1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2017 - 2019 Cambridge Greys Limited 4 * Copyright (C) 2011 - 2014 Cisco Systems Inc 5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and 7 * James Leu (jleu@mindspring.net). 8 * Copyright (C) 2001 by various other people who didn't put their name here. 9 */ 10 11 #include <linux/memblock.h> 12 #include <linux/etherdevice.h> 13 #include <linux/ethtool.h> 14 #include <linux/inetdevice.h> 15 #include <linux/init.h> 16 #include <linux/list.h> 17 #include <linux/netdevice.h> 18 #include <linux/platform_device.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/skbuff.h> 21 #include <linux/slab.h> 22 #include <linux/interrupt.h> 23 #include <linux/firmware.h> 24 #include <linux/fs.h> 25 #include <uapi/linux/filter.h> 26 #include <init.h> 27 #include <irq_kern.h> 28 #include <irq_user.h> 29 #include <net_kern.h> 30 #include <os.h> 31 #include "mconsole_kern.h" 32 #include "vector_user.h" 33 #include "vector_kern.h" 34 35 /* 36 * Adapted from network devices with the following major changes: 37 * All transports are static - simplifies the code significantly 38 * Multiple FDs/IRQs per device 39 * Vector IO optionally used for read/write, falling back to legacy 40 * based on configuration and/or availability 41 * Configuration is no longer positional - L2TPv3 and GRE require up to 42 * 10 parameters, passing this as positional is not fit for purpose. 43 * Only socket transports are supported 44 */ 45 46 47 #define DRIVER_NAME "uml-vector" 48 struct vector_cmd_line_arg { 49 struct list_head list; 50 int unit; 51 char *arguments; 52 }; 53 54 struct vector_device { 55 struct list_head list; 56 struct net_device *dev; 57 struct platform_device pdev; 58 int unit; 59 int opened; 60 }; 61 62 static LIST_HEAD(vec_cmd_line); 63 64 static DEFINE_SPINLOCK(vector_devices_lock); 65 static LIST_HEAD(vector_devices); 66 67 static int driver_registered; 68 69 static void vector_eth_configure(int n, struct arglist *def); 70 71 /* Argument accessors to set variables (and/or set default values) 72 * mtu, buffer sizing, default headroom, etc 73 */ 74 75 #define DEFAULT_HEADROOM 2 76 #define SAFETY_MARGIN 32 77 #define DEFAULT_VECTOR_SIZE 64 78 #define TX_SMALL_PACKET 128 79 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1) 80 #define MAX_ITERATIONS 64 81 82 static const struct { 83 const char string[ETH_GSTRING_LEN]; 84 } ethtool_stats_keys[] = { 85 { "rx_queue_max" }, 86 { "rx_queue_running_average" }, 87 { "tx_queue_max" }, 88 { "tx_queue_running_average" }, 89 { "rx_encaps_errors" }, 90 { "tx_timeout_count" }, 91 { "tx_restart_queue" }, 92 { "tx_kicks" }, 93 { "tx_flow_control_xon" }, 94 { "tx_flow_control_xoff" }, 95 { "rx_csum_offload_good" }, 96 { "rx_csum_offload_errors"}, 97 { "sg_ok"}, 98 { "sg_linearized"}, 99 }; 100 101 #define VECTOR_NUM_STATS ARRAY_SIZE(ethtool_stats_keys) 102 103 static void vector_reset_stats(struct vector_private *vp) 104 { 105 vp->estats.rx_queue_max = 0; 106 vp->estats.rx_queue_running_average = 0; 107 vp->estats.tx_queue_max = 0; 108 vp->estats.tx_queue_running_average = 0; 109 vp->estats.rx_encaps_errors = 0; 110 vp->estats.tx_timeout_count = 0; 111 vp->estats.tx_restart_queue = 0; 112 vp->estats.tx_kicks = 0; 113 vp->estats.tx_flow_control_xon = 0; 114 vp->estats.tx_flow_control_xoff = 0; 115 vp->estats.sg_ok = 0; 116 vp->estats.sg_linearized = 0; 117 } 118 119 static int get_mtu(struct arglist *def) 120 { 121 char *mtu = uml_vector_fetch_arg(def, "mtu"); 122 long result; 123 124 if (mtu != NULL) { 125 if (kstrtoul(mtu, 10, &result) == 0) 126 if ((result < (1 << 16) - 1) && (result >= 576)) 127 return result; 128 } 129 return ETH_MAX_PACKET; 130 } 131 132 static char *get_bpf_file(struct arglist *def) 133 { 134 return uml_vector_fetch_arg(def, "bpffile"); 135 } 136 137 static bool get_bpf_flash(struct arglist *def) 138 { 139 char *allow = uml_vector_fetch_arg(def, "bpfflash"); 140 long result; 141 142 if (allow != NULL) { 143 if (kstrtoul(allow, 10, &result) == 0) 144 return (allow > 0); 145 } 146 return false; 147 } 148 149 static int get_depth(struct arglist *def) 150 { 151 char *mtu = uml_vector_fetch_arg(def, "depth"); 152 long result; 153 154 if (mtu != NULL) { 155 if (kstrtoul(mtu, 10, &result) == 0) 156 return result; 157 } 158 return DEFAULT_VECTOR_SIZE; 159 } 160 161 static int get_headroom(struct arglist *def) 162 { 163 char *mtu = uml_vector_fetch_arg(def, "headroom"); 164 long result; 165 166 if (mtu != NULL) { 167 if (kstrtoul(mtu, 10, &result) == 0) 168 return result; 169 } 170 return DEFAULT_HEADROOM; 171 } 172 173 static int get_req_size(struct arglist *def) 174 { 175 char *gro = uml_vector_fetch_arg(def, "gro"); 176 long result; 177 178 if (gro != NULL) { 179 if (kstrtoul(gro, 10, &result) == 0) { 180 if (result > 0) 181 return 65536; 182 } 183 } 184 return get_mtu(def) + ETH_HEADER_OTHER + 185 get_headroom(def) + SAFETY_MARGIN; 186 } 187 188 189 static int get_transport_options(struct arglist *def) 190 { 191 char *transport = uml_vector_fetch_arg(def, "transport"); 192 char *vector = uml_vector_fetch_arg(def, "vec"); 193 194 int vec_rx = VECTOR_RX; 195 int vec_tx = VECTOR_TX; 196 long parsed; 197 int result = 0; 198 199 if (transport == NULL) 200 return -EINVAL; 201 202 if (vector != NULL) { 203 if (kstrtoul(vector, 10, &parsed) == 0) { 204 if (parsed == 0) { 205 vec_rx = 0; 206 vec_tx = 0; 207 } 208 } 209 } 210 211 if (get_bpf_flash(def)) 212 result = VECTOR_BPF_FLASH; 213 214 if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0) 215 return result; 216 if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0) 217 return (result | vec_rx | VECTOR_BPF); 218 if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0) 219 return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS); 220 return (result | vec_rx | vec_tx); 221 } 222 223 224 /* A mini-buffer for packet drop read 225 * All of our supported transports are datagram oriented and we always 226 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller 227 * than the packet size it still counts as full packet read and will 228 * clean the incoming stream to keep sigio/epoll happy 229 */ 230 231 #define DROP_BUFFER_SIZE 32 232 233 static char *drop_buffer; 234 235 /* Array backed queues optimized for bulk enqueue/dequeue and 236 * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios. 237 * For more details and full design rationale see 238 * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt 239 */ 240 241 242 /* 243 * Advance the mmsg queue head by n = advance. Resets the queue to 244 * maximum enqueue/dequeue-at-once capacity if possible. Called by 245 * dequeuers. Caller must hold the head_lock! 246 */ 247 248 static int vector_advancehead(struct vector_queue *qi, int advance) 249 { 250 int queue_depth; 251 252 qi->head = 253 (qi->head + advance) 254 % qi->max_depth; 255 256 257 spin_lock(&qi->tail_lock); 258 qi->queue_depth -= advance; 259 260 /* we are at 0, use this to 261 * reset head and tail so we can use max size vectors 262 */ 263 264 if (qi->queue_depth == 0) { 265 qi->head = 0; 266 qi->tail = 0; 267 } 268 queue_depth = qi->queue_depth; 269 spin_unlock(&qi->tail_lock); 270 return queue_depth; 271 } 272 273 /* Advance the queue tail by n = advance. 274 * This is called by enqueuers which should hold the 275 * head lock already 276 */ 277 278 static int vector_advancetail(struct vector_queue *qi, int advance) 279 { 280 int queue_depth; 281 282 qi->tail = 283 (qi->tail + advance) 284 % qi->max_depth; 285 spin_lock(&qi->head_lock); 286 qi->queue_depth += advance; 287 queue_depth = qi->queue_depth; 288 spin_unlock(&qi->head_lock); 289 return queue_depth; 290 } 291 292 static int prep_msg(struct vector_private *vp, 293 struct sk_buff *skb, 294 struct iovec *iov) 295 { 296 int iov_index = 0; 297 int nr_frags, frag; 298 skb_frag_t *skb_frag; 299 300 nr_frags = skb_shinfo(skb)->nr_frags; 301 if (nr_frags > MAX_IOV_SIZE) { 302 if (skb_linearize(skb) != 0) 303 goto drop; 304 } 305 if (vp->header_size > 0) { 306 iov[iov_index].iov_len = vp->header_size; 307 vp->form_header(iov[iov_index].iov_base, skb, vp); 308 iov_index++; 309 } 310 iov[iov_index].iov_base = skb->data; 311 if (nr_frags > 0) { 312 iov[iov_index].iov_len = skb->len - skb->data_len; 313 vp->estats.sg_ok++; 314 } else 315 iov[iov_index].iov_len = skb->len; 316 iov_index++; 317 for (frag = 0; frag < nr_frags; frag++) { 318 skb_frag = &skb_shinfo(skb)->frags[frag]; 319 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); 320 iov[iov_index].iov_len = skb_frag_size(skb_frag); 321 iov_index++; 322 } 323 return iov_index; 324 drop: 325 return -1; 326 } 327 /* 328 * Generic vector enqueue with support for forming headers using transport 329 * specific callback. Allows GRE, L2TPv3, RAW and other transports 330 * to use a common enqueue procedure in vector mode 331 */ 332 333 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb) 334 { 335 struct vector_private *vp = netdev_priv(qi->dev); 336 int queue_depth; 337 int packet_len; 338 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 339 int iov_count; 340 341 spin_lock(&qi->tail_lock); 342 spin_lock(&qi->head_lock); 343 queue_depth = qi->queue_depth; 344 spin_unlock(&qi->head_lock); 345 346 if (skb) 347 packet_len = skb->len; 348 349 if (queue_depth < qi->max_depth) { 350 351 *(qi->skbuff_vector + qi->tail) = skb; 352 mmsg_vector += qi->tail; 353 iov_count = prep_msg( 354 vp, 355 skb, 356 mmsg_vector->msg_hdr.msg_iov 357 ); 358 if (iov_count < 1) 359 goto drop; 360 mmsg_vector->msg_hdr.msg_iovlen = iov_count; 361 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr; 362 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size; 363 queue_depth = vector_advancetail(qi, 1); 364 } else 365 goto drop; 366 spin_unlock(&qi->tail_lock); 367 return queue_depth; 368 drop: 369 qi->dev->stats.tx_dropped++; 370 if (skb != NULL) { 371 packet_len = skb->len; 372 dev_consume_skb_any(skb); 373 netdev_completed_queue(qi->dev, 1, packet_len); 374 } 375 spin_unlock(&qi->tail_lock); 376 return queue_depth; 377 } 378 379 static int consume_vector_skbs(struct vector_queue *qi, int count) 380 { 381 struct sk_buff *skb; 382 int skb_index; 383 int bytes_compl = 0; 384 385 for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) { 386 skb = *(qi->skbuff_vector + skb_index); 387 /* mark as empty to ensure correct destruction if 388 * needed 389 */ 390 bytes_compl += skb->len; 391 *(qi->skbuff_vector + skb_index) = NULL; 392 dev_consume_skb_any(skb); 393 } 394 qi->dev->stats.tx_bytes += bytes_compl; 395 qi->dev->stats.tx_packets += count; 396 netdev_completed_queue(qi->dev, count, bytes_compl); 397 return vector_advancehead(qi, count); 398 } 399 400 /* 401 * Generic vector deque via sendmmsg with support for forming headers 402 * using transport specific callback. Allows GRE, L2TPv3, RAW and 403 * other transports to use a common dequeue procedure in vector mode 404 */ 405 406 407 static int vector_send(struct vector_queue *qi) 408 { 409 struct vector_private *vp = netdev_priv(qi->dev); 410 struct mmsghdr *send_from; 411 int result = 0, send_len, queue_depth = qi->max_depth; 412 413 if (spin_trylock(&qi->head_lock)) { 414 if (spin_trylock(&qi->tail_lock)) { 415 /* update queue_depth to current value */ 416 queue_depth = qi->queue_depth; 417 spin_unlock(&qi->tail_lock); 418 while (queue_depth > 0) { 419 /* Calculate the start of the vector */ 420 send_len = queue_depth; 421 send_from = qi->mmsg_vector; 422 send_from += qi->head; 423 /* Adjust vector size if wraparound */ 424 if (send_len + qi->head > qi->max_depth) 425 send_len = qi->max_depth - qi->head; 426 /* Try to TX as many packets as possible */ 427 if (send_len > 0) { 428 result = uml_vector_sendmmsg( 429 vp->fds->tx_fd, 430 send_from, 431 send_len, 432 0 433 ); 434 vp->in_write_poll = 435 (result != send_len); 436 } 437 /* For some of the sendmmsg error scenarios 438 * we may end being unsure in the TX success 439 * for all packets. It is safer to declare 440 * them all TX-ed and blame the network. 441 */ 442 if (result < 0) { 443 if (net_ratelimit()) 444 netdev_err(vp->dev, "sendmmsg err=%i\n", 445 result); 446 vp->in_error = true; 447 result = send_len; 448 } 449 if (result > 0) { 450 queue_depth = 451 consume_vector_skbs(qi, result); 452 /* This is equivalent to an TX IRQ. 453 * Restart the upper layers to feed us 454 * more packets. 455 */ 456 if (result > vp->estats.tx_queue_max) 457 vp->estats.tx_queue_max = result; 458 vp->estats.tx_queue_running_average = 459 (vp->estats.tx_queue_running_average + result) >> 1; 460 } 461 netif_trans_update(qi->dev); 462 netif_wake_queue(qi->dev); 463 /* if TX is busy, break out of the send loop, 464 * poll write IRQ will reschedule xmit for us 465 */ 466 if (result != send_len) { 467 vp->estats.tx_restart_queue++; 468 break; 469 } 470 } 471 } 472 spin_unlock(&qi->head_lock); 473 } else { 474 tasklet_schedule(&vp->tx_poll); 475 } 476 return queue_depth; 477 } 478 479 /* Queue destructor. Deliberately stateless so we can use 480 * it in queue cleanup if initialization fails. 481 */ 482 483 static void destroy_queue(struct vector_queue *qi) 484 { 485 int i; 486 struct iovec *iov; 487 struct vector_private *vp = netdev_priv(qi->dev); 488 struct mmsghdr *mmsg_vector; 489 490 if (qi == NULL) 491 return; 492 /* deallocate any skbuffs - we rely on any unused to be 493 * set to NULL. 494 */ 495 if (qi->skbuff_vector != NULL) { 496 for (i = 0; i < qi->max_depth; i++) { 497 if (*(qi->skbuff_vector + i) != NULL) 498 dev_kfree_skb_any(*(qi->skbuff_vector + i)); 499 } 500 kfree(qi->skbuff_vector); 501 } 502 /* deallocate matching IOV structures including header buffs */ 503 if (qi->mmsg_vector != NULL) { 504 mmsg_vector = qi->mmsg_vector; 505 for (i = 0; i < qi->max_depth; i++) { 506 iov = mmsg_vector->msg_hdr.msg_iov; 507 if (iov != NULL) { 508 if ((vp->header_size > 0) && 509 (iov->iov_base != NULL)) 510 kfree(iov->iov_base); 511 kfree(iov); 512 } 513 mmsg_vector++; 514 } 515 kfree(qi->mmsg_vector); 516 } 517 kfree(qi); 518 } 519 520 /* 521 * Queue constructor. Create a queue with a given side. 522 */ 523 static struct vector_queue *create_queue( 524 struct vector_private *vp, 525 int max_size, 526 int header_size, 527 int num_extra_frags) 528 { 529 struct vector_queue *result; 530 int i; 531 struct iovec *iov; 532 struct mmsghdr *mmsg_vector; 533 534 result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL); 535 if (result == NULL) 536 return NULL; 537 result->max_depth = max_size; 538 result->dev = vp->dev; 539 result->mmsg_vector = kmalloc( 540 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL); 541 if (result->mmsg_vector == NULL) 542 goto out_mmsg_fail; 543 result->skbuff_vector = kmalloc( 544 (sizeof(void *) * max_size), GFP_KERNEL); 545 if (result->skbuff_vector == NULL) 546 goto out_skb_fail; 547 548 /* further failures can be handled safely by destroy_queue*/ 549 550 mmsg_vector = result->mmsg_vector; 551 for (i = 0; i < max_size; i++) { 552 /* Clear all pointers - we use non-NULL as marking on 553 * what to free on destruction 554 */ 555 *(result->skbuff_vector + i) = NULL; 556 mmsg_vector->msg_hdr.msg_iov = NULL; 557 mmsg_vector++; 558 } 559 mmsg_vector = result->mmsg_vector; 560 result->max_iov_frags = num_extra_frags; 561 for (i = 0; i < max_size; i++) { 562 if (vp->header_size > 0) 563 iov = kmalloc_array(3 + num_extra_frags, 564 sizeof(struct iovec), 565 GFP_KERNEL 566 ); 567 else 568 iov = kmalloc_array(2 + num_extra_frags, 569 sizeof(struct iovec), 570 GFP_KERNEL 571 ); 572 if (iov == NULL) 573 goto out_fail; 574 mmsg_vector->msg_hdr.msg_iov = iov; 575 mmsg_vector->msg_hdr.msg_iovlen = 1; 576 mmsg_vector->msg_hdr.msg_control = NULL; 577 mmsg_vector->msg_hdr.msg_controllen = 0; 578 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT; 579 mmsg_vector->msg_hdr.msg_name = NULL; 580 mmsg_vector->msg_hdr.msg_namelen = 0; 581 if (vp->header_size > 0) { 582 iov->iov_base = kmalloc(header_size, GFP_KERNEL); 583 if (iov->iov_base == NULL) 584 goto out_fail; 585 iov->iov_len = header_size; 586 mmsg_vector->msg_hdr.msg_iovlen = 2; 587 iov++; 588 } 589 iov->iov_base = NULL; 590 iov->iov_len = 0; 591 mmsg_vector++; 592 } 593 spin_lock_init(&result->head_lock); 594 spin_lock_init(&result->tail_lock); 595 result->queue_depth = 0; 596 result->head = 0; 597 result->tail = 0; 598 return result; 599 out_skb_fail: 600 kfree(result->mmsg_vector); 601 out_mmsg_fail: 602 kfree(result); 603 return NULL; 604 out_fail: 605 destroy_queue(result); 606 return NULL; 607 } 608 609 /* 610 * We do not use the RX queue as a proper wraparound queue for now 611 * This is not necessary because the consumption via netif_rx() 612 * happens in-line. While we can try using the return code of 613 * netif_rx() for flow control there are no drivers doing this today. 614 * For this RX specific use we ignore the tail/head locks and 615 * just read into a prepared queue filled with skbuffs. 616 */ 617 618 static struct sk_buff *prep_skb( 619 struct vector_private *vp, 620 struct user_msghdr *msg) 621 { 622 int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN; 623 struct sk_buff *result; 624 int iov_index = 0, len; 625 struct iovec *iov = msg->msg_iov; 626 int err, nr_frags, frag; 627 skb_frag_t *skb_frag; 628 629 if (vp->req_size <= linear) 630 len = linear; 631 else 632 len = vp->req_size; 633 result = alloc_skb_with_frags( 634 linear, 635 len - vp->max_packet, 636 3, 637 &err, 638 GFP_ATOMIC 639 ); 640 if (vp->header_size > 0) 641 iov_index++; 642 if (result == NULL) { 643 iov[iov_index].iov_base = NULL; 644 iov[iov_index].iov_len = 0; 645 goto done; 646 } 647 skb_reserve(result, vp->headroom); 648 result->dev = vp->dev; 649 skb_put(result, vp->max_packet); 650 result->data_len = len - vp->max_packet; 651 result->len += len - vp->max_packet; 652 skb_reset_mac_header(result); 653 result->ip_summed = CHECKSUM_NONE; 654 iov[iov_index].iov_base = result->data; 655 iov[iov_index].iov_len = vp->max_packet; 656 iov_index++; 657 658 nr_frags = skb_shinfo(result)->nr_frags; 659 for (frag = 0; frag < nr_frags; frag++) { 660 skb_frag = &skb_shinfo(result)->frags[frag]; 661 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); 662 if (iov[iov_index].iov_base != NULL) 663 iov[iov_index].iov_len = skb_frag_size(skb_frag); 664 else 665 iov[iov_index].iov_len = 0; 666 iov_index++; 667 } 668 done: 669 msg->msg_iovlen = iov_index; 670 return result; 671 } 672 673 674 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/ 675 676 static void prep_queue_for_rx(struct vector_queue *qi) 677 { 678 struct vector_private *vp = netdev_priv(qi->dev); 679 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 680 void **skbuff_vector = qi->skbuff_vector; 681 int i; 682 683 if (qi->queue_depth == 0) 684 return; 685 for (i = 0; i < qi->queue_depth; i++) { 686 /* it is OK if allocation fails - recvmmsg with NULL data in 687 * iov argument still performs an RX, just drops the packet 688 * This allows us stop faffing around with a "drop buffer" 689 */ 690 691 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr); 692 skbuff_vector++; 693 mmsg_vector++; 694 } 695 qi->queue_depth = 0; 696 } 697 698 static struct vector_device *find_device(int n) 699 { 700 struct vector_device *device; 701 struct list_head *ele; 702 703 spin_lock(&vector_devices_lock); 704 list_for_each(ele, &vector_devices) { 705 device = list_entry(ele, struct vector_device, list); 706 if (device->unit == n) 707 goto out; 708 } 709 device = NULL; 710 out: 711 spin_unlock(&vector_devices_lock); 712 return device; 713 } 714 715 static int vector_parse(char *str, int *index_out, char **str_out, 716 char **error_out) 717 { 718 int n, len, err; 719 char *start = str; 720 721 len = strlen(str); 722 723 while ((*str != ':') && (strlen(str) > 1)) 724 str++; 725 if (*str != ':') { 726 *error_out = "Expected ':' after device number"; 727 return -EINVAL; 728 } 729 *str = '\0'; 730 731 err = kstrtouint(start, 0, &n); 732 if (err < 0) { 733 *error_out = "Bad device number"; 734 return err; 735 } 736 737 str++; 738 if (find_device(n)) { 739 *error_out = "Device already configured"; 740 return -EINVAL; 741 } 742 743 *index_out = n; 744 *str_out = str; 745 return 0; 746 } 747 748 static int vector_config(char *str, char **error_out) 749 { 750 int err, n; 751 char *params; 752 struct arglist *parsed; 753 754 err = vector_parse(str, &n, ¶ms, error_out); 755 if (err != 0) 756 return err; 757 758 /* This string is broken up and the pieces used by the underlying 759 * driver. We should copy it to make sure things do not go wrong 760 * later. 761 */ 762 763 params = kstrdup(params, GFP_KERNEL); 764 if (params == NULL) { 765 *error_out = "vector_config failed to strdup string"; 766 return -ENOMEM; 767 } 768 769 parsed = uml_parse_vector_ifspec(params); 770 771 if (parsed == NULL) { 772 *error_out = "vector_config failed to parse parameters"; 773 return -EINVAL; 774 } 775 776 vector_eth_configure(n, parsed); 777 return 0; 778 } 779 780 static int vector_id(char **str, int *start_out, int *end_out) 781 { 782 char *end; 783 int n; 784 785 n = simple_strtoul(*str, &end, 0); 786 if ((*end != '\0') || (end == *str)) 787 return -1; 788 789 *start_out = n; 790 *end_out = n; 791 *str = end; 792 return n; 793 } 794 795 static int vector_remove(int n, char **error_out) 796 { 797 struct vector_device *vec_d; 798 struct net_device *dev; 799 struct vector_private *vp; 800 801 vec_d = find_device(n); 802 if (vec_d == NULL) 803 return -ENODEV; 804 dev = vec_d->dev; 805 vp = netdev_priv(dev); 806 if (vp->fds != NULL) 807 return -EBUSY; 808 unregister_netdev(dev); 809 platform_device_unregister(&vec_d->pdev); 810 return 0; 811 } 812 813 /* 814 * There is no shared per-transport initialization code, so 815 * we will just initialize each interface one by one and 816 * add them to a list 817 */ 818 819 static struct platform_driver uml_net_driver = { 820 .driver = { 821 .name = DRIVER_NAME, 822 }, 823 }; 824 825 826 static void vector_device_release(struct device *dev) 827 { 828 struct vector_device *device = dev_get_drvdata(dev); 829 struct net_device *netdev = device->dev; 830 831 list_del(&device->list); 832 kfree(device); 833 free_netdev(netdev); 834 } 835 836 /* Bog standard recv using recvmsg - not used normally unless the user 837 * explicitly specifies not to use recvmmsg vector RX. 838 */ 839 840 static int vector_legacy_rx(struct vector_private *vp) 841 { 842 int pkt_len; 843 struct user_msghdr hdr; 844 struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */ 845 int iovpos = 0; 846 struct sk_buff *skb; 847 int header_check; 848 849 hdr.msg_name = NULL; 850 hdr.msg_namelen = 0; 851 hdr.msg_iov = (struct iovec *) &iov; 852 hdr.msg_control = NULL; 853 hdr.msg_controllen = 0; 854 hdr.msg_flags = 0; 855 856 if (vp->header_size > 0) { 857 iov[0].iov_base = vp->header_rxbuffer; 858 iov[0].iov_len = vp->header_size; 859 } 860 861 skb = prep_skb(vp, &hdr); 862 863 if (skb == NULL) { 864 /* Read a packet into drop_buffer and don't do 865 * anything with it. 866 */ 867 iov[iovpos].iov_base = drop_buffer; 868 iov[iovpos].iov_len = DROP_BUFFER_SIZE; 869 hdr.msg_iovlen = 1; 870 vp->dev->stats.rx_dropped++; 871 } 872 873 pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0); 874 if (pkt_len < 0) { 875 vp->in_error = true; 876 return pkt_len; 877 } 878 879 if (skb != NULL) { 880 if (pkt_len > vp->header_size) { 881 if (vp->header_size > 0) { 882 header_check = vp->verify_header( 883 vp->header_rxbuffer, skb, vp); 884 if (header_check < 0) { 885 dev_kfree_skb_irq(skb); 886 vp->dev->stats.rx_dropped++; 887 vp->estats.rx_encaps_errors++; 888 return 0; 889 } 890 if (header_check > 0) { 891 vp->estats.rx_csum_offload_good++; 892 skb->ip_summed = CHECKSUM_UNNECESSARY; 893 } 894 } 895 pskb_trim(skb, pkt_len - vp->rx_header_size); 896 skb->protocol = eth_type_trans(skb, skb->dev); 897 vp->dev->stats.rx_bytes += skb->len; 898 vp->dev->stats.rx_packets++; 899 netif_rx(skb); 900 } else { 901 dev_kfree_skb_irq(skb); 902 } 903 } 904 return pkt_len; 905 } 906 907 /* 908 * Packet at a time TX which falls back to vector TX if the 909 * underlying transport is busy. 910 */ 911 912 913 914 static int writev_tx(struct vector_private *vp, struct sk_buff *skb) 915 { 916 struct iovec iov[3 + MAX_IOV_SIZE]; 917 int iov_count, pkt_len = 0; 918 919 iov[0].iov_base = vp->header_txbuffer; 920 iov_count = prep_msg(vp, skb, (struct iovec *) &iov); 921 922 if (iov_count < 1) 923 goto drop; 924 925 pkt_len = uml_vector_writev( 926 vp->fds->tx_fd, 927 (struct iovec *) &iov, 928 iov_count 929 ); 930 931 if (pkt_len < 0) 932 goto drop; 933 934 netif_trans_update(vp->dev); 935 netif_wake_queue(vp->dev); 936 937 if (pkt_len > 0) { 938 vp->dev->stats.tx_bytes += skb->len; 939 vp->dev->stats.tx_packets++; 940 } else { 941 vp->dev->stats.tx_dropped++; 942 } 943 consume_skb(skb); 944 return pkt_len; 945 drop: 946 vp->dev->stats.tx_dropped++; 947 consume_skb(skb); 948 if (pkt_len < 0) 949 vp->in_error = true; 950 return pkt_len; 951 } 952 953 /* 954 * Receive as many messages as we can in one call using the special 955 * mmsg vector matched to an skb vector which we prepared earlier. 956 */ 957 958 static int vector_mmsg_rx(struct vector_private *vp) 959 { 960 int packet_count, i; 961 struct vector_queue *qi = vp->rx_queue; 962 struct sk_buff *skb; 963 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 964 void **skbuff_vector = qi->skbuff_vector; 965 int header_check; 966 967 /* Refresh the vector and make sure it is with new skbs and the 968 * iovs are updated to point to them. 969 */ 970 971 prep_queue_for_rx(qi); 972 973 /* Fire the Lazy Gun - get as many packets as we can in one go. */ 974 975 packet_count = uml_vector_recvmmsg( 976 vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0); 977 978 if (packet_count < 0) 979 vp->in_error = true; 980 981 if (packet_count <= 0) 982 return packet_count; 983 984 /* We treat packet processing as enqueue, buffer refresh as dequeue 985 * The queue_depth tells us how many buffers have been used and how 986 * many do we need to prep the next time prep_queue_for_rx() is called. 987 */ 988 989 qi->queue_depth = packet_count; 990 991 for (i = 0; i < packet_count; i++) { 992 skb = (*skbuff_vector); 993 if (mmsg_vector->msg_len > vp->header_size) { 994 if (vp->header_size > 0) { 995 header_check = vp->verify_header( 996 mmsg_vector->msg_hdr.msg_iov->iov_base, 997 skb, 998 vp 999 ); 1000 if (header_check < 0) { 1001 /* Overlay header failed to verify - discard. 1002 * We can actually keep this skb and reuse it, 1003 * but that will make the prep logic too 1004 * complex. 1005 */ 1006 dev_kfree_skb_irq(skb); 1007 vp->estats.rx_encaps_errors++; 1008 continue; 1009 } 1010 if (header_check > 0) { 1011 vp->estats.rx_csum_offload_good++; 1012 skb->ip_summed = CHECKSUM_UNNECESSARY; 1013 } 1014 } 1015 pskb_trim(skb, 1016 mmsg_vector->msg_len - vp->rx_header_size); 1017 skb->protocol = eth_type_trans(skb, skb->dev); 1018 /* 1019 * We do not need to lock on updating stats here 1020 * The interrupt loop is non-reentrant. 1021 */ 1022 vp->dev->stats.rx_bytes += skb->len; 1023 vp->dev->stats.rx_packets++; 1024 netif_rx(skb); 1025 } else { 1026 /* Overlay header too short to do anything - discard. 1027 * We can actually keep this skb and reuse it, 1028 * but that will make the prep logic too complex. 1029 */ 1030 if (skb != NULL) 1031 dev_kfree_skb_irq(skb); 1032 } 1033 (*skbuff_vector) = NULL; 1034 /* Move to the next buffer element */ 1035 mmsg_vector++; 1036 skbuff_vector++; 1037 } 1038 if (packet_count > 0) { 1039 if (vp->estats.rx_queue_max < packet_count) 1040 vp->estats.rx_queue_max = packet_count; 1041 vp->estats.rx_queue_running_average = 1042 (vp->estats.rx_queue_running_average + packet_count) >> 1; 1043 } 1044 return packet_count; 1045 } 1046 1047 static void vector_rx(struct vector_private *vp) 1048 { 1049 int err; 1050 int iter = 0; 1051 1052 if ((vp->options & VECTOR_RX) > 0) 1053 while (((err = vector_mmsg_rx(vp)) > 0) && (iter < MAX_ITERATIONS)) 1054 iter++; 1055 else 1056 while (((err = vector_legacy_rx(vp)) > 0) && (iter < MAX_ITERATIONS)) 1057 iter++; 1058 if ((err != 0) && net_ratelimit()) 1059 netdev_err(vp->dev, "vector_rx: error(%d)\n", err); 1060 if (iter == MAX_ITERATIONS) 1061 netdev_err(vp->dev, "vector_rx: device stuck, remote end may have closed the connection\n"); 1062 } 1063 1064 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev) 1065 { 1066 struct vector_private *vp = netdev_priv(dev); 1067 int queue_depth = 0; 1068 1069 if (vp->in_error) { 1070 deactivate_fd(vp->fds->rx_fd, vp->rx_irq); 1071 if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0)) 1072 deactivate_fd(vp->fds->tx_fd, vp->tx_irq); 1073 return NETDEV_TX_BUSY; 1074 } 1075 1076 if ((vp->options & VECTOR_TX) == 0) { 1077 writev_tx(vp, skb); 1078 return NETDEV_TX_OK; 1079 } 1080 1081 /* We do BQL only in the vector path, no point doing it in 1082 * packet at a time mode as there is no device queue 1083 */ 1084 1085 netdev_sent_queue(vp->dev, skb->len); 1086 queue_depth = vector_enqueue(vp->tx_queue, skb); 1087 1088 /* if the device queue is full, stop the upper layers and 1089 * flush it. 1090 */ 1091 1092 if (queue_depth >= vp->tx_queue->max_depth - 1) { 1093 vp->estats.tx_kicks++; 1094 netif_stop_queue(dev); 1095 vector_send(vp->tx_queue); 1096 return NETDEV_TX_OK; 1097 } 1098 if (netdev_xmit_more()) { 1099 mod_timer(&vp->tl, vp->coalesce); 1100 return NETDEV_TX_OK; 1101 } 1102 if (skb->len < TX_SMALL_PACKET) { 1103 vp->estats.tx_kicks++; 1104 vector_send(vp->tx_queue); 1105 } else 1106 tasklet_schedule(&vp->tx_poll); 1107 return NETDEV_TX_OK; 1108 } 1109 1110 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id) 1111 { 1112 struct net_device *dev = dev_id; 1113 struct vector_private *vp = netdev_priv(dev); 1114 1115 if (!netif_running(dev)) 1116 return IRQ_NONE; 1117 vector_rx(vp); 1118 return IRQ_HANDLED; 1119 1120 } 1121 1122 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id) 1123 { 1124 struct net_device *dev = dev_id; 1125 struct vector_private *vp = netdev_priv(dev); 1126 1127 if (!netif_running(dev)) 1128 return IRQ_NONE; 1129 /* We need to pay attention to it only if we got 1130 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise 1131 * we ignore it. In the future, it may be worth 1132 * it to improve the IRQ controller a bit to make 1133 * tweaking the IRQ mask less costly 1134 */ 1135 1136 if (vp->in_write_poll) 1137 tasklet_schedule(&vp->tx_poll); 1138 return IRQ_HANDLED; 1139 1140 } 1141 1142 static int irq_rr; 1143 1144 static int vector_net_close(struct net_device *dev) 1145 { 1146 struct vector_private *vp = netdev_priv(dev); 1147 unsigned long flags; 1148 1149 netif_stop_queue(dev); 1150 del_timer(&vp->tl); 1151 1152 if (vp->fds == NULL) 1153 return 0; 1154 1155 /* Disable and free all IRQS */ 1156 if (vp->rx_irq > 0) { 1157 um_free_irq(vp->rx_irq, dev); 1158 vp->rx_irq = 0; 1159 } 1160 if (vp->tx_irq > 0) { 1161 um_free_irq(vp->tx_irq, dev); 1162 vp->tx_irq = 0; 1163 } 1164 tasklet_kill(&vp->tx_poll); 1165 if (vp->fds->rx_fd > 0) { 1166 if (vp->bpf) 1167 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf); 1168 os_close_file(vp->fds->rx_fd); 1169 vp->fds->rx_fd = -1; 1170 } 1171 if (vp->fds->tx_fd > 0) { 1172 os_close_file(vp->fds->tx_fd); 1173 vp->fds->tx_fd = -1; 1174 } 1175 if (vp->bpf != NULL) 1176 kfree(vp->bpf->filter); 1177 kfree(vp->bpf); 1178 vp->bpf = NULL; 1179 kfree(vp->fds->remote_addr); 1180 kfree(vp->transport_data); 1181 kfree(vp->header_rxbuffer); 1182 kfree(vp->header_txbuffer); 1183 if (vp->rx_queue != NULL) 1184 destroy_queue(vp->rx_queue); 1185 if (vp->tx_queue != NULL) 1186 destroy_queue(vp->tx_queue); 1187 kfree(vp->fds); 1188 vp->fds = NULL; 1189 spin_lock_irqsave(&vp->lock, flags); 1190 vp->opened = false; 1191 vp->in_error = false; 1192 spin_unlock_irqrestore(&vp->lock, flags); 1193 return 0; 1194 } 1195 1196 /* TX tasklet */ 1197 1198 static void vector_tx_poll(struct tasklet_struct *t) 1199 { 1200 struct vector_private *vp = from_tasklet(vp, t, tx_poll); 1201 1202 vp->estats.tx_kicks++; 1203 vector_send(vp->tx_queue); 1204 } 1205 static void vector_reset_tx(struct work_struct *work) 1206 { 1207 struct vector_private *vp = 1208 container_of(work, struct vector_private, reset_tx); 1209 netdev_reset_queue(vp->dev); 1210 netif_start_queue(vp->dev); 1211 netif_wake_queue(vp->dev); 1212 } 1213 1214 static int vector_net_open(struct net_device *dev) 1215 { 1216 struct vector_private *vp = netdev_priv(dev); 1217 unsigned long flags; 1218 int err = -EINVAL; 1219 struct vector_device *vdevice; 1220 1221 spin_lock_irqsave(&vp->lock, flags); 1222 if (vp->opened) { 1223 spin_unlock_irqrestore(&vp->lock, flags); 1224 return -ENXIO; 1225 } 1226 vp->opened = true; 1227 spin_unlock_irqrestore(&vp->lock, flags); 1228 1229 vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed)); 1230 1231 vp->fds = uml_vector_user_open(vp->unit, vp->parsed); 1232 1233 if (vp->fds == NULL) 1234 goto out_close; 1235 1236 if (build_transport_data(vp) < 0) 1237 goto out_close; 1238 1239 if ((vp->options & VECTOR_RX) > 0) { 1240 vp->rx_queue = create_queue( 1241 vp, 1242 get_depth(vp->parsed), 1243 vp->rx_header_size, 1244 MAX_IOV_SIZE 1245 ); 1246 vp->rx_queue->queue_depth = get_depth(vp->parsed); 1247 } else { 1248 vp->header_rxbuffer = kmalloc( 1249 vp->rx_header_size, 1250 GFP_KERNEL 1251 ); 1252 if (vp->header_rxbuffer == NULL) 1253 goto out_close; 1254 } 1255 if ((vp->options & VECTOR_TX) > 0) { 1256 vp->tx_queue = create_queue( 1257 vp, 1258 get_depth(vp->parsed), 1259 vp->header_size, 1260 MAX_IOV_SIZE 1261 ); 1262 } else { 1263 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL); 1264 if (vp->header_txbuffer == NULL) 1265 goto out_close; 1266 } 1267 1268 /* READ IRQ */ 1269 err = um_request_irq( 1270 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd, 1271 IRQ_READ, vector_rx_interrupt, 1272 IRQF_SHARED, dev->name, dev); 1273 if (err < 0) { 1274 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err); 1275 err = -ENETUNREACH; 1276 goto out_close; 1277 } 1278 vp->rx_irq = irq_rr + VECTOR_BASE_IRQ; 1279 dev->irq = irq_rr + VECTOR_BASE_IRQ; 1280 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; 1281 1282 /* WRITE IRQ - we need it only if we have vector TX */ 1283 if ((vp->options & VECTOR_TX) > 0) { 1284 err = um_request_irq( 1285 irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd, 1286 IRQ_WRITE, vector_tx_interrupt, 1287 IRQF_SHARED, dev->name, dev); 1288 if (err < 0) { 1289 netdev_err(dev, 1290 "vector_open: failed to get tx irq(%d)\n", err); 1291 err = -ENETUNREACH; 1292 goto out_close; 1293 } 1294 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ; 1295 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; 1296 } 1297 1298 if ((vp->options & VECTOR_QDISC_BYPASS) != 0) { 1299 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd)) 1300 vp->options |= VECTOR_BPF; 1301 } 1302 if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL)) 1303 vp->bpf = uml_vector_default_bpf(dev->dev_addr); 1304 1305 if (vp->bpf != NULL) 1306 uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf); 1307 1308 netif_start_queue(dev); 1309 1310 /* clear buffer - it can happen that the host side of the interface 1311 * is full when we get here. In this case, new data is never queued, 1312 * SIGIOs never arrive, and the net never works. 1313 */ 1314 1315 vector_rx(vp); 1316 1317 vector_reset_stats(vp); 1318 vdevice = find_device(vp->unit); 1319 vdevice->opened = 1; 1320 1321 if ((vp->options & VECTOR_TX) != 0) 1322 add_timer(&vp->tl); 1323 return 0; 1324 out_close: 1325 vector_net_close(dev); 1326 return err; 1327 } 1328 1329 1330 static void vector_net_set_multicast_list(struct net_device *dev) 1331 { 1332 /* TODO: - we can do some BPF games here */ 1333 return; 1334 } 1335 1336 static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue) 1337 { 1338 struct vector_private *vp = netdev_priv(dev); 1339 1340 vp->estats.tx_timeout_count++; 1341 netif_trans_update(dev); 1342 schedule_work(&vp->reset_tx); 1343 } 1344 1345 static netdev_features_t vector_fix_features(struct net_device *dev, 1346 netdev_features_t features) 1347 { 1348 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 1349 return features; 1350 } 1351 1352 static int vector_set_features(struct net_device *dev, 1353 netdev_features_t features) 1354 { 1355 struct vector_private *vp = netdev_priv(dev); 1356 /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is 1357 * no way to negotiate it on raw sockets, so we can change 1358 * only our side. 1359 */ 1360 if (features & NETIF_F_GRO) 1361 /* All new frame buffers will be GRO-sized */ 1362 vp->req_size = 65536; 1363 else 1364 /* All new frame buffers will be normal sized */ 1365 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN; 1366 return 0; 1367 } 1368 1369 #ifdef CONFIG_NET_POLL_CONTROLLER 1370 static void vector_net_poll_controller(struct net_device *dev) 1371 { 1372 disable_irq(dev->irq); 1373 vector_rx_interrupt(dev->irq, dev); 1374 enable_irq(dev->irq); 1375 } 1376 #endif 1377 1378 static void vector_net_get_drvinfo(struct net_device *dev, 1379 struct ethtool_drvinfo *info) 1380 { 1381 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver)); 1382 } 1383 1384 static int vector_net_load_bpf_flash(struct net_device *dev, 1385 struct ethtool_flash *efl) 1386 { 1387 struct vector_private *vp = netdev_priv(dev); 1388 struct vector_device *vdevice; 1389 const struct firmware *fw; 1390 int result = 0; 1391 1392 if (!(vp->options & VECTOR_BPF_FLASH)) { 1393 netdev_err(dev, "loading firmware not permitted: %s\n", efl->data); 1394 return -1; 1395 } 1396 1397 spin_lock(&vp->lock); 1398 1399 if (vp->bpf != NULL) { 1400 if (vp->opened) 1401 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf); 1402 kfree(vp->bpf->filter); 1403 vp->bpf->filter = NULL; 1404 } else { 1405 vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC); 1406 if (vp->bpf == NULL) { 1407 netdev_err(dev, "failed to allocate memory for firmware\n"); 1408 goto flash_fail; 1409 } 1410 } 1411 1412 vdevice = find_device(vp->unit); 1413 1414 if (request_firmware(&fw, efl->data, &vdevice->pdev.dev)) 1415 goto flash_fail; 1416 1417 vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC); 1418 if (!vp->bpf->filter) 1419 goto free_buffer; 1420 1421 vp->bpf->len = fw->size / sizeof(struct sock_filter); 1422 release_firmware(fw); 1423 1424 if (vp->opened) 1425 result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf); 1426 1427 spin_unlock(&vp->lock); 1428 1429 return result; 1430 1431 free_buffer: 1432 release_firmware(fw); 1433 1434 flash_fail: 1435 spin_unlock(&vp->lock); 1436 if (vp->bpf != NULL) 1437 kfree(vp->bpf->filter); 1438 kfree(vp->bpf); 1439 vp->bpf = NULL; 1440 return -1; 1441 } 1442 1443 static void vector_get_ringparam(struct net_device *netdev, 1444 struct ethtool_ringparam *ring) 1445 { 1446 struct vector_private *vp = netdev_priv(netdev); 1447 1448 ring->rx_max_pending = vp->rx_queue->max_depth; 1449 ring->tx_max_pending = vp->tx_queue->max_depth; 1450 ring->rx_pending = vp->rx_queue->max_depth; 1451 ring->tx_pending = vp->tx_queue->max_depth; 1452 } 1453 1454 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf) 1455 { 1456 switch (stringset) { 1457 case ETH_SS_TEST: 1458 *buf = '\0'; 1459 break; 1460 case ETH_SS_STATS: 1461 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 1462 break; 1463 default: 1464 WARN_ON(1); 1465 break; 1466 } 1467 } 1468 1469 static int vector_get_sset_count(struct net_device *dev, int sset) 1470 { 1471 switch (sset) { 1472 case ETH_SS_TEST: 1473 return 0; 1474 case ETH_SS_STATS: 1475 return VECTOR_NUM_STATS; 1476 default: 1477 return -EOPNOTSUPP; 1478 } 1479 } 1480 1481 static void vector_get_ethtool_stats(struct net_device *dev, 1482 struct ethtool_stats *estats, 1483 u64 *tmp_stats) 1484 { 1485 struct vector_private *vp = netdev_priv(dev); 1486 1487 memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats)); 1488 } 1489 1490 static int vector_get_coalesce(struct net_device *netdev, 1491 struct ethtool_coalesce *ec) 1492 { 1493 struct vector_private *vp = netdev_priv(netdev); 1494 1495 ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ; 1496 return 0; 1497 } 1498 1499 static int vector_set_coalesce(struct net_device *netdev, 1500 struct ethtool_coalesce *ec) 1501 { 1502 struct vector_private *vp = netdev_priv(netdev); 1503 1504 vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000; 1505 if (vp->coalesce == 0) 1506 vp->coalesce = 1; 1507 return 0; 1508 } 1509 1510 static const struct ethtool_ops vector_net_ethtool_ops = { 1511 .supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS, 1512 .get_drvinfo = vector_net_get_drvinfo, 1513 .get_link = ethtool_op_get_link, 1514 .get_ts_info = ethtool_op_get_ts_info, 1515 .get_ringparam = vector_get_ringparam, 1516 .get_strings = vector_get_strings, 1517 .get_sset_count = vector_get_sset_count, 1518 .get_ethtool_stats = vector_get_ethtool_stats, 1519 .get_coalesce = vector_get_coalesce, 1520 .set_coalesce = vector_set_coalesce, 1521 .flash_device = vector_net_load_bpf_flash, 1522 }; 1523 1524 1525 static const struct net_device_ops vector_netdev_ops = { 1526 .ndo_open = vector_net_open, 1527 .ndo_stop = vector_net_close, 1528 .ndo_start_xmit = vector_net_start_xmit, 1529 .ndo_set_rx_mode = vector_net_set_multicast_list, 1530 .ndo_tx_timeout = vector_net_tx_timeout, 1531 .ndo_set_mac_address = eth_mac_addr, 1532 .ndo_validate_addr = eth_validate_addr, 1533 .ndo_fix_features = vector_fix_features, 1534 .ndo_set_features = vector_set_features, 1535 #ifdef CONFIG_NET_POLL_CONTROLLER 1536 .ndo_poll_controller = vector_net_poll_controller, 1537 #endif 1538 }; 1539 1540 1541 static void vector_timer_expire(struct timer_list *t) 1542 { 1543 struct vector_private *vp = from_timer(vp, t, tl); 1544 1545 vp->estats.tx_kicks++; 1546 vector_send(vp->tx_queue); 1547 } 1548 1549 static void vector_eth_configure( 1550 int n, 1551 struct arglist *def 1552 ) 1553 { 1554 struct vector_device *device; 1555 struct net_device *dev; 1556 struct vector_private *vp; 1557 int err; 1558 1559 device = kzalloc(sizeof(*device), GFP_KERNEL); 1560 if (device == NULL) { 1561 printk(KERN_ERR "eth_configure failed to allocate struct " 1562 "vector_device\n"); 1563 return; 1564 } 1565 dev = alloc_etherdev(sizeof(struct vector_private)); 1566 if (dev == NULL) { 1567 printk(KERN_ERR "eth_configure: failed to allocate struct " 1568 "net_device for vec%d\n", n); 1569 goto out_free_device; 1570 } 1571 1572 dev->mtu = get_mtu(def); 1573 1574 INIT_LIST_HEAD(&device->list); 1575 device->unit = n; 1576 1577 /* If this name ends up conflicting with an existing registered 1578 * netdevice, that is OK, register_netdev{,ice}() will notice this 1579 * and fail. 1580 */ 1581 snprintf(dev->name, sizeof(dev->name), "vec%d", n); 1582 uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac")); 1583 vp = netdev_priv(dev); 1584 1585 /* sysfs register */ 1586 if (!driver_registered) { 1587 platform_driver_register(¨_net_driver); 1588 driver_registered = 1; 1589 } 1590 device->pdev.id = n; 1591 device->pdev.name = DRIVER_NAME; 1592 device->pdev.dev.release = vector_device_release; 1593 dev_set_drvdata(&device->pdev.dev, device); 1594 if (platform_device_register(&device->pdev)) 1595 goto out_free_netdev; 1596 SET_NETDEV_DEV(dev, &device->pdev.dev); 1597 1598 device->dev = dev; 1599 1600 *vp = ((struct vector_private) 1601 { 1602 .list = LIST_HEAD_INIT(vp->list), 1603 .dev = dev, 1604 .unit = n, 1605 .options = get_transport_options(def), 1606 .rx_irq = 0, 1607 .tx_irq = 0, 1608 .parsed = def, 1609 .max_packet = get_mtu(def) + ETH_HEADER_OTHER, 1610 /* TODO - we need to calculate headroom so that ip header 1611 * is 16 byte aligned all the time 1612 */ 1613 .headroom = get_headroom(def), 1614 .form_header = NULL, 1615 .verify_header = NULL, 1616 .header_rxbuffer = NULL, 1617 .header_txbuffer = NULL, 1618 .header_size = 0, 1619 .rx_header_size = 0, 1620 .rexmit_scheduled = false, 1621 .opened = false, 1622 .transport_data = NULL, 1623 .in_write_poll = false, 1624 .coalesce = 2, 1625 .req_size = get_req_size(def), 1626 .in_error = false, 1627 .bpf = NULL 1628 }); 1629 1630 dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST); 1631 tasklet_setup(&vp->tx_poll, vector_tx_poll); 1632 INIT_WORK(&vp->reset_tx, vector_reset_tx); 1633 1634 timer_setup(&vp->tl, vector_timer_expire, 0); 1635 spin_lock_init(&vp->lock); 1636 1637 /* FIXME */ 1638 dev->netdev_ops = &vector_netdev_ops; 1639 dev->ethtool_ops = &vector_net_ethtool_ops; 1640 dev->watchdog_timeo = (HZ >> 1); 1641 /* primary IRQ - fixme */ 1642 dev->irq = 0; /* we will adjust this once opened */ 1643 1644 rtnl_lock(); 1645 err = register_netdevice(dev); 1646 rtnl_unlock(); 1647 if (err) 1648 goto out_undo_user_init; 1649 1650 spin_lock(&vector_devices_lock); 1651 list_add(&device->list, &vector_devices); 1652 spin_unlock(&vector_devices_lock); 1653 1654 return; 1655 1656 out_undo_user_init: 1657 return; 1658 out_free_netdev: 1659 free_netdev(dev); 1660 out_free_device: 1661 kfree(device); 1662 } 1663 1664 1665 1666 1667 /* 1668 * Invoked late in the init 1669 */ 1670 1671 static int __init vector_init(void) 1672 { 1673 struct list_head *ele; 1674 struct vector_cmd_line_arg *def; 1675 struct arglist *parsed; 1676 1677 list_for_each(ele, &vec_cmd_line) { 1678 def = list_entry(ele, struct vector_cmd_line_arg, list); 1679 parsed = uml_parse_vector_ifspec(def->arguments); 1680 if (parsed != NULL) 1681 vector_eth_configure(def->unit, parsed); 1682 } 1683 return 0; 1684 } 1685 1686 1687 /* Invoked at initial argument parsing, only stores 1688 * arguments until a proper vector_init is called 1689 * later 1690 */ 1691 1692 static int __init vector_setup(char *str) 1693 { 1694 char *error; 1695 int n, err; 1696 struct vector_cmd_line_arg *new; 1697 1698 err = vector_parse(str, &n, &str, &error); 1699 if (err) { 1700 printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n", 1701 str, error); 1702 return 1; 1703 } 1704 new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES); 1705 if (!new) 1706 panic("%s: Failed to allocate %zu bytes\n", __func__, 1707 sizeof(*new)); 1708 INIT_LIST_HEAD(&new->list); 1709 new->unit = n; 1710 new->arguments = str; 1711 list_add_tail(&new->list, &vec_cmd_line); 1712 return 1; 1713 } 1714 1715 __setup("vec", vector_setup); 1716 __uml_help(vector_setup, 1717 "vec[0-9]+:<option>=<value>,<option>=<value>\n" 1718 " Configure a vector io network device.\n\n" 1719 ); 1720 1721 late_initcall(vector_init); 1722 1723 static struct mc_device vector_mc = { 1724 .list = LIST_HEAD_INIT(vector_mc.list), 1725 .name = "vec", 1726 .config = vector_config, 1727 .get_config = NULL, 1728 .id = vector_id, 1729 .remove = vector_remove, 1730 }; 1731 1732 #ifdef CONFIG_INET 1733 static int vector_inetaddr_event( 1734 struct notifier_block *this, 1735 unsigned long event, 1736 void *ptr) 1737 { 1738 return NOTIFY_DONE; 1739 } 1740 1741 static struct notifier_block vector_inetaddr_notifier = { 1742 .notifier_call = vector_inetaddr_event, 1743 }; 1744 1745 static void inet_register(void) 1746 { 1747 register_inetaddr_notifier(&vector_inetaddr_notifier); 1748 } 1749 #else 1750 static inline void inet_register(void) 1751 { 1752 } 1753 #endif 1754 1755 static int vector_net_init(void) 1756 { 1757 mconsole_register_dev(&vector_mc); 1758 inet_register(); 1759 return 0; 1760 } 1761 1762 __initcall(vector_net_init); 1763 1764 1765 1766