1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2017 - 2019 Cambridge Greys Limited 4 * Copyright (C) 2011 - 2014 Cisco Systems Inc 5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and 7 * James Leu (jleu@mindspring.net). 8 * Copyright (C) 2001 by various other people who didn't put their name here. 9 */ 10 11 #include <linux/memblock.h> 12 #include <linux/etherdevice.h> 13 #include <linux/ethtool.h> 14 #include <linux/inetdevice.h> 15 #include <linux/init.h> 16 #include <linux/list.h> 17 #include <linux/netdevice.h> 18 #include <linux/platform_device.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/skbuff.h> 21 #include <linux/slab.h> 22 #include <linux/interrupt.h> 23 #include <linux/firmware.h> 24 #include <linux/fs.h> 25 #include <uapi/linux/filter.h> 26 #include <init.h> 27 #include <irq_kern.h> 28 #include <irq_user.h> 29 #include <net_kern.h> 30 #include <os.h> 31 #include "mconsole_kern.h" 32 #include "vector_user.h" 33 #include "vector_kern.h" 34 35 /* 36 * Adapted from network devices with the following major changes: 37 * All transports are static - simplifies the code significantly 38 * Multiple FDs/IRQs per device 39 * Vector IO optionally used for read/write, falling back to legacy 40 * based on configuration and/or availability 41 * Configuration is no longer positional - L2TPv3 and GRE require up to 42 * 10 parameters, passing this as positional is not fit for purpose. 43 * Only socket transports are supported 44 */ 45 46 47 #define DRIVER_NAME "uml-vector" 48 struct vector_cmd_line_arg { 49 struct list_head list; 50 int unit; 51 char *arguments; 52 }; 53 54 struct vector_device { 55 struct list_head list; 56 struct net_device *dev; 57 struct platform_device pdev; 58 int unit; 59 int opened; 60 }; 61 62 static LIST_HEAD(vec_cmd_line); 63 64 static DEFINE_SPINLOCK(vector_devices_lock); 65 static LIST_HEAD(vector_devices); 66 67 static int driver_registered; 68 69 static void vector_eth_configure(int n, struct arglist *def); 70 static int vector_mmsg_rx(struct vector_private *vp, int budget); 71 72 /* Argument accessors to set variables (and/or set default values) 73 * mtu, buffer sizing, default headroom, etc 74 */ 75 76 #define DEFAULT_HEADROOM 2 77 #define SAFETY_MARGIN 32 78 #define DEFAULT_VECTOR_SIZE 64 79 #define TX_SMALL_PACKET 128 80 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1) 81 82 static const struct { 83 const char string[ETH_GSTRING_LEN]; 84 } ethtool_stats_keys[] = { 85 { "rx_queue_max" }, 86 { "rx_queue_running_average" }, 87 { "tx_queue_max" }, 88 { "tx_queue_running_average" }, 89 { "rx_encaps_errors" }, 90 { "tx_timeout_count" }, 91 { "tx_restart_queue" }, 92 { "tx_kicks" }, 93 { "tx_flow_control_xon" }, 94 { "tx_flow_control_xoff" }, 95 { "rx_csum_offload_good" }, 96 { "rx_csum_offload_errors"}, 97 { "sg_ok"}, 98 { "sg_linearized"}, 99 }; 100 101 #define VECTOR_NUM_STATS ARRAY_SIZE(ethtool_stats_keys) 102 103 static void vector_reset_stats(struct vector_private *vp) 104 { 105 vp->estats.rx_queue_max = 0; 106 vp->estats.rx_queue_running_average = 0; 107 vp->estats.tx_queue_max = 0; 108 vp->estats.tx_queue_running_average = 0; 109 vp->estats.rx_encaps_errors = 0; 110 vp->estats.tx_timeout_count = 0; 111 vp->estats.tx_restart_queue = 0; 112 vp->estats.tx_kicks = 0; 113 vp->estats.tx_flow_control_xon = 0; 114 vp->estats.tx_flow_control_xoff = 0; 115 vp->estats.sg_ok = 0; 116 vp->estats.sg_linearized = 0; 117 } 118 119 static int get_mtu(struct arglist *def) 120 { 121 char *mtu = uml_vector_fetch_arg(def, "mtu"); 122 long result; 123 124 if (mtu != NULL) { 125 if (kstrtoul(mtu, 10, &result) == 0) 126 if ((result < (1 << 16) - 1) && (result >= 576)) 127 return result; 128 } 129 return ETH_MAX_PACKET; 130 } 131 132 static char *get_bpf_file(struct arglist *def) 133 { 134 return uml_vector_fetch_arg(def, "bpffile"); 135 } 136 137 static bool get_bpf_flash(struct arglist *def) 138 { 139 char *allow = uml_vector_fetch_arg(def, "bpfflash"); 140 long result; 141 142 if (allow != NULL) { 143 if (kstrtoul(allow, 10, &result) == 0) 144 return (allow > 0); 145 } 146 return false; 147 } 148 149 static int get_depth(struct arglist *def) 150 { 151 char *mtu = uml_vector_fetch_arg(def, "depth"); 152 long result; 153 154 if (mtu != NULL) { 155 if (kstrtoul(mtu, 10, &result) == 0) 156 return result; 157 } 158 return DEFAULT_VECTOR_SIZE; 159 } 160 161 static int get_headroom(struct arglist *def) 162 { 163 char *mtu = uml_vector_fetch_arg(def, "headroom"); 164 long result; 165 166 if (mtu != NULL) { 167 if (kstrtoul(mtu, 10, &result) == 0) 168 return result; 169 } 170 return DEFAULT_HEADROOM; 171 } 172 173 static int get_req_size(struct arglist *def) 174 { 175 char *gro = uml_vector_fetch_arg(def, "gro"); 176 long result; 177 178 if (gro != NULL) { 179 if (kstrtoul(gro, 10, &result) == 0) { 180 if (result > 0) 181 return 65536; 182 } 183 } 184 return get_mtu(def) + ETH_HEADER_OTHER + 185 get_headroom(def) + SAFETY_MARGIN; 186 } 187 188 189 static int get_transport_options(struct arglist *def) 190 { 191 char *transport = uml_vector_fetch_arg(def, "transport"); 192 char *vector = uml_vector_fetch_arg(def, "vec"); 193 194 int vec_rx = VECTOR_RX; 195 int vec_tx = VECTOR_TX; 196 long parsed; 197 int result = 0; 198 199 if (transport == NULL) 200 return -EINVAL; 201 202 if (vector != NULL) { 203 if (kstrtoul(vector, 10, &parsed) == 0) { 204 if (parsed == 0) { 205 vec_rx = 0; 206 vec_tx = 0; 207 } 208 } 209 } 210 211 if (get_bpf_flash(def)) 212 result = VECTOR_BPF_FLASH; 213 214 if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0) 215 return result; 216 if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0) 217 return (result | vec_rx | VECTOR_BPF); 218 if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0) 219 return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS); 220 return (result | vec_rx | vec_tx); 221 } 222 223 224 /* A mini-buffer for packet drop read 225 * All of our supported transports are datagram oriented and we always 226 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller 227 * than the packet size it still counts as full packet read and will 228 * clean the incoming stream to keep sigio/epoll happy 229 */ 230 231 #define DROP_BUFFER_SIZE 32 232 233 static char *drop_buffer; 234 235 /* Array backed queues optimized for bulk enqueue/dequeue and 236 * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios. 237 * For more details and full design rationale see 238 * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt 239 */ 240 241 242 /* 243 * Advance the mmsg queue head by n = advance. Resets the queue to 244 * maximum enqueue/dequeue-at-once capacity if possible. Called by 245 * dequeuers. Caller must hold the head_lock! 246 */ 247 248 static int vector_advancehead(struct vector_queue *qi, int advance) 249 { 250 int queue_depth; 251 252 qi->head = 253 (qi->head + advance) 254 % qi->max_depth; 255 256 257 spin_lock(&qi->tail_lock); 258 qi->queue_depth -= advance; 259 260 /* we are at 0, use this to 261 * reset head and tail so we can use max size vectors 262 */ 263 264 if (qi->queue_depth == 0) { 265 qi->head = 0; 266 qi->tail = 0; 267 } 268 queue_depth = qi->queue_depth; 269 spin_unlock(&qi->tail_lock); 270 return queue_depth; 271 } 272 273 /* Advance the queue tail by n = advance. 274 * This is called by enqueuers which should hold the 275 * head lock already 276 */ 277 278 static int vector_advancetail(struct vector_queue *qi, int advance) 279 { 280 int queue_depth; 281 282 qi->tail = 283 (qi->tail + advance) 284 % qi->max_depth; 285 spin_lock(&qi->head_lock); 286 qi->queue_depth += advance; 287 queue_depth = qi->queue_depth; 288 spin_unlock(&qi->head_lock); 289 return queue_depth; 290 } 291 292 static int prep_msg(struct vector_private *vp, 293 struct sk_buff *skb, 294 struct iovec *iov) 295 { 296 int iov_index = 0; 297 int nr_frags, frag; 298 skb_frag_t *skb_frag; 299 300 nr_frags = skb_shinfo(skb)->nr_frags; 301 if (nr_frags > MAX_IOV_SIZE) { 302 if (skb_linearize(skb) != 0) 303 goto drop; 304 } 305 if (vp->header_size > 0) { 306 iov[iov_index].iov_len = vp->header_size; 307 vp->form_header(iov[iov_index].iov_base, skb, vp); 308 iov_index++; 309 } 310 iov[iov_index].iov_base = skb->data; 311 if (nr_frags > 0) { 312 iov[iov_index].iov_len = skb->len - skb->data_len; 313 vp->estats.sg_ok++; 314 } else 315 iov[iov_index].iov_len = skb->len; 316 iov_index++; 317 for (frag = 0; frag < nr_frags; frag++) { 318 skb_frag = &skb_shinfo(skb)->frags[frag]; 319 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); 320 iov[iov_index].iov_len = skb_frag_size(skb_frag); 321 iov_index++; 322 } 323 return iov_index; 324 drop: 325 return -1; 326 } 327 /* 328 * Generic vector enqueue with support for forming headers using transport 329 * specific callback. Allows GRE, L2TPv3, RAW and other transports 330 * to use a common enqueue procedure in vector mode 331 */ 332 333 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb) 334 { 335 struct vector_private *vp = netdev_priv(qi->dev); 336 int queue_depth; 337 int packet_len; 338 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 339 int iov_count; 340 341 spin_lock(&qi->tail_lock); 342 spin_lock(&qi->head_lock); 343 queue_depth = qi->queue_depth; 344 spin_unlock(&qi->head_lock); 345 346 if (skb) 347 packet_len = skb->len; 348 349 if (queue_depth < qi->max_depth) { 350 351 *(qi->skbuff_vector + qi->tail) = skb; 352 mmsg_vector += qi->tail; 353 iov_count = prep_msg( 354 vp, 355 skb, 356 mmsg_vector->msg_hdr.msg_iov 357 ); 358 if (iov_count < 1) 359 goto drop; 360 mmsg_vector->msg_hdr.msg_iovlen = iov_count; 361 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr; 362 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size; 363 queue_depth = vector_advancetail(qi, 1); 364 } else 365 goto drop; 366 spin_unlock(&qi->tail_lock); 367 return queue_depth; 368 drop: 369 qi->dev->stats.tx_dropped++; 370 if (skb != NULL) { 371 packet_len = skb->len; 372 dev_consume_skb_any(skb); 373 netdev_completed_queue(qi->dev, 1, packet_len); 374 } 375 spin_unlock(&qi->tail_lock); 376 return queue_depth; 377 } 378 379 static int consume_vector_skbs(struct vector_queue *qi, int count) 380 { 381 struct sk_buff *skb; 382 int skb_index; 383 int bytes_compl = 0; 384 385 for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) { 386 skb = *(qi->skbuff_vector + skb_index); 387 /* mark as empty to ensure correct destruction if 388 * needed 389 */ 390 bytes_compl += skb->len; 391 *(qi->skbuff_vector + skb_index) = NULL; 392 dev_consume_skb_any(skb); 393 } 394 qi->dev->stats.tx_bytes += bytes_compl; 395 qi->dev->stats.tx_packets += count; 396 netdev_completed_queue(qi->dev, count, bytes_compl); 397 return vector_advancehead(qi, count); 398 } 399 400 /* 401 * Generic vector deque via sendmmsg with support for forming headers 402 * using transport specific callback. Allows GRE, L2TPv3, RAW and 403 * other transports to use a common dequeue procedure in vector mode 404 */ 405 406 407 static int vector_send(struct vector_queue *qi) 408 { 409 struct vector_private *vp = netdev_priv(qi->dev); 410 struct mmsghdr *send_from; 411 int result = 0, send_len, queue_depth = qi->max_depth; 412 413 if (spin_trylock(&qi->head_lock)) { 414 if (spin_trylock(&qi->tail_lock)) { 415 /* update queue_depth to current value */ 416 queue_depth = qi->queue_depth; 417 spin_unlock(&qi->tail_lock); 418 while (queue_depth > 0) { 419 /* Calculate the start of the vector */ 420 send_len = queue_depth; 421 send_from = qi->mmsg_vector; 422 send_from += qi->head; 423 /* Adjust vector size if wraparound */ 424 if (send_len + qi->head > qi->max_depth) 425 send_len = qi->max_depth - qi->head; 426 /* Try to TX as many packets as possible */ 427 if (send_len > 0) { 428 result = uml_vector_sendmmsg( 429 vp->fds->tx_fd, 430 send_from, 431 send_len, 432 0 433 ); 434 vp->in_write_poll = 435 (result != send_len); 436 } 437 /* For some of the sendmmsg error scenarios 438 * we may end being unsure in the TX success 439 * for all packets. It is safer to declare 440 * them all TX-ed and blame the network. 441 */ 442 if (result < 0) { 443 if (net_ratelimit()) 444 netdev_err(vp->dev, "sendmmsg err=%i\n", 445 result); 446 vp->in_error = true; 447 result = send_len; 448 } 449 if (result > 0) { 450 queue_depth = 451 consume_vector_skbs(qi, result); 452 /* This is equivalent to an TX IRQ. 453 * Restart the upper layers to feed us 454 * more packets. 455 */ 456 if (result > vp->estats.tx_queue_max) 457 vp->estats.tx_queue_max = result; 458 vp->estats.tx_queue_running_average = 459 (vp->estats.tx_queue_running_average + result) >> 1; 460 } 461 netif_wake_queue(qi->dev); 462 /* if TX is busy, break out of the send loop, 463 * poll write IRQ will reschedule xmit for us 464 */ 465 if (result != send_len) { 466 vp->estats.tx_restart_queue++; 467 break; 468 } 469 } 470 } 471 spin_unlock(&qi->head_lock); 472 } 473 return queue_depth; 474 } 475 476 /* Queue destructor. Deliberately stateless so we can use 477 * it in queue cleanup if initialization fails. 478 */ 479 480 static void destroy_queue(struct vector_queue *qi) 481 { 482 int i; 483 struct iovec *iov; 484 struct vector_private *vp = netdev_priv(qi->dev); 485 struct mmsghdr *mmsg_vector; 486 487 if (qi == NULL) 488 return; 489 /* deallocate any skbuffs - we rely on any unused to be 490 * set to NULL. 491 */ 492 if (qi->skbuff_vector != NULL) { 493 for (i = 0; i < qi->max_depth; i++) { 494 if (*(qi->skbuff_vector + i) != NULL) 495 dev_kfree_skb_any(*(qi->skbuff_vector + i)); 496 } 497 kfree(qi->skbuff_vector); 498 } 499 /* deallocate matching IOV structures including header buffs */ 500 if (qi->mmsg_vector != NULL) { 501 mmsg_vector = qi->mmsg_vector; 502 for (i = 0; i < qi->max_depth; i++) { 503 iov = mmsg_vector->msg_hdr.msg_iov; 504 if (iov != NULL) { 505 if ((vp->header_size > 0) && 506 (iov->iov_base != NULL)) 507 kfree(iov->iov_base); 508 kfree(iov); 509 } 510 mmsg_vector++; 511 } 512 kfree(qi->mmsg_vector); 513 } 514 kfree(qi); 515 } 516 517 /* 518 * Queue constructor. Create a queue with a given side. 519 */ 520 static struct vector_queue *create_queue( 521 struct vector_private *vp, 522 int max_size, 523 int header_size, 524 int num_extra_frags) 525 { 526 struct vector_queue *result; 527 int i; 528 struct iovec *iov; 529 struct mmsghdr *mmsg_vector; 530 531 result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL); 532 if (result == NULL) 533 return NULL; 534 result->max_depth = max_size; 535 result->dev = vp->dev; 536 result->mmsg_vector = kmalloc( 537 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL); 538 if (result->mmsg_vector == NULL) 539 goto out_mmsg_fail; 540 result->skbuff_vector = kmalloc( 541 (sizeof(void *) * max_size), GFP_KERNEL); 542 if (result->skbuff_vector == NULL) 543 goto out_skb_fail; 544 545 /* further failures can be handled safely by destroy_queue*/ 546 547 mmsg_vector = result->mmsg_vector; 548 for (i = 0; i < max_size; i++) { 549 /* Clear all pointers - we use non-NULL as marking on 550 * what to free on destruction 551 */ 552 *(result->skbuff_vector + i) = NULL; 553 mmsg_vector->msg_hdr.msg_iov = NULL; 554 mmsg_vector++; 555 } 556 mmsg_vector = result->mmsg_vector; 557 result->max_iov_frags = num_extra_frags; 558 for (i = 0; i < max_size; i++) { 559 if (vp->header_size > 0) 560 iov = kmalloc_array(3 + num_extra_frags, 561 sizeof(struct iovec), 562 GFP_KERNEL 563 ); 564 else 565 iov = kmalloc_array(2 + num_extra_frags, 566 sizeof(struct iovec), 567 GFP_KERNEL 568 ); 569 if (iov == NULL) 570 goto out_fail; 571 mmsg_vector->msg_hdr.msg_iov = iov; 572 mmsg_vector->msg_hdr.msg_iovlen = 1; 573 mmsg_vector->msg_hdr.msg_control = NULL; 574 mmsg_vector->msg_hdr.msg_controllen = 0; 575 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT; 576 mmsg_vector->msg_hdr.msg_name = NULL; 577 mmsg_vector->msg_hdr.msg_namelen = 0; 578 if (vp->header_size > 0) { 579 iov->iov_base = kmalloc(header_size, GFP_KERNEL); 580 if (iov->iov_base == NULL) 581 goto out_fail; 582 iov->iov_len = header_size; 583 mmsg_vector->msg_hdr.msg_iovlen = 2; 584 iov++; 585 } 586 iov->iov_base = NULL; 587 iov->iov_len = 0; 588 mmsg_vector++; 589 } 590 spin_lock_init(&result->head_lock); 591 spin_lock_init(&result->tail_lock); 592 result->queue_depth = 0; 593 result->head = 0; 594 result->tail = 0; 595 return result; 596 out_skb_fail: 597 kfree(result->mmsg_vector); 598 out_mmsg_fail: 599 kfree(result); 600 return NULL; 601 out_fail: 602 destroy_queue(result); 603 return NULL; 604 } 605 606 /* 607 * We do not use the RX queue as a proper wraparound queue for now 608 * This is not necessary because the consumption via napi_gro_receive() 609 * happens in-line. While we can try using the return code of 610 * netif_rx() for flow control there are no drivers doing this today. 611 * For this RX specific use we ignore the tail/head locks and 612 * just read into a prepared queue filled with skbuffs. 613 */ 614 615 static struct sk_buff *prep_skb( 616 struct vector_private *vp, 617 struct user_msghdr *msg) 618 { 619 int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN; 620 struct sk_buff *result; 621 int iov_index = 0, len; 622 struct iovec *iov = msg->msg_iov; 623 int err, nr_frags, frag; 624 skb_frag_t *skb_frag; 625 626 if (vp->req_size <= linear) 627 len = linear; 628 else 629 len = vp->req_size; 630 result = alloc_skb_with_frags( 631 linear, 632 len - vp->max_packet, 633 3, 634 &err, 635 GFP_ATOMIC 636 ); 637 if (vp->header_size > 0) 638 iov_index++; 639 if (result == NULL) { 640 iov[iov_index].iov_base = NULL; 641 iov[iov_index].iov_len = 0; 642 goto done; 643 } 644 skb_reserve(result, vp->headroom); 645 result->dev = vp->dev; 646 skb_put(result, vp->max_packet); 647 result->data_len = len - vp->max_packet; 648 result->len += len - vp->max_packet; 649 skb_reset_mac_header(result); 650 result->ip_summed = CHECKSUM_NONE; 651 iov[iov_index].iov_base = result->data; 652 iov[iov_index].iov_len = vp->max_packet; 653 iov_index++; 654 655 nr_frags = skb_shinfo(result)->nr_frags; 656 for (frag = 0; frag < nr_frags; frag++) { 657 skb_frag = &skb_shinfo(result)->frags[frag]; 658 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); 659 if (iov[iov_index].iov_base != NULL) 660 iov[iov_index].iov_len = skb_frag_size(skb_frag); 661 else 662 iov[iov_index].iov_len = 0; 663 iov_index++; 664 } 665 done: 666 msg->msg_iovlen = iov_index; 667 return result; 668 } 669 670 671 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/ 672 673 static void prep_queue_for_rx(struct vector_queue *qi) 674 { 675 struct vector_private *vp = netdev_priv(qi->dev); 676 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 677 void **skbuff_vector = qi->skbuff_vector; 678 int i; 679 680 if (qi->queue_depth == 0) 681 return; 682 for (i = 0; i < qi->queue_depth; i++) { 683 /* it is OK if allocation fails - recvmmsg with NULL data in 684 * iov argument still performs an RX, just drops the packet 685 * This allows us stop faffing around with a "drop buffer" 686 */ 687 688 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr); 689 skbuff_vector++; 690 mmsg_vector++; 691 } 692 qi->queue_depth = 0; 693 } 694 695 static struct vector_device *find_device(int n) 696 { 697 struct vector_device *device; 698 struct list_head *ele; 699 700 spin_lock(&vector_devices_lock); 701 list_for_each(ele, &vector_devices) { 702 device = list_entry(ele, struct vector_device, list); 703 if (device->unit == n) 704 goto out; 705 } 706 device = NULL; 707 out: 708 spin_unlock(&vector_devices_lock); 709 return device; 710 } 711 712 static int vector_parse(char *str, int *index_out, char **str_out, 713 char **error_out) 714 { 715 int n, len, err; 716 char *start = str; 717 718 len = strlen(str); 719 720 while ((*str != ':') && (strlen(str) > 1)) 721 str++; 722 if (*str != ':') { 723 *error_out = "Expected ':' after device number"; 724 return -EINVAL; 725 } 726 *str = '\0'; 727 728 err = kstrtouint(start, 0, &n); 729 if (err < 0) { 730 *error_out = "Bad device number"; 731 return err; 732 } 733 734 str++; 735 if (find_device(n)) { 736 *error_out = "Device already configured"; 737 return -EINVAL; 738 } 739 740 *index_out = n; 741 *str_out = str; 742 return 0; 743 } 744 745 static int vector_config(char *str, char **error_out) 746 { 747 int err, n; 748 char *params; 749 struct arglist *parsed; 750 751 err = vector_parse(str, &n, ¶ms, error_out); 752 if (err != 0) 753 return err; 754 755 /* This string is broken up and the pieces used by the underlying 756 * driver. We should copy it to make sure things do not go wrong 757 * later. 758 */ 759 760 params = kstrdup(params, GFP_KERNEL); 761 if (params == NULL) { 762 *error_out = "vector_config failed to strdup string"; 763 return -ENOMEM; 764 } 765 766 parsed = uml_parse_vector_ifspec(params); 767 768 if (parsed == NULL) { 769 *error_out = "vector_config failed to parse parameters"; 770 return -EINVAL; 771 } 772 773 vector_eth_configure(n, parsed); 774 return 0; 775 } 776 777 static int vector_id(char **str, int *start_out, int *end_out) 778 { 779 char *end; 780 int n; 781 782 n = simple_strtoul(*str, &end, 0); 783 if ((*end != '\0') || (end == *str)) 784 return -1; 785 786 *start_out = n; 787 *end_out = n; 788 *str = end; 789 return n; 790 } 791 792 static int vector_remove(int n, char **error_out) 793 { 794 struct vector_device *vec_d; 795 struct net_device *dev; 796 struct vector_private *vp; 797 798 vec_d = find_device(n); 799 if (vec_d == NULL) 800 return -ENODEV; 801 dev = vec_d->dev; 802 vp = netdev_priv(dev); 803 if (vp->fds != NULL) 804 return -EBUSY; 805 unregister_netdev(dev); 806 platform_device_unregister(&vec_d->pdev); 807 return 0; 808 } 809 810 /* 811 * There is no shared per-transport initialization code, so 812 * we will just initialize each interface one by one and 813 * add them to a list 814 */ 815 816 static struct platform_driver uml_net_driver = { 817 .driver = { 818 .name = DRIVER_NAME, 819 }, 820 }; 821 822 823 static void vector_device_release(struct device *dev) 824 { 825 struct vector_device *device = dev_get_drvdata(dev); 826 struct net_device *netdev = device->dev; 827 828 list_del(&device->list); 829 kfree(device); 830 free_netdev(netdev); 831 } 832 833 /* Bog standard recv using recvmsg - not used normally unless the user 834 * explicitly specifies not to use recvmmsg vector RX. 835 */ 836 837 static int vector_legacy_rx(struct vector_private *vp) 838 { 839 int pkt_len; 840 struct user_msghdr hdr; 841 struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */ 842 int iovpos = 0; 843 struct sk_buff *skb; 844 int header_check; 845 846 hdr.msg_name = NULL; 847 hdr.msg_namelen = 0; 848 hdr.msg_iov = (struct iovec *) &iov; 849 hdr.msg_control = NULL; 850 hdr.msg_controllen = 0; 851 hdr.msg_flags = 0; 852 853 if (vp->header_size > 0) { 854 iov[0].iov_base = vp->header_rxbuffer; 855 iov[0].iov_len = vp->header_size; 856 } 857 858 skb = prep_skb(vp, &hdr); 859 860 if (skb == NULL) { 861 /* Read a packet into drop_buffer and don't do 862 * anything with it. 863 */ 864 iov[iovpos].iov_base = drop_buffer; 865 iov[iovpos].iov_len = DROP_BUFFER_SIZE; 866 hdr.msg_iovlen = 1; 867 vp->dev->stats.rx_dropped++; 868 } 869 870 pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0); 871 if (pkt_len < 0) { 872 vp->in_error = true; 873 return pkt_len; 874 } 875 876 if (skb != NULL) { 877 if (pkt_len > vp->header_size) { 878 if (vp->header_size > 0) { 879 header_check = vp->verify_header( 880 vp->header_rxbuffer, skb, vp); 881 if (header_check < 0) { 882 dev_kfree_skb_irq(skb); 883 vp->dev->stats.rx_dropped++; 884 vp->estats.rx_encaps_errors++; 885 return 0; 886 } 887 if (header_check > 0) { 888 vp->estats.rx_csum_offload_good++; 889 skb->ip_summed = CHECKSUM_UNNECESSARY; 890 } 891 } 892 pskb_trim(skb, pkt_len - vp->rx_header_size); 893 skb->protocol = eth_type_trans(skb, skb->dev); 894 vp->dev->stats.rx_bytes += skb->len; 895 vp->dev->stats.rx_packets++; 896 napi_gro_receive(&vp->napi, skb); 897 } else { 898 dev_kfree_skb_irq(skb); 899 } 900 } 901 return pkt_len; 902 } 903 904 /* 905 * Packet at a time TX which falls back to vector TX if the 906 * underlying transport is busy. 907 */ 908 909 910 911 static int writev_tx(struct vector_private *vp, struct sk_buff *skb) 912 { 913 struct iovec iov[3 + MAX_IOV_SIZE]; 914 int iov_count, pkt_len = 0; 915 916 iov[0].iov_base = vp->header_txbuffer; 917 iov_count = prep_msg(vp, skb, (struct iovec *) &iov); 918 919 if (iov_count < 1) 920 goto drop; 921 922 pkt_len = uml_vector_writev( 923 vp->fds->tx_fd, 924 (struct iovec *) &iov, 925 iov_count 926 ); 927 928 if (pkt_len < 0) 929 goto drop; 930 931 netif_trans_update(vp->dev); 932 netif_wake_queue(vp->dev); 933 934 if (pkt_len > 0) { 935 vp->dev->stats.tx_bytes += skb->len; 936 vp->dev->stats.tx_packets++; 937 } else { 938 vp->dev->stats.tx_dropped++; 939 } 940 consume_skb(skb); 941 return pkt_len; 942 drop: 943 vp->dev->stats.tx_dropped++; 944 consume_skb(skb); 945 if (pkt_len < 0) 946 vp->in_error = true; 947 return pkt_len; 948 } 949 950 /* 951 * Receive as many messages as we can in one call using the special 952 * mmsg vector matched to an skb vector which we prepared earlier. 953 */ 954 955 static int vector_mmsg_rx(struct vector_private *vp, int budget) 956 { 957 int packet_count, i; 958 struct vector_queue *qi = vp->rx_queue; 959 struct sk_buff *skb; 960 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 961 void **skbuff_vector = qi->skbuff_vector; 962 int header_check; 963 964 /* Refresh the vector and make sure it is with new skbs and the 965 * iovs are updated to point to them. 966 */ 967 968 prep_queue_for_rx(qi); 969 970 /* Fire the Lazy Gun - get as many packets as we can in one go. */ 971 972 if (budget > qi->max_depth) 973 budget = qi->max_depth; 974 975 packet_count = uml_vector_recvmmsg( 976 vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0); 977 978 if (packet_count < 0) 979 vp->in_error = true; 980 981 if (packet_count <= 0) 982 return packet_count; 983 984 /* We treat packet processing as enqueue, buffer refresh as dequeue 985 * The queue_depth tells us how many buffers have been used and how 986 * many do we need to prep the next time prep_queue_for_rx() is called. 987 */ 988 989 qi->queue_depth = packet_count; 990 991 for (i = 0; i < packet_count; i++) { 992 skb = (*skbuff_vector); 993 if (mmsg_vector->msg_len > vp->header_size) { 994 if (vp->header_size > 0) { 995 header_check = vp->verify_header( 996 mmsg_vector->msg_hdr.msg_iov->iov_base, 997 skb, 998 vp 999 ); 1000 if (header_check < 0) { 1001 /* Overlay header failed to verify - discard. 1002 * We can actually keep this skb and reuse it, 1003 * but that will make the prep logic too 1004 * complex. 1005 */ 1006 dev_kfree_skb_irq(skb); 1007 vp->estats.rx_encaps_errors++; 1008 continue; 1009 } 1010 if (header_check > 0) { 1011 vp->estats.rx_csum_offload_good++; 1012 skb->ip_summed = CHECKSUM_UNNECESSARY; 1013 } 1014 } 1015 pskb_trim(skb, 1016 mmsg_vector->msg_len - vp->rx_header_size); 1017 skb->protocol = eth_type_trans(skb, skb->dev); 1018 /* 1019 * We do not need to lock on updating stats here 1020 * The interrupt loop is non-reentrant. 1021 */ 1022 vp->dev->stats.rx_bytes += skb->len; 1023 vp->dev->stats.rx_packets++; 1024 napi_gro_receive(&vp->napi, skb); 1025 } else { 1026 /* Overlay header too short to do anything - discard. 1027 * We can actually keep this skb and reuse it, 1028 * but that will make the prep logic too complex. 1029 */ 1030 if (skb != NULL) 1031 dev_kfree_skb_irq(skb); 1032 } 1033 (*skbuff_vector) = NULL; 1034 /* Move to the next buffer element */ 1035 mmsg_vector++; 1036 skbuff_vector++; 1037 } 1038 if (packet_count > 0) { 1039 if (vp->estats.rx_queue_max < packet_count) 1040 vp->estats.rx_queue_max = packet_count; 1041 vp->estats.rx_queue_running_average = 1042 (vp->estats.rx_queue_running_average + packet_count) >> 1; 1043 } 1044 return packet_count; 1045 } 1046 1047 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev) 1048 { 1049 struct vector_private *vp = netdev_priv(dev); 1050 int queue_depth = 0; 1051 1052 if (vp->in_error) { 1053 deactivate_fd(vp->fds->rx_fd, vp->rx_irq); 1054 if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0)) 1055 deactivate_fd(vp->fds->tx_fd, vp->tx_irq); 1056 return NETDEV_TX_BUSY; 1057 } 1058 1059 if ((vp->options & VECTOR_TX) == 0) { 1060 writev_tx(vp, skb); 1061 return NETDEV_TX_OK; 1062 } 1063 1064 /* We do BQL only in the vector path, no point doing it in 1065 * packet at a time mode as there is no device queue 1066 */ 1067 1068 netdev_sent_queue(vp->dev, skb->len); 1069 queue_depth = vector_enqueue(vp->tx_queue, skb); 1070 1071 if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) { 1072 mod_timer(&vp->tl, vp->coalesce); 1073 return NETDEV_TX_OK; 1074 } else { 1075 queue_depth = vector_send(vp->tx_queue); 1076 if (queue_depth > 0) 1077 napi_schedule(&vp->napi); 1078 } 1079 1080 return NETDEV_TX_OK; 1081 } 1082 1083 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id) 1084 { 1085 struct net_device *dev = dev_id; 1086 struct vector_private *vp = netdev_priv(dev); 1087 1088 if (!netif_running(dev)) 1089 return IRQ_NONE; 1090 napi_schedule(&vp->napi); 1091 return IRQ_HANDLED; 1092 1093 } 1094 1095 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id) 1096 { 1097 struct net_device *dev = dev_id; 1098 struct vector_private *vp = netdev_priv(dev); 1099 1100 if (!netif_running(dev)) 1101 return IRQ_NONE; 1102 /* We need to pay attention to it only if we got 1103 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise 1104 * we ignore it. In the future, it may be worth 1105 * it to improve the IRQ controller a bit to make 1106 * tweaking the IRQ mask less costly 1107 */ 1108 1109 napi_schedule(&vp->napi); 1110 return IRQ_HANDLED; 1111 1112 } 1113 1114 static int irq_rr; 1115 1116 static int vector_net_close(struct net_device *dev) 1117 { 1118 struct vector_private *vp = netdev_priv(dev); 1119 unsigned long flags; 1120 1121 netif_stop_queue(dev); 1122 del_timer(&vp->tl); 1123 1124 if (vp->fds == NULL) 1125 return 0; 1126 1127 /* Disable and free all IRQS */ 1128 if (vp->rx_irq > 0) { 1129 um_free_irq(vp->rx_irq, dev); 1130 vp->rx_irq = 0; 1131 } 1132 if (vp->tx_irq > 0) { 1133 um_free_irq(vp->tx_irq, dev); 1134 vp->tx_irq = 0; 1135 } 1136 napi_disable(&vp->napi); 1137 netif_napi_del(&vp->napi); 1138 if (vp->fds->rx_fd > 0) { 1139 if (vp->bpf) 1140 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf); 1141 os_close_file(vp->fds->rx_fd); 1142 vp->fds->rx_fd = -1; 1143 } 1144 if (vp->fds->tx_fd > 0) { 1145 os_close_file(vp->fds->tx_fd); 1146 vp->fds->tx_fd = -1; 1147 } 1148 if (vp->bpf != NULL) 1149 kfree(vp->bpf->filter); 1150 kfree(vp->bpf); 1151 vp->bpf = NULL; 1152 kfree(vp->fds->remote_addr); 1153 kfree(vp->transport_data); 1154 kfree(vp->header_rxbuffer); 1155 kfree(vp->header_txbuffer); 1156 if (vp->rx_queue != NULL) 1157 destroy_queue(vp->rx_queue); 1158 if (vp->tx_queue != NULL) 1159 destroy_queue(vp->tx_queue); 1160 kfree(vp->fds); 1161 vp->fds = NULL; 1162 spin_lock_irqsave(&vp->lock, flags); 1163 vp->opened = false; 1164 vp->in_error = false; 1165 spin_unlock_irqrestore(&vp->lock, flags); 1166 return 0; 1167 } 1168 1169 static int vector_poll(struct napi_struct *napi, int budget) 1170 { 1171 struct vector_private *vp = container_of(napi, struct vector_private, napi); 1172 int work_done = 0; 1173 int err; 1174 bool tx_enqueued = false; 1175 1176 if ((vp->options & VECTOR_TX) != 0) 1177 tx_enqueued = (vector_send(vp->tx_queue) > 0); 1178 if ((vp->options & VECTOR_RX) > 0) 1179 err = vector_mmsg_rx(vp, budget); 1180 else { 1181 err = vector_legacy_rx(vp); 1182 if (err > 0) 1183 err = 1; 1184 } 1185 if (err > 0) 1186 work_done += err; 1187 1188 if (tx_enqueued || err > 0) 1189 napi_schedule(napi); 1190 if (work_done < budget) 1191 napi_complete_done(napi, work_done); 1192 return work_done; 1193 } 1194 1195 static void vector_reset_tx(struct work_struct *work) 1196 { 1197 struct vector_private *vp = 1198 container_of(work, struct vector_private, reset_tx); 1199 netdev_reset_queue(vp->dev); 1200 netif_start_queue(vp->dev); 1201 netif_wake_queue(vp->dev); 1202 } 1203 1204 static int vector_net_open(struct net_device *dev) 1205 { 1206 struct vector_private *vp = netdev_priv(dev); 1207 unsigned long flags; 1208 int err = -EINVAL; 1209 struct vector_device *vdevice; 1210 1211 spin_lock_irqsave(&vp->lock, flags); 1212 if (vp->opened) { 1213 spin_unlock_irqrestore(&vp->lock, flags); 1214 return -ENXIO; 1215 } 1216 vp->opened = true; 1217 spin_unlock_irqrestore(&vp->lock, flags); 1218 1219 vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed)); 1220 1221 vp->fds = uml_vector_user_open(vp->unit, vp->parsed); 1222 1223 if (vp->fds == NULL) 1224 goto out_close; 1225 1226 if (build_transport_data(vp) < 0) 1227 goto out_close; 1228 1229 if ((vp->options & VECTOR_RX) > 0) { 1230 vp->rx_queue = create_queue( 1231 vp, 1232 get_depth(vp->parsed), 1233 vp->rx_header_size, 1234 MAX_IOV_SIZE 1235 ); 1236 vp->rx_queue->queue_depth = get_depth(vp->parsed); 1237 } else { 1238 vp->header_rxbuffer = kmalloc( 1239 vp->rx_header_size, 1240 GFP_KERNEL 1241 ); 1242 if (vp->header_rxbuffer == NULL) 1243 goto out_close; 1244 } 1245 if ((vp->options & VECTOR_TX) > 0) { 1246 vp->tx_queue = create_queue( 1247 vp, 1248 get_depth(vp->parsed), 1249 vp->header_size, 1250 MAX_IOV_SIZE 1251 ); 1252 } else { 1253 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL); 1254 if (vp->header_txbuffer == NULL) 1255 goto out_close; 1256 } 1257 1258 netif_napi_add(vp->dev, &vp->napi, vector_poll, get_depth(vp->parsed)); 1259 napi_enable(&vp->napi); 1260 1261 /* READ IRQ */ 1262 err = um_request_irq( 1263 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd, 1264 IRQ_READ, vector_rx_interrupt, 1265 IRQF_SHARED, dev->name, dev); 1266 if (err < 0) { 1267 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err); 1268 err = -ENETUNREACH; 1269 goto out_close; 1270 } 1271 vp->rx_irq = irq_rr + VECTOR_BASE_IRQ; 1272 dev->irq = irq_rr + VECTOR_BASE_IRQ; 1273 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; 1274 1275 /* WRITE IRQ - we need it only if we have vector TX */ 1276 if ((vp->options & VECTOR_TX) > 0) { 1277 err = um_request_irq( 1278 irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd, 1279 IRQ_WRITE, vector_tx_interrupt, 1280 IRQF_SHARED, dev->name, dev); 1281 if (err < 0) { 1282 netdev_err(dev, 1283 "vector_open: failed to get tx irq(%d)\n", err); 1284 err = -ENETUNREACH; 1285 goto out_close; 1286 } 1287 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ; 1288 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; 1289 } 1290 1291 if ((vp->options & VECTOR_QDISC_BYPASS) != 0) { 1292 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd)) 1293 vp->options |= VECTOR_BPF; 1294 } 1295 if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL)) 1296 vp->bpf = uml_vector_default_bpf(dev->dev_addr); 1297 1298 if (vp->bpf != NULL) 1299 uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf); 1300 1301 netif_start_queue(dev); 1302 vector_reset_stats(vp); 1303 1304 /* clear buffer - it can happen that the host side of the interface 1305 * is full when we get here. In this case, new data is never queued, 1306 * SIGIOs never arrive, and the net never works. 1307 */ 1308 1309 napi_schedule(&vp->napi); 1310 1311 vdevice = find_device(vp->unit); 1312 vdevice->opened = 1; 1313 1314 if ((vp->options & VECTOR_TX) != 0) 1315 add_timer(&vp->tl); 1316 return 0; 1317 out_close: 1318 vector_net_close(dev); 1319 return err; 1320 } 1321 1322 1323 static void vector_net_set_multicast_list(struct net_device *dev) 1324 { 1325 /* TODO: - we can do some BPF games here */ 1326 return; 1327 } 1328 1329 static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue) 1330 { 1331 struct vector_private *vp = netdev_priv(dev); 1332 1333 vp->estats.tx_timeout_count++; 1334 netif_trans_update(dev); 1335 schedule_work(&vp->reset_tx); 1336 } 1337 1338 static netdev_features_t vector_fix_features(struct net_device *dev, 1339 netdev_features_t features) 1340 { 1341 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 1342 return features; 1343 } 1344 1345 static int vector_set_features(struct net_device *dev, 1346 netdev_features_t features) 1347 { 1348 struct vector_private *vp = netdev_priv(dev); 1349 /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is 1350 * no way to negotiate it on raw sockets, so we can change 1351 * only our side. 1352 */ 1353 if (features & NETIF_F_GRO) 1354 /* All new frame buffers will be GRO-sized */ 1355 vp->req_size = 65536; 1356 else 1357 /* All new frame buffers will be normal sized */ 1358 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN; 1359 return 0; 1360 } 1361 1362 #ifdef CONFIG_NET_POLL_CONTROLLER 1363 static void vector_net_poll_controller(struct net_device *dev) 1364 { 1365 disable_irq(dev->irq); 1366 vector_rx_interrupt(dev->irq, dev); 1367 enable_irq(dev->irq); 1368 } 1369 #endif 1370 1371 static void vector_net_get_drvinfo(struct net_device *dev, 1372 struct ethtool_drvinfo *info) 1373 { 1374 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver)); 1375 } 1376 1377 static int vector_net_load_bpf_flash(struct net_device *dev, 1378 struct ethtool_flash *efl) 1379 { 1380 struct vector_private *vp = netdev_priv(dev); 1381 struct vector_device *vdevice; 1382 const struct firmware *fw; 1383 int result = 0; 1384 1385 if (!(vp->options & VECTOR_BPF_FLASH)) { 1386 netdev_err(dev, "loading firmware not permitted: %s\n", efl->data); 1387 return -1; 1388 } 1389 1390 spin_lock(&vp->lock); 1391 1392 if (vp->bpf != NULL) { 1393 if (vp->opened) 1394 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf); 1395 kfree(vp->bpf->filter); 1396 vp->bpf->filter = NULL; 1397 } else { 1398 vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC); 1399 if (vp->bpf == NULL) { 1400 netdev_err(dev, "failed to allocate memory for firmware\n"); 1401 goto flash_fail; 1402 } 1403 } 1404 1405 vdevice = find_device(vp->unit); 1406 1407 if (request_firmware(&fw, efl->data, &vdevice->pdev.dev)) 1408 goto flash_fail; 1409 1410 vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC); 1411 if (!vp->bpf->filter) 1412 goto free_buffer; 1413 1414 vp->bpf->len = fw->size / sizeof(struct sock_filter); 1415 release_firmware(fw); 1416 1417 if (vp->opened) 1418 result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf); 1419 1420 spin_unlock(&vp->lock); 1421 1422 return result; 1423 1424 free_buffer: 1425 release_firmware(fw); 1426 1427 flash_fail: 1428 spin_unlock(&vp->lock); 1429 if (vp->bpf != NULL) 1430 kfree(vp->bpf->filter); 1431 kfree(vp->bpf); 1432 vp->bpf = NULL; 1433 return -1; 1434 } 1435 1436 static void vector_get_ringparam(struct net_device *netdev, 1437 struct ethtool_ringparam *ring, 1438 struct kernel_ethtool_ringparam *kernel_ring, 1439 struct netlink_ext_ack *extack) 1440 { 1441 struct vector_private *vp = netdev_priv(netdev); 1442 1443 ring->rx_max_pending = vp->rx_queue->max_depth; 1444 ring->tx_max_pending = vp->tx_queue->max_depth; 1445 ring->rx_pending = vp->rx_queue->max_depth; 1446 ring->tx_pending = vp->tx_queue->max_depth; 1447 } 1448 1449 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf) 1450 { 1451 switch (stringset) { 1452 case ETH_SS_TEST: 1453 *buf = '\0'; 1454 break; 1455 case ETH_SS_STATS: 1456 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 1457 break; 1458 default: 1459 WARN_ON(1); 1460 break; 1461 } 1462 } 1463 1464 static int vector_get_sset_count(struct net_device *dev, int sset) 1465 { 1466 switch (sset) { 1467 case ETH_SS_TEST: 1468 return 0; 1469 case ETH_SS_STATS: 1470 return VECTOR_NUM_STATS; 1471 default: 1472 return -EOPNOTSUPP; 1473 } 1474 } 1475 1476 static void vector_get_ethtool_stats(struct net_device *dev, 1477 struct ethtool_stats *estats, 1478 u64 *tmp_stats) 1479 { 1480 struct vector_private *vp = netdev_priv(dev); 1481 1482 memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats)); 1483 } 1484 1485 static int vector_get_coalesce(struct net_device *netdev, 1486 struct ethtool_coalesce *ec, 1487 struct kernel_ethtool_coalesce *kernel_coal, 1488 struct netlink_ext_ack *extack) 1489 { 1490 struct vector_private *vp = netdev_priv(netdev); 1491 1492 ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ; 1493 return 0; 1494 } 1495 1496 static int vector_set_coalesce(struct net_device *netdev, 1497 struct ethtool_coalesce *ec, 1498 struct kernel_ethtool_coalesce *kernel_coal, 1499 struct netlink_ext_ack *extack) 1500 { 1501 struct vector_private *vp = netdev_priv(netdev); 1502 1503 vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000; 1504 if (vp->coalesce == 0) 1505 vp->coalesce = 1; 1506 return 0; 1507 } 1508 1509 static const struct ethtool_ops vector_net_ethtool_ops = { 1510 .supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS, 1511 .get_drvinfo = vector_net_get_drvinfo, 1512 .get_link = ethtool_op_get_link, 1513 .get_ts_info = ethtool_op_get_ts_info, 1514 .get_ringparam = vector_get_ringparam, 1515 .get_strings = vector_get_strings, 1516 .get_sset_count = vector_get_sset_count, 1517 .get_ethtool_stats = vector_get_ethtool_stats, 1518 .get_coalesce = vector_get_coalesce, 1519 .set_coalesce = vector_set_coalesce, 1520 .flash_device = vector_net_load_bpf_flash, 1521 }; 1522 1523 1524 static const struct net_device_ops vector_netdev_ops = { 1525 .ndo_open = vector_net_open, 1526 .ndo_stop = vector_net_close, 1527 .ndo_start_xmit = vector_net_start_xmit, 1528 .ndo_set_rx_mode = vector_net_set_multicast_list, 1529 .ndo_tx_timeout = vector_net_tx_timeout, 1530 .ndo_set_mac_address = eth_mac_addr, 1531 .ndo_validate_addr = eth_validate_addr, 1532 .ndo_fix_features = vector_fix_features, 1533 .ndo_set_features = vector_set_features, 1534 #ifdef CONFIG_NET_POLL_CONTROLLER 1535 .ndo_poll_controller = vector_net_poll_controller, 1536 #endif 1537 }; 1538 1539 static void vector_timer_expire(struct timer_list *t) 1540 { 1541 struct vector_private *vp = from_timer(vp, t, tl); 1542 1543 vp->estats.tx_kicks++; 1544 napi_schedule(&vp->napi); 1545 } 1546 1547 1548 1549 static void vector_eth_configure( 1550 int n, 1551 struct arglist *def 1552 ) 1553 { 1554 struct vector_device *device; 1555 struct net_device *dev; 1556 struct vector_private *vp; 1557 int err; 1558 1559 device = kzalloc(sizeof(*device), GFP_KERNEL); 1560 if (device == NULL) { 1561 printk(KERN_ERR "eth_configure failed to allocate struct " 1562 "vector_device\n"); 1563 return; 1564 } 1565 dev = alloc_etherdev(sizeof(struct vector_private)); 1566 if (dev == NULL) { 1567 printk(KERN_ERR "eth_configure: failed to allocate struct " 1568 "net_device for vec%d\n", n); 1569 goto out_free_device; 1570 } 1571 1572 dev->mtu = get_mtu(def); 1573 1574 INIT_LIST_HEAD(&device->list); 1575 device->unit = n; 1576 1577 /* If this name ends up conflicting with an existing registered 1578 * netdevice, that is OK, register_netdev{,ice}() will notice this 1579 * and fail. 1580 */ 1581 snprintf(dev->name, sizeof(dev->name), "vec%d", n); 1582 uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac")); 1583 vp = netdev_priv(dev); 1584 1585 /* sysfs register */ 1586 if (!driver_registered) { 1587 platform_driver_register(¨_net_driver); 1588 driver_registered = 1; 1589 } 1590 device->pdev.id = n; 1591 device->pdev.name = DRIVER_NAME; 1592 device->pdev.dev.release = vector_device_release; 1593 dev_set_drvdata(&device->pdev.dev, device); 1594 if (platform_device_register(&device->pdev)) 1595 goto out_free_netdev; 1596 SET_NETDEV_DEV(dev, &device->pdev.dev); 1597 1598 device->dev = dev; 1599 1600 *vp = ((struct vector_private) 1601 { 1602 .list = LIST_HEAD_INIT(vp->list), 1603 .dev = dev, 1604 .unit = n, 1605 .options = get_transport_options(def), 1606 .rx_irq = 0, 1607 .tx_irq = 0, 1608 .parsed = def, 1609 .max_packet = get_mtu(def) + ETH_HEADER_OTHER, 1610 /* TODO - we need to calculate headroom so that ip header 1611 * is 16 byte aligned all the time 1612 */ 1613 .headroom = get_headroom(def), 1614 .form_header = NULL, 1615 .verify_header = NULL, 1616 .header_rxbuffer = NULL, 1617 .header_txbuffer = NULL, 1618 .header_size = 0, 1619 .rx_header_size = 0, 1620 .rexmit_scheduled = false, 1621 .opened = false, 1622 .transport_data = NULL, 1623 .in_write_poll = false, 1624 .coalesce = 2, 1625 .req_size = get_req_size(def), 1626 .in_error = false, 1627 .bpf = NULL 1628 }); 1629 1630 dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST); 1631 INIT_WORK(&vp->reset_tx, vector_reset_tx); 1632 1633 timer_setup(&vp->tl, vector_timer_expire, 0); 1634 spin_lock_init(&vp->lock); 1635 1636 /* FIXME */ 1637 dev->netdev_ops = &vector_netdev_ops; 1638 dev->ethtool_ops = &vector_net_ethtool_ops; 1639 dev->watchdog_timeo = (HZ >> 1); 1640 /* primary IRQ - fixme */ 1641 dev->irq = 0; /* we will adjust this once opened */ 1642 1643 rtnl_lock(); 1644 err = register_netdevice(dev); 1645 rtnl_unlock(); 1646 if (err) 1647 goto out_undo_user_init; 1648 1649 spin_lock(&vector_devices_lock); 1650 list_add(&device->list, &vector_devices); 1651 spin_unlock(&vector_devices_lock); 1652 1653 return; 1654 1655 out_undo_user_init: 1656 return; 1657 out_free_netdev: 1658 free_netdev(dev); 1659 out_free_device: 1660 kfree(device); 1661 } 1662 1663 1664 1665 1666 /* 1667 * Invoked late in the init 1668 */ 1669 1670 static int __init vector_init(void) 1671 { 1672 struct list_head *ele; 1673 struct vector_cmd_line_arg *def; 1674 struct arglist *parsed; 1675 1676 list_for_each(ele, &vec_cmd_line) { 1677 def = list_entry(ele, struct vector_cmd_line_arg, list); 1678 parsed = uml_parse_vector_ifspec(def->arguments); 1679 if (parsed != NULL) 1680 vector_eth_configure(def->unit, parsed); 1681 } 1682 return 0; 1683 } 1684 1685 1686 /* Invoked at initial argument parsing, only stores 1687 * arguments until a proper vector_init is called 1688 * later 1689 */ 1690 1691 static int __init vector_setup(char *str) 1692 { 1693 char *error; 1694 int n, err; 1695 struct vector_cmd_line_arg *new; 1696 1697 err = vector_parse(str, &n, &str, &error); 1698 if (err) { 1699 printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n", 1700 str, error); 1701 return 1; 1702 } 1703 new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES); 1704 if (!new) 1705 panic("%s: Failed to allocate %zu bytes\n", __func__, 1706 sizeof(*new)); 1707 INIT_LIST_HEAD(&new->list); 1708 new->unit = n; 1709 new->arguments = str; 1710 list_add_tail(&new->list, &vec_cmd_line); 1711 return 1; 1712 } 1713 1714 __setup("vec", vector_setup); 1715 __uml_help(vector_setup, 1716 "vec[0-9]+:<option>=<value>,<option>=<value>\n" 1717 " Configure a vector io network device.\n\n" 1718 ); 1719 1720 late_initcall(vector_init); 1721 1722 static struct mc_device vector_mc = { 1723 .list = LIST_HEAD_INIT(vector_mc.list), 1724 .name = "vec", 1725 .config = vector_config, 1726 .get_config = NULL, 1727 .id = vector_id, 1728 .remove = vector_remove, 1729 }; 1730 1731 #ifdef CONFIG_INET 1732 static int vector_inetaddr_event( 1733 struct notifier_block *this, 1734 unsigned long event, 1735 void *ptr) 1736 { 1737 return NOTIFY_DONE; 1738 } 1739 1740 static struct notifier_block vector_inetaddr_notifier = { 1741 .notifier_call = vector_inetaddr_event, 1742 }; 1743 1744 static void inet_register(void) 1745 { 1746 register_inetaddr_notifier(&vector_inetaddr_notifier); 1747 } 1748 #else 1749 static inline void inet_register(void) 1750 { 1751 } 1752 #endif 1753 1754 static int vector_net_init(void) 1755 { 1756 mconsole_register_dev(&vector_mc); 1757 inet_register(); 1758 return 0; 1759 } 1760 1761 __initcall(vector_net_init); 1762 1763 1764 1765