298 		vp->req_size = 65536;
1299 	else
1300 		/* All new frame buffers will be normal sized */
1301 		vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1302 	return 0;
1303 }
1304 
1305 #ifdef CONFIG_NET_POLL_CONTROLLER
1306 static void vector_net_poll_controller(struct net_device *dev)
1307 {
1308 	disable_irq(dev->irq);
1309 	vector_rx_interrupt(dev->irq, dev);
1310 	enable_irq(dev->irq);
1311 }
1312 #endif
1313 
1314 static void vector_net_get_drvinfo(struct net_device *dev,
1315 				struct ethtool_drvinfo *info)
1316 {
1317 	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1318 	strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1319 }
1320 
1321 static void vector_get_ringparam(struct net_device *netdev,
1322 				struct ethtool_ringparam *ring)
1323 {
1324 	struct vector_private *vp = netdev_priv(netdev);
1325 
1326 	ring->rx_max_pending = vp->rx_queue->max_depth;
1327 	ring->tx_max_pending = vp->tx_queue->max_depth;
1328 	ring->rx_pending = vp->rx_queue->max_depth;
1329 	ring->tx_pending = vp->tx_queue->max_depth;
1330 }
1331 
1332 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1333 {
1334 	switch (stringset) {
1335 	case ETH_SS_TEST:
1336 		*buf = '\0';
1337 		break;
1338 	case ETH_SS_STATS:
1339 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1340 		break;
1341 	default:
1342 		WARN_ON(1);
1343 		break;
1344 	}
1345 }
1346 
1347 static int vector_get_sset_count(struct net_device *dev, int sset)
1348 {
1349 	switch (sset) {
1350 	case ETH_SS_TEST:
1351 		return 0;
1352 	case ETH_SS_STATS:
1353 		return VECTOR_NUM_STATS;
1354 	default:
1355 		return -EOPNOTSUPP;
1356 	}
1357 }
1358 
1359 static void vector_get_ethtool_stats(struct net_device *dev,
1360 	struct ethtool_stats *estats,
1361 	u64 *tmp_stats)
1362 {
1363 	struct vector_private *vp = netdev_priv(dev);
1364 
1365 	memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1366 }
1367 
1368 static int vector_get_coalesce(struct net_device *netdev,
1369 					struct ethtool_coalesce *ec)
1370 {
1371 	struct vector_private *vp = netdev_priv(netdev);
1372 
1373 	ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1374 	return 0;
1375 }
1376 
1377 static int vector_set_coalesce(struct net_device *netdev,
1378 					struct ethtool_coalesce *ec)
1379 {
1380 	struct vector_private *vp = netdev_priv(netdev);
1381 
1382 	vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1383 	if (vp->coalesce == 0)
1384 		vp->coalesce = 1;
1385 	return 0;
1386 }
1387 
1388 static const struct ethtool_ops vector_net_ethtool_ops = {
1389 	.get_drvinfo	= vector_net_get_drvinfo,
1390 	.get_link	= ethtool_op_get_link,
1391 	.get_ts_info	= ethtool_op_get_ts_info,
1392 	.get_ringparam	= vector_get_ringparam,
1393 	.get_strings	= vector_get_strings,
1394 	.get_sset_count	= vector_get_sset_count,
1395 	.get_ethtool_stats = vector_get_ethtool_stats,
1396 	.get_coalesce	= vector_get_coalesce,
1397 	.set_coalesce	= vector_set_coalesce,
1398 };
1399 
1400 
1401 static const struct net_device_ops vector_netdev_ops = {
1402 	.ndo_open		= vector_net_open,
1403 	.ndo_stop		= vector_net_close,
1404 	.ndo_start_xmit		= vector_net_start_xmit,
1405 	.ndo_set_rx_mode	= vector_net_set_multicast_list,
1406 	.ndo_tx_timeout		= vector_net_tx_timeout,
1407 	.ndo_set_mac_address	= eth_mac_addr,
1408 	.ndo_validate_addr	= eth_validate_addr,
1409 	.ndo_fix_features	= vector_fix_features,
1410 	.ndo_set_features	= vector_set_features,
1411 #ifdef CONFIG_NET_POLL_CONTROLLER
1412 	.ndo_poll_controller = vector_net_poll_controller,
1413 #endif
1414 };
1415 
1416 
1417 static void vector_timer_expire(struct timer_list *t)
1418 {
1419 	struct vector_private *vp = from_timer(vp, t, tl);
1420 
1421 	vp->estats.tx_kicks++;
1422 	vector_send(vp->tx_queue);
1423 }
1424 
1425 static void vector_eth_configure(
1426 		int n,
1427 		struct arglist *def
1428 	)
1429 {
1430 	struct vector_device *device;
1431 	struct net_device *dev;
1432 	struct vector_private *vp;
1433 	int err;
1434 
1435 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1436 	if (device == NULL) {
1437 		printk(KERN_ERR "eth_configure failed to allocate struct "
1438 				 "vector_device\n");
1439 		return;
1440 	}
1441 	dev = alloc_etherdev(sizeof(struct vector_private));
1442 	if (dev == NULL) {
1443 		printk(KERN_ERR "eth_configure: failed to allocate struct "
1444 				 "net_device for vec%d\n", n);
1445 		goto out_free_device;
1446 	}
1447 
1448 	dev->mtu = get_mtu(def);
1449 
1450 	INIT_LIST_HEAD(&device->list);
1451 	device->unit = n;
1452 
1453 	/* If this name ends up conflicting with an existing registered
1454 	 * netdevice, that is OK, register_netdev{,ice}() will notice this
1455 	 * and fail.
1456 	 */
1457 	snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1458 	uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1459 	vp = netdev_priv(dev);
1460 
1461 	/* sysfs register */
1462 	if (!driver_registered) {
1463 		platform_driver_register(&uml_net_driver);
1464 		driver_registered = 1;
1465 	}
1466 	device->pdev.id = n;
1467 	device->pdev.name = DRIVER_NAME;
1468 	device->pdev.dev.release = vector_device_release;
1469 	dev_set_drvdata(&device->pdev.dev, device);
1470 	if (platform_device_register(&device->pdev))
1471 		goto out_free_netdev;
1472 	SET_NETDEV_DEV(dev, &device->pdev.dev);
1473 
1474 	device->dev = dev;
1475 
1476 	*vp = ((struct vector_private)
1477 		{
1478 		.list			= LIST_HEAD_INIT(vp->list),
1479 		.dev			= dev,
1480 		.unit			= n,
1481 		.options		= get_transport_options(def),
1482 		.rx_irq			= 0,
1483 		.tx_irq			= 0,
1484 		.parsed			= def,
1485 		.max_packet		= get_mtu(def) + ETH_HEADER_OTHER,
1486 		/* TODO - we need to calculate headroom so that ip header
1487 		 * is 16 byte aligned all the time
1488 		 */
1489 		.headroom		= get_headroom(def),
1490 		.form_header		= NULL,
1491 		.verify_header		= NULL,
1492 		.header_rxbuffer	= NULL,
1493 		.header_txbuffer	= NULL,
1494 		.header_size		= 0,
1495 		.rx_header_size		= 0,
1496 		.rexmit_scheduled	= false,
1497 		.opened			= false,
1498 		.transport_data		= NULL,
1499 		.in_write_poll		= false,
1500 		.coalesce		= 2,
1501 		.req_size		= get_req_size(def)
1502 		});
1503 
1504 	dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1505 	tasklet_init(&vp->tx_poll, vector_tx_poll, (unsigned long)vp);
1506 	INIT_WORK(&vp->reset_tx, vector_reset_tx);
1507 
1508 	timer_setup(&vp->tl, vector_timer_expire, 0);
1509 	spin_lock_init(&vp->lock);
1510 
1511 	/* FIXME */
1512 	dev->netdev_ops = &vector_netdev_ops;
1513 	dev->ethtool_ops = &vector_net_ethtool_ops;
1514 	dev->watchdog_timeo = (HZ >> 1);
1515 	/* primary IRQ - fixme */
1516 	dev->irq = 0; /* we will adjust this once opened */
1517 
1518 	rtnl_lock();
1519 	err = register_netdevice(dev);
1520 	rtnl_unlock();
1521 	if (err)
1522 		goto out_undo_user_init;
1523 
1524 	spin_lock(&vector_devices_lock);
1525 	list_add(&device->list, &vector_devices);
1526 	spin_unlock(&vector_devices_lock);
1527 
1528 	return;
1529 
1530 out_undo_user_init:
1531 	return;
1532 out_free_netdev:
1533 	free_netdev(dev);
1534 out_free_device:
1535 	kfree(device);
1536 }
1537 
1538 
1539 
1540 
1541 /*
1542  * Invoked late in the init
1543  */
1544 
1545 static int __init vector_init(void)
1546 {
1547 	struct list_head *ele;
1548 	struct vector_cmd_line_arg *def;
1549 	struct arglist *parsed;
1550 
1551 	list_for_each(ele, &vec_cmd_line) {
1552 		def = list_entry(ele, struct vector_cmd_line_arg, list);
1553 		parsed = uml_parse_vector_ifspec(def->arguments);
1554 		if (parsed != NULL)
1555 			vector_eth_configure(def->unit, parsed);
1556 	}
1557 	return 0;
1558 }
1559 
1560 
1561 /* Invoked at initial argument parsing, only stores
1562  * arguments until a proper vector_init is called
1563  * later
1564  */
1565 
1566 static int __init vector_setup(char *str)
1567 {
1568 	char *error;
1569 	int n, err;
1570 	struct vector_cmd_line_arg *new;
1571 
1572 	err = vector_parse(str, &n, &str, &error);
1573 	if (err) {
1574 		printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1575 				 str, error);
1576 		return 1;
1577 	}
1578 	new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1579 	if (!new)
1580 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1581 		      sizeof(*new));
1582 	INIT_LIST_HEAD(&new->list);
1583 	new->unit = n;
1584 	new->arguments = str;
1585 	list_add_tail(&new->list, &vec_cmd_line);
1586 	return 1;
1587 }
1588 
1589 __setup("vec", vector_setup);
1590 __uml_help(vector_setup,
1591 "vec[0-9]+:<option>=<value>,<option>=<value>\n"
1592 "	 Configure a vector io network device.\n\n"
1593 );
1594 
1595 late_initcall(vector_init);
1596 
1597 static struct mc_device vector_mc = {
1598 	.list		= LIST_HEAD_INIT(vector_mc.list),
1599 	.name		= "vec",
1600 	.config		= vector_config,
1601 	.get_config	= NULL,
1602 	.id		= vector_id,
1603 	.remove		= vector_remove,
1604 };
1605 
1606 #ifdef CONFIG_INET
1607 static int vector_inetaddr_event(
1608 	struct notifier_block *this,
1609 	unsigned long event,
1610 	void *ptr)
1611 {
1612 	return NOTIFY_DONE;
1613 }
1614 
1615 static struct notifier_block vector_inetaddr_notifier = {
1616 	.notifier_call		= vector_inetaddr_event,
1617 };
1618 
1619 static void inet_register(void)
1620 {
1621 	register_inetaddr_notifier(&vector_inetaddr_notifier);
1622 }
1623 #else
1624 static inline void inet_register(void)
1625 {
1626 }
1627 #endif
1628 
1629 static int vector_net_init(void)
1630 {
1631 	mconsole_register_dev(&vector_mc);
1632 	inet_register();
1633 	return 0;
1634 }
1635 
1636 __initcall(vector_net_init);
1637 
1638 
1639 
1640