1 /* 2 * Copyright (C) 2017 - Cambridge Greys Limited 3 * Copyright (C) 2011 - 2014 Cisco Systems Inc 4 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 5 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and 6 * James Leu (jleu@mindspring.net). 7 * Copyright (C) 2001 by various other people who didn't put their name here. 8 * Licensed under the GPL. 9 */ 10 11 #include <linux/version.h> 12 #include <linux/bootmem.h> 13 #include <linux/etherdevice.h> 14 #include <linux/ethtool.h> 15 #include <linux/inetdevice.h> 16 #include <linux/init.h> 17 #include <linux/list.h> 18 #include <linux/netdevice.h> 19 #include <linux/platform_device.h> 20 #include <linux/rtnetlink.h> 21 #include <linux/skbuff.h> 22 #include <linux/slab.h> 23 #include <linux/interrupt.h> 24 #include <init.h> 25 #include <irq_kern.h> 26 #include <irq_user.h> 27 #include <net_kern.h> 28 #include <os.h> 29 #include "mconsole_kern.h" 30 #include "vector_user.h" 31 #include "vector_kern.h" 32 33 /* 34 * Adapted from network devices with the following major changes: 35 * All transports are static - simplifies the code significantly 36 * Multiple FDs/IRQs per device 37 * Vector IO optionally used for read/write, falling back to legacy 38 * based on configuration and/or availability 39 * Configuration is no longer positional - L2TPv3 and GRE require up to 40 * 10 parameters, passing this as positional is not fit for purpose. 41 * Only socket transports are supported 42 */ 43 44 45 #define DRIVER_NAME "uml-vector" 46 #define DRIVER_VERSION "01" 47 struct vector_cmd_line_arg { 48 struct list_head list; 49 int unit; 50 char *arguments; 51 }; 52 53 struct vector_device { 54 struct list_head list; 55 struct net_device *dev; 56 struct platform_device pdev; 57 int unit; 58 int opened; 59 }; 60 61 static LIST_HEAD(vec_cmd_line); 62 63 static DEFINE_SPINLOCK(vector_devices_lock); 64 static LIST_HEAD(vector_devices); 65 66 static int driver_registered; 67 68 static void vector_eth_configure(int n, struct arglist *def); 69 70 /* Argument accessors to set variables (and/or set default values) 71 * mtu, buffer sizing, default headroom, etc 72 */ 73 74 #define DEFAULT_HEADROOM 2 75 #define SAFETY_MARGIN 32 76 #define DEFAULT_VECTOR_SIZE 64 77 #define TX_SMALL_PACKET 128 78 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1) 79 80 static const struct { 81 const char string[ETH_GSTRING_LEN]; 82 } ethtool_stats_keys[] = { 83 { "rx_queue_max" }, 84 { "rx_queue_running_average" }, 85 { "tx_queue_max" }, 86 { "tx_queue_running_average" }, 87 { "rx_encaps_errors" }, 88 { "tx_timeout_count" }, 89 { "tx_restart_queue" }, 90 { "tx_kicks" }, 91 { "tx_flow_control_xon" }, 92 { "tx_flow_control_xoff" }, 93 { "rx_csum_offload_good" }, 94 { "rx_csum_offload_errors"}, 95 { "sg_ok"}, 96 { "sg_linearized"}, 97 }; 98 99 #define VECTOR_NUM_STATS ARRAY_SIZE(ethtool_stats_keys) 100 101 static void vector_reset_stats(struct vector_private *vp) 102 { 103 vp->estats.rx_queue_max = 0; 104 vp->estats.rx_queue_running_average = 0; 105 vp->estats.tx_queue_max = 0; 106 vp->estats.tx_queue_running_average = 0; 107 vp->estats.rx_encaps_errors = 0; 108 vp->estats.tx_timeout_count = 0; 109 vp->estats.tx_restart_queue = 0; 110 vp->estats.tx_kicks = 0; 111 vp->estats.tx_flow_control_xon = 0; 112 vp->estats.tx_flow_control_xoff = 0; 113 vp->estats.sg_ok = 0; 114 vp->estats.sg_linearized = 0; 115 } 116 117 static int get_mtu(struct arglist *def) 118 { 119 char *mtu = uml_vector_fetch_arg(def, "mtu"); 120 long result; 121 122 if (mtu != NULL) { 123 if (kstrtoul(mtu, 10, &result) == 0) 124 return result; 125 } 126 return ETH_MAX_PACKET; 127 } 128 129 static int get_depth(struct arglist *def) 130 { 131 char *mtu = uml_vector_fetch_arg(def, "depth"); 132 long result; 133 134 if (mtu != NULL) { 135 if (kstrtoul(mtu, 10, &result) == 0) 136 return result; 137 } 138 return DEFAULT_VECTOR_SIZE; 139 } 140 141 static int get_headroom(struct arglist *def) 142 { 143 char *mtu = uml_vector_fetch_arg(def, "headroom"); 144 long result; 145 146 if (mtu != NULL) { 147 if (kstrtoul(mtu, 10, &result) == 0) 148 return result; 149 } 150 return DEFAULT_HEADROOM; 151 } 152 153 static int get_req_size(struct arglist *def) 154 { 155 char *gro = uml_vector_fetch_arg(def, "gro"); 156 long result; 157 158 if (gro != NULL) { 159 if (kstrtoul(gro, 10, &result) == 0) { 160 if (result > 0) 161 return 65536; 162 } 163 } 164 return get_mtu(def) + ETH_HEADER_OTHER + 165 get_headroom(def) + SAFETY_MARGIN; 166 } 167 168 169 static int get_transport_options(struct arglist *def) 170 { 171 char *transport = uml_vector_fetch_arg(def, "transport"); 172 char *vector = uml_vector_fetch_arg(def, "vec"); 173 174 int vec_rx = VECTOR_RX; 175 int vec_tx = VECTOR_TX; 176 long parsed; 177 178 if (vector != NULL) { 179 if (kstrtoul(vector, 10, &parsed) == 0) { 180 if (parsed == 0) { 181 vec_rx = 0; 182 vec_tx = 0; 183 } 184 } 185 } 186 187 188 if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0) 189 return (vec_rx | VECTOR_BPF); 190 if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0) 191 return (vec_rx | vec_tx); 192 return (vec_rx | vec_tx); 193 } 194 195 196 /* A mini-buffer for packet drop read 197 * All of our supported transports are datagram oriented and we always 198 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller 199 * than the packet size it still counts as full packet read and will 200 * clean the incoming stream to keep sigio/epoll happy 201 */ 202 203 #define DROP_BUFFER_SIZE 32 204 205 static char *drop_buffer; 206 207 /* Array backed queues optimized for bulk enqueue/dequeue and 208 * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios. 209 * For more details and full design rationale see 210 * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt 211 */ 212 213 214 /* 215 * Advance the mmsg queue head by n = advance. Resets the queue to 216 * maximum enqueue/dequeue-at-once capacity if possible. Called by 217 * dequeuers. Caller must hold the head_lock! 218 */ 219 220 static int vector_advancehead(struct vector_queue *qi, int advance) 221 { 222 int queue_depth; 223 224 qi->head = 225 (qi->head + advance) 226 % qi->max_depth; 227 228 229 spin_lock(&qi->tail_lock); 230 qi->queue_depth -= advance; 231 232 /* we are at 0, use this to 233 * reset head and tail so we can use max size vectors 234 */ 235 236 if (qi->queue_depth == 0) { 237 qi->head = 0; 238 qi->tail = 0; 239 } 240 queue_depth = qi->queue_depth; 241 spin_unlock(&qi->tail_lock); 242 return queue_depth; 243 } 244 245 /* Advance the queue tail by n = advance. 246 * This is called by enqueuers which should hold the 247 * head lock already 248 */ 249 250 static int vector_advancetail(struct vector_queue *qi, int advance) 251 { 252 int queue_depth; 253 254 qi->tail = 255 (qi->tail + advance) 256 % qi->max_depth; 257 spin_lock(&qi->head_lock); 258 qi->queue_depth += advance; 259 queue_depth = qi->queue_depth; 260 spin_unlock(&qi->head_lock); 261 return queue_depth; 262 } 263 264 static int prep_msg(struct vector_private *vp, 265 struct sk_buff *skb, 266 struct iovec *iov) 267 { 268 int iov_index = 0; 269 int nr_frags, frag; 270 skb_frag_t *skb_frag; 271 272 nr_frags = skb_shinfo(skb)->nr_frags; 273 if (nr_frags > MAX_IOV_SIZE) { 274 if (skb_linearize(skb) != 0) 275 goto drop; 276 } 277 if (vp->header_size > 0) { 278 iov[iov_index].iov_len = vp->header_size; 279 vp->form_header(iov[iov_index].iov_base, skb, vp); 280 iov_index++; 281 } 282 iov[iov_index].iov_base = skb->data; 283 if (nr_frags > 0) { 284 iov[iov_index].iov_len = skb->len - skb->data_len; 285 vp->estats.sg_ok++; 286 } else 287 iov[iov_index].iov_len = skb->len; 288 iov_index++; 289 for (frag = 0; frag < nr_frags; frag++) { 290 skb_frag = &skb_shinfo(skb)->frags[frag]; 291 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); 292 iov[iov_index].iov_len = skb_frag_size(skb_frag); 293 iov_index++; 294 } 295 return iov_index; 296 drop: 297 return -1; 298 } 299 /* 300 * Generic vector enqueue with support for forming headers using transport 301 * specific callback. Allows GRE, L2TPv3, RAW and other transports 302 * to use a common enqueue procedure in vector mode 303 */ 304 305 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb) 306 { 307 struct vector_private *vp = netdev_priv(qi->dev); 308 int queue_depth; 309 int packet_len; 310 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 311 int iov_count; 312 313 spin_lock(&qi->tail_lock); 314 spin_lock(&qi->head_lock); 315 queue_depth = qi->queue_depth; 316 spin_unlock(&qi->head_lock); 317 318 if (skb) 319 packet_len = skb->len; 320 321 if (queue_depth < qi->max_depth) { 322 323 *(qi->skbuff_vector + qi->tail) = skb; 324 mmsg_vector += qi->tail; 325 iov_count = prep_msg( 326 vp, 327 skb, 328 mmsg_vector->msg_hdr.msg_iov 329 ); 330 if (iov_count < 1) 331 goto drop; 332 mmsg_vector->msg_hdr.msg_iovlen = iov_count; 333 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr; 334 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size; 335 queue_depth = vector_advancetail(qi, 1); 336 } else 337 goto drop; 338 spin_unlock(&qi->tail_lock); 339 return queue_depth; 340 drop: 341 qi->dev->stats.tx_dropped++; 342 if (skb != NULL) { 343 packet_len = skb->len; 344 dev_consume_skb_any(skb); 345 netdev_completed_queue(qi->dev, 1, packet_len); 346 } 347 spin_unlock(&qi->tail_lock); 348 return queue_depth; 349 } 350 351 static int consume_vector_skbs(struct vector_queue *qi, int count) 352 { 353 struct sk_buff *skb; 354 int skb_index; 355 int bytes_compl = 0; 356 357 for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) { 358 skb = *(qi->skbuff_vector + skb_index); 359 /* mark as empty to ensure correct destruction if 360 * needed 361 */ 362 bytes_compl += skb->len; 363 *(qi->skbuff_vector + skb_index) = NULL; 364 dev_consume_skb_any(skb); 365 } 366 qi->dev->stats.tx_bytes += bytes_compl; 367 qi->dev->stats.tx_packets += count; 368 netdev_completed_queue(qi->dev, count, bytes_compl); 369 return vector_advancehead(qi, count); 370 } 371 372 /* 373 * Generic vector deque via sendmmsg with support for forming headers 374 * using transport specific callback. Allows GRE, L2TPv3, RAW and 375 * other transports to use a common dequeue procedure in vector mode 376 */ 377 378 379 static int vector_send(struct vector_queue *qi) 380 { 381 struct vector_private *vp = netdev_priv(qi->dev); 382 struct mmsghdr *send_from; 383 int result = 0, send_len, queue_depth = qi->max_depth; 384 385 if (spin_trylock(&qi->head_lock)) { 386 if (spin_trylock(&qi->tail_lock)) { 387 /* update queue_depth to current value */ 388 queue_depth = qi->queue_depth; 389 spin_unlock(&qi->tail_lock); 390 while (queue_depth > 0) { 391 /* Calculate the start of the vector */ 392 send_len = queue_depth; 393 send_from = qi->mmsg_vector; 394 send_from += qi->head; 395 /* Adjust vector size if wraparound */ 396 if (send_len + qi->head > qi->max_depth) 397 send_len = qi->max_depth - qi->head; 398 /* Try to TX as many packets as possible */ 399 if (send_len > 0) { 400 result = uml_vector_sendmmsg( 401 vp->fds->tx_fd, 402 send_from, 403 send_len, 404 0 405 ); 406 vp->in_write_poll = 407 (result != send_len); 408 } 409 /* For some of the sendmmsg error scenarios 410 * we may end being unsure in the TX success 411 * for all packets. It is safer to declare 412 * them all TX-ed and blame the network. 413 */ 414 if (result < 0) { 415 if (net_ratelimit()) 416 netdev_err(vp->dev, "sendmmsg err=%i\n", 417 result); 418 result = send_len; 419 } 420 if (result > 0) { 421 queue_depth = 422 consume_vector_skbs(qi, result); 423 /* This is equivalent to an TX IRQ. 424 * Restart the upper layers to feed us 425 * more packets. 426 */ 427 if (result > vp->estats.tx_queue_max) 428 vp->estats.tx_queue_max = result; 429 vp->estats.tx_queue_running_average = 430 (vp->estats.tx_queue_running_average + result) >> 1; 431 } 432 netif_trans_update(qi->dev); 433 netif_wake_queue(qi->dev); 434 /* if TX is busy, break out of the send loop, 435 * poll write IRQ will reschedule xmit for us 436 */ 437 if (result != send_len) { 438 vp->estats.tx_restart_queue++; 439 break; 440 } 441 } 442 } 443 spin_unlock(&qi->head_lock); 444 } else { 445 tasklet_schedule(&vp->tx_poll); 446 } 447 return queue_depth; 448 } 449 450 /* Queue destructor. Deliberately stateless so we can use 451 * it in queue cleanup if initialization fails. 452 */ 453 454 static void destroy_queue(struct vector_queue *qi) 455 { 456 int i; 457 struct iovec *iov; 458 struct vector_private *vp = netdev_priv(qi->dev); 459 struct mmsghdr *mmsg_vector; 460 461 if (qi == NULL) 462 return; 463 /* deallocate any skbuffs - we rely on any unused to be 464 * set to NULL. 465 */ 466 if (qi->skbuff_vector != NULL) { 467 for (i = 0; i < qi->max_depth; i++) { 468 if (*(qi->skbuff_vector + i) != NULL) 469 dev_kfree_skb_any(*(qi->skbuff_vector + i)); 470 } 471 kfree(qi->skbuff_vector); 472 } 473 /* deallocate matching IOV structures including header buffs */ 474 if (qi->mmsg_vector != NULL) { 475 mmsg_vector = qi->mmsg_vector; 476 for (i = 0; i < qi->max_depth; i++) { 477 iov = mmsg_vector->msg_hdr.msg_iov; 478 if (iov != NULL) { 479 if ((vp->header_size > 0) && 480 (iov->iov_base != NULL)) 481 kfree(iov->iov_base); 482 kfree(iov); 483 } 484 mmsg_vector++; 485 } 486 kfree(qi->mmsg_vector); 487 } 488 kfree(qi); 489 } 490 491 /* 492 * Queue constructor. Create a queue with a given side. 493 */ 494 static struct vector_queue *create_queue( 495 struct vector_private *vp, 496 int max_size, 497 int header_size, 498 int num_extra_frags) 499 { 500 struct vector_queue *result; 501 int i; 502 struct iovec *iov; 503 struct mmsghdr *mmsg_vector; 504 505 result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL); 506 if (result == NULL) 507 goto out_fail; 508 result->max_depth = max_size; 509 result->dev = vp->dev; 510 result->mmsg_vector = kmalloc( 511 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL); 512 result->skbuff_vector = kmalloc( 513 (sizeof(void *) * max_size), GFP_KERNEL); 514 if (result->mmsg_vector == NULL || result->skbuff_vector == NULL) 515 goto out_fail; 516 517 mmsg_vector = result->mmsg_vector; 518 for (i = 0; i < max_size; i++) { 519 /* Clear all pointers - we use non-NULL as marking on 520 * what to free on destruction 521 */ 522 *(result->skbuff_vector + i) = NULL; 523 mmsg_vector->msg_hdr.msg_iov = NULL; 524 mmsg_vector++; 525 } 526 mmsg_vector = result->mmsg_vector; 527 result->max_iov_frags = num_extra_frags; 528 for (i = 0; i < max_size; i++) { 529 if (vp->header_size > 0) 530 iov = kmalloc( 531 sizeof(struct iovec) * (3 + num_extra_frags), 532 GFP_KERNEL 533 ); 534 else 535 iov = kmalloc( 536 sizeof(struct iovec) * (2 + num_extra_frags), 537 GFP_KERNEL 538 ); 539 if (iov == NULL) 540 goto out_fail; 541 mmsg_vector->msg_hdr.msg_iov = iov; 542 mmsg_vector->msg_hdr.msg_iovlen = 1; 543 mmsg_vector->msg_hdr.msg_control = NULL; 544 mmsg_vector->msg_hdr.msg_controllen = 0; 545 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT; 546 mmsg_vector->msg_hdr.msg_name = NULL; 547 mmsg_vector->msg_hdr.msg_namelen = 0; 548 if (vp->header_size > 0) { 549 iov->iov_base = kmalloc(header_size, GFP_KERNEL); 550 if (iov->iov_base == NULL) 551 goto out_fail; 552 iov->iov_len = header_size; 553 mmsg_vector->msg_hdr.msg_iovlen = 2; 554 iov++; 555 } 556 iov->iov_base = NULL; 557 iov->iov_len = 0; 558 mmsg_vector++; 559 } 560 spin_lock_init(&result->head_lock); 561 spin_lock_init(&result->tail_lock); 562 result->queue_depth = 0; 563 result->head = 0; 564 result->tail = 0; 565 return result; 566 out_fail: 567 destroy_queue(result); 568 return NULL; 569 } 570 571 /* 572 * We do not use the RX queue as a proper wraparound queue for now 573 * This is not necessary because the consumption via netif_rx() 574 * happens in-line. While we can try using the return code of 575 * netif_rx() for flow control there are no drivers doing this today. 576 * For this RX specific use we ignore the tail/head locks and 577 * just read into a prepared queue filled with skbuffs. 578 */ 579 580 static struct sk_buff *prep_skb( 581 struct vector_private *vp, 582 struct user_msghdr *msg) 583 { 584 int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN; 585 struct sk_buff *result; 586 int iov_index = 0, len; 587 struct iovec *iov = msg->msg_iov; 588 int err, nr_frags, frag; 589 skb_frag_t *skb_frag; 590 591 if (vp->req_size <= linear) 592 len = linear; 593 else 594 len = vp->req_size; 595 result = alloc_skb_with_frags( 596 linear, 597 len - vp->max_packet, 598 3, 599 &err, 600 GFP_ATOMIC 601 ); 602 if (vp->header_size > 0) 603 iov_index++; 604 if (result == NULL) { 605 iov[iov_index].iov_base = NULL; 606 iov[iov_index].iov_len = 0; 607 goto done; 608 } 609 skb_reserve(result, vp->headroom); 610 result->dev = vp->dev; 611 skb_put(result, vp->max_packet); 612 result->data_len = len - vp->max_packet; 613 result->len += len - vp->max_packet; 614 skb_reset_mac_header(result); 615 result->ip_summed = CHECKSUM_NONE; 616 iov[iov_index].iov_base = result->data; 617 iov[iov_index].iov_len = vp->max_packet; 618 iov_index++; 619 620 nr_frags = skb_shinfo(result)->nr_frags; 621 for (frag = 0; frag < nr_frags; frag++) { 622 skb_frag = &skb_shinfo(result)->frags[frag]; 623 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); 624 if (iov[iov_index].iov_base != NULL) 625 iov[iov_index].iov_len = skb_frag_size(skb_frag); 626 else 627 iov[iov_index].iov_len = 0; 628 iov_index++; 629 } 630 done: 631 msg->msg_iovlen = iov_index; 632 return result; 633 } 634 635 636 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/ 637 638 static void prep_queue_for_rx(struct vector_queue *qi) 639 { 640 struct vector_private *vp = netdev_priv(qi->dev); 641 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 642 void **skbuff_vector = qi->skbuff_vector; 643 int i; 644 645 if (qi->queue_depth == 0) 646 return; 647 for (i = 0; i < qi->queue_depth; i++) { 648 /* it is OK if allocation fails - recvmmsg with NULL data in 649 * iov argument still performs an RX, just drops the packet 650 * This allows us stop faffing around with a "drop buffer" 651 */ 652 653 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr); 654 skbuff_vector++; 655 mmsg_vector++; 656 } 657 qi->queue_depth = 0; 658 } 659 660 static struct vector_device *find_device(int n) 661 { 662 struct vector_device *device; 663 struct list_head *ele; 664 665 spin_lock(&vector_devices_lock); 666 list_for_each(ele, &vector_devices) { 667 device = list_entry(ele, struct vector_device, list); 668 if (device->unit == n) 669 goto out; 670 } 671 device = NULL; 672 out: 673 spin_unlock(&vector_devices_lock); 674 return device; 675 } 676 677 static int vector_parse(char *str, int *index_out, char **str_out, 678 char **error_out) 679 { 680 int n, len, err; 681 char *start = str; 682 683 len = strlen(str); 684 685 while ((*str != ':') && (strlen(str) > 1)) 686 str++; 687 if (*str != ':') { 688 *error_out = "Expected ':' after device number"; 689 return -EINVAL; 690 } 691 *str = '\0'; 692 693 err = kstrtouint(start, 0, &n); 694 if (err < 0) { 695 *error_out = "Bad device number"; 696 return err; 697 } 698 699 str++; 700 if (find_device(n)) { 701 *error_out = "Device already configured"; 702 return -EINVAL; 703 } 704 705 *index_out = n; 706 *str_out = str; 707 return 0; 708 } 709 710 static int vector_config(char *str, char **error_out) 711 { 712 int err, n; 713 char *params; 714 struct arglist *parsed; 715 716 err = vector_parse(str, &n, ¶ms, error_out); 717 if (err != 0) 718 return err; 719 720 /* This string is broken up and the pieces used by the underlying 721 * driver. We should copy it to make sure things do not go wrong 722 * later. 723 */ 724 725 params = kstrdup(params, GFP_KERNEL); 726 if (params == NULL) { 727 *error_out = "vector_config failed to strdup string"; 728 return -ENOMEM; 729 } 730 731 parsed = uml_parse_vector_ifspec(params); 732 733 if (parsed == NULL) { 734 *error_out = "vector_config failed to parse parameters"; 735 return -EINVAL; 736 } 737 738 vector_eth_configure(n, parsed); 739 return 0; 740 } 741 742 static int vector_id(char **str, int *start_out, int *end_out) 743 { 744 char *end; 745 int n; 746 747 n = simple_strtoul(*str, &end, 0); 748 if ((*end != '\0') || (end == *str)) 749 return -1; 750 751 *start_out = n; 752 *end_out = n; 753 *str = end; 754 return n; 755 } 756 757 static int vector_remove(int n, char **error_out) 758 { 759 struct vector_device *vec_d; 760 struct net_device *dev; 761 struct vector_private *vp; 762 763 vec_d = find_device(n); 764 if (vec_d == NULL) 765 return -ENODEV; 766 dev = vec_d->dev; 767 vp = netdev_priv(dev); 768 if (vp->fds != NULL) 769 return -EBUSY; 770 unregister_netdev(dev); 771 platform_device_unregister(&vec_d->pdev); 772 return 0; 773 } 774 775 /* 776 * There is no shared per-transport initialization code, so 777 * we will just initialize each interface one by one and 778 * add them to a list 779 */ 780 781 static struct platform_driver uml_net_driver = { 782 .driver = { 783 .name = DRIVER_NAME, 784 }, 785 }; 786 787 788 static void vector_device_release(struct device *dev) 789 { 790 struct vector_device *device = dev_get_drvdata(dev); 791 struct net_device *netdev = device->dev; 792 793 list_del(&device->list); 794 kfree(device); 795 free_netdev(netdev); 796 } 797 798 /* Bog standard recv using recvmsg - not used normally unless the user 799 * explicitly specifies not to use recvmmsg vector RX. 800 */ 801 802 static int vector_legacy_rx(struct vector_private *vp) 803 { 804 int pkt_len; 805 struct user_msghdr hdr; 806 struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */ 807 int iovpos = 0; 808 struct sk_buff *skb; 809 int header_check; 810 811 hdr.msg_name = NULL; 812 hdr.msg_namelen = 0; 813 hdr.msg_iov = (struct iovec *) &iov; 814 hdr.msg_control = NULL; 815 hdr.msg_controllen = 0; 816 hdr.msg_flags = 0; 817 818 if (vp->header_size > 0) { 819 iov[0].iov_base = vp->header_rxbuffer; 820 iov[0].iov_len = vp->header_size; 821 } 822 823 skb = prep_skb(vp, &hdr); 824 825 if (skb == NULL) { 826 /* Read a packet into drop_buffer and don't do 827 * anything with it. 828 */ 829 iov[iovpos].iov_base = drop_buffer; 830 iov[iovpos].iov_len = DROP_BUFFER_SIZE; 831 hdr.msg_iovlen = 1; 832 vp->dev->stats.rx_dropped++; 833 } 834 835 pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0); 836 837 if (skb != NULL) { 838 if (pkt_len > vp->header_size) { 839 if (vp->header_size > 0) { 840 header_check = vp->verify_header( 841 vp->header_rxbuffer, skb, vp); 842 if (header_check < 0) { 843 dev_kfree_skb_irq(skb); 844 vp->dev->stats.rx_dropped++; 845 vp->estats.rx_encaps_errors++; 846 return 0; 847 } 848 if (header_check > 0) { 849 vp->estats.rx_csum_offload_good++; 850 skb->ip_summed = CHECKSUM_UNNECESSARY; 851 } 852 } 853 pskb_trim(skb, pkt_len - vp->rx_header_size); 854 skb->protocol = eth_type_trans(skb, skb->dev); 855 vp->dev->stats.rx_bytes += skb->len; 856 vp->dev->stats.rx_packets++; 857 netif_rx(skb); 858 } else { 859 dev_kfree_skb_irq(skb); 860 } 861 } 862 return pkt_len; 863 } 864 865 /* 866 * Packet at a time TX which falls back to vector TX if the 867 * underlying transport is busy. 868 */ 869 870 871 872 static int writev_tx(struct vector_private *vp, struct sk_buff *skb) 873 { 874 struct iovec iov[3 + MAX_IOV_SIZE]; 875 int iov_count, pkt_len = 0; 876 877 iov[0].iov_base = vp->header_txbuffer; 878 iov_count = prep_msg(vp, skb, (struct iovec *) &iov); 879 880 if (iov_count < 1) 881 goto drop; 882 pkt_len = uml_vector_writev( 883 vp->fds->tx_fd, 884 (struct iovec *) &iov, 885 iov_count 886 ); 887 888 netif_trans_update(vp->dev); 889 netif_wake_queue(vp->dev); 890 891 if (pkt_len > 0) { 892 vp->dev->stats.tx_bytes += skb->len; 893 vp->dev->stats.tx_packets++; 894 } else { 895 vp->dev->stats.tx_dropped++; 896 } 897 consume_skb(skb); 898 return pkt_len; 899 drop: 900 vp->dev->stats.tx_dropped++; 901 consume_skb(skb); 902 return pkt_len; 903 } 904 905 /* 906 * Receive as many messages as we can in one call using the special 907 * mmsg vector matched to an skb vector which we prepared earlier. 908 */ 909 910 static int vector_mmsg_rx(struct vector_private *vp) 911 { 912 int packet_count, i; 913 struct vector_queue *qi = vp->rx_queue; 914 struct sk_buff *skb; 915 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 916 void **skbuff_vector = qi->skbuff_vector; 917 int header_check; 918 919 /* Refresh the vector and make sure it is with new skbs and the 920 * iovs are updated to point to them. 921 */ 922 923 prep_queue_for_rx(qi); 924 925 /* Fire the Lazy Gun - get as many packets as we can in one go. */ 926 927 packet_count = uml_vector_recvmmsg( 928 vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0); 929 930 if (packet_count <= 0) 931 return packet_count; 932 933 /* We treat packet processing as enqueue, buffer refresh as dequeue 934 * The queue_depth tells us how many buffers have been used and how 935 * many do we need to prep the next time prep_queue_for_rx() is called. 936 */ 937 938 qi->queue_depth = packet_count; 939 940 for (i = 0; i < packet_count; i++) { 941 skb = (*skbuff_vector); 942 if (mmsg_vector->msg_len > vp->header_size) { 943 if (vp->header_size > 0) { 944 header_check = vp->verify_header( 945 mmsg_vector->msg_hdr.msg_iov->iov_base, 946 skb, 947 vp 948 ); 949 if (header_check < 0) { 950 /* Overlay header failed to verify - discard. 951 * We can actually keep this skb and reuse it, 952 * but that will make the prep logic too 953 * complex. 954 */ 955 dev_kfree_skb_irq(skb); 956 vp->estats.rx_encaps_errors++; 957 continue; 958 } 959 if (header_check > 0) { 960 vp->estats.rx_csum_offload_good++; 961 skb->ip_summed = CHECKSUM_UNNECESSARY; 962 } 963 } 964 pskb_trim(skb, 965 mmsg_vector->msg_len - vp->rx_header_size); 966 skb->protocol = eth_type_trans(skb, skb->dev); 967 /* 968 * We do not need to lock on updating stats here 969 * The interrupt loop is non-reentrant. 970 */ 971 vp->dev->stats.rx_bytes += skb->len; 972 vp->dev->stats.rx_packets++; 973 netif_rx(skb); 974 } else { 975 /* Overlay header too short to do anything - discard. 976 * We can actually keep this skb and reuse it, 977 * but that will make the prep logic too complex. 978 */ 979 if (skb != NULL) 980 dev_kfree_skb_irq(skb); 981 } 982 (*skbuff_vector) = NULL; 983 /* Move to the next buffer element */ 984 mmsg_vector++; 985 skbuff_vector++; 986 } 987 if (packet_count > 0) { 988 if (vp->estats.rx_queue_max < packet_count) 989 vp->estats.rx_queue_max = packet_count; 990 vp->estats.rx_queue_running_average = 991 (vp->estats.rx_queue_running_average + packet_count) >> 1; 992 } 993 return packet_count; 994 } 995 996 static void vector_rx(struct vector_private *vp) 997 { 998 int err; 999 1000 if ((vp->options & VECTOR_RX) > 0) 1001 while ((err = vector_mmsg_rx(vp)) > 0) 1002 ; 1003 else 1004 while ((err = vector_legacy_rx(vp)) > 0) 1005 ; 1006 if ((err != 0) && net_ratelimit()) 1007 netdev_err(vp->dev, "vector_rx: error(%d)\n", err); 1008 } 1009 1010 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev) 1011 { 1012 struct vector_private *vp = netdev_priv(dev); 1013 int queue_depth = 0; 1014 1015 if ((vp->options & VECTOR_TX) == 0) { 1016 writev_tx(vp, skb); 1017 return NETDEV_TX_OK; 1018 } 1019 1020 /* We do BQL only in the vector path, no point doing it in 1021 * packet at a time mode as there is no device queue 1022 */ 1023 1024 netdev_sent_queue(vp->dev, skb->len); 1025 queue_depth = vector_enqueue(vp->tx_queue, skb); 1026 1027 /* if the device queue is full, stop the upper layers and 1028 * flush it. 1029 */ 1030 1031 if (queue_depth >= vp->tx_queue->max_depth - 1) { 1032 vp->estats.tx_kicks++; 1033 netif_stop_queue(dev); 1034 vector_send(vp->tx_queue); 1035 return NETDEV_TX_OK; 1036 } 1037 if (skb->xmit_more) { 1038 mod_timer(&vp->tl, vp->coalesce); 1039 return NETDEV_TX_OK; 1040 } 1041 if (skb->len < TX_SMALL_PACKET) { 1042 vp->estats.tx_kicks++; 1043 vector_send(vp->tx_queue); 1044 } else 1045 tasklet_schedule(&vp->tx_poll); 1046 return NETDEV_TX_OK; 1047 } 1048 1049 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id) 1050 { 1051 struct net_device *dev = dev_id; 1052 struct vector_private *vp = netdev_priv(dev); 1053 1054 if (!netif_running(dev)) 1055 return IRQ_NONE; 1056 vector_rx(vp); 1057 return IRQ_HANDLED; 1058 1059 } 1060 1061 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id) 1062 { 1063 struct net_device *dev = dev_id; 1064 struct vector_private *vp = netdev_priv(dev); 1065 1066 if (!netif_running(dev)) 1067 return IRQ_NONE; 1068 /* We need to pay attention to it only if we got 1069 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise 1070 * we ignore it. In the future, it may be worth 1071 * it to improve the IRQ controller a bit to make 1072 * tweaking the IRQ mask less costly 1073 */ 1074 1075 if (vp->in_write_poll) 1076 tasklet_schedule(&vp->tx_poll); 1077 return IRQ_HANDLED; 1078 1079 } 1080 1081 static int irq_rr; 1082 1083 static int vector_net_close(struct net_device *dev) 1084 { 1085 struct vector_private *vp = netdev_priv(dev); 1086 unsigned long flags; 1087 1088 netif_stop_queue(dev); 1089 del_timer(&vp->tl); 1090 1091 if (vp->fds == NULL) 1092 return 0; 1093 1094 /* Disable and free all IRQS */ 1095 if (vp->rx_irq > 0) { 1096 um_free_irq(vp->rx_irq, dev); 1097 vp->rx_irq = 0; 1098 } 1099 if (vp->tx_irq > 0) { 1100 um_free_irq(vp->tx_irq, dev); 1101 vp->tx_irq = 0; 1102 } 1103 tasklet_kill(&vp->tx_poll); 1104 if (vp->fds->rx_fd > 0) { 1105 os_close_file(vp->fds->rx_fd); 1106 vp->fds->rx_fd = -1; 1107 } 1108 if (vp->fds->tx_fd > 0) { 1109 os_close_file(vp->fds->tx_fd); 1110 vp->fds->tx_fd = -1; 1111 } 1112 if (vp->bpf != NULL) 1113 kfree(vp->bpf); 1114 if (vp->fds->remote_addr != NULL) 1115 kfree(vp->fds->remote_addr); 1116 if (vp->transport_data != NULL) 1117 kfree(vp->transport_data); 1118 if (vp->header_rxbuffer != NULL) 1119 kfree(vp->header_rxbuffer); 1120 if (vp->header_txbuffer != NULL) 1121 kfree(vp->header_txbuffer); 1122 if (vp->rx_queue != NULL) 1123 destroy_queue(vp->rx_queue); 1124 if (vp->tx_queue != NULL) 1125 destroy_queue(vp->tx_queue); 1126 kfree(vp->fds); 1127 vp->fds = NULL; 1128 spin_lock_irqsave(&vp->lock, flags); 1129 vp->opened = false; 1130 spin_unlock_irqrestore(&vp->lock, flags); 1131 return 0; 1132 } 1133 1134 /* TX tasklet */ 1135 1136 static void vector_tx_poll(unsigned long data) 1137 { 1138 struct vector_private *vp = (struct vector_private *)data; 1139 1140 vp->estats.tx_kicks++; 1141 vector_send(vp->tx_queue); 1142 } 1143 static void vector_reset_tx(struct work_struct *work) 1144 { 1145 struct vector_private *vp = 1146 container_of(work, struct vector_private, reset_tx); 1147 netdev_reset_queue(vp->dev); 1148 netif_start_queue(vp->dev); 1149 netif_wake_queue(vp->dev); 1150 } 1151 static int vector_net_open(struct net_device *dev) 1152 { 1153 struct vector_private *vp = netdev_priv(dev); 1154 unsigned long flags; 1155 int err = -EINVAL; 1156 struct vector_device *vdevice; 1157 1158 spin_lock_irqsave(&vp->lock, flags); 1159 if (vp->opened) { 1160 spin_unlock_irqrestore(&vp->lock, flags); 1161 return -ENXIO; 1162 } 1163 vp->opened = true; 1164 spin_unlock_irqrestore(&vp->lock, flags); 1165 1166 vp->fds = uml_vector_user_open(vp->unit, vp->parsed); 1167 1168 if (vp->fds == NULL) 1169 goto out_close; 1170 1171 if (build_transport_data(vp) < 0) 1172 goto out_close; 1173 1174 if ((vp->options & VECTOR_RX) > 0) { 1175 vp->rx_queue = create_queue( 1176 vp, 1177 get_depth(vp->parsed), 1178 vp->rx_header_size, 1179 MAX_IOV_SIZE 1180 ); 1181 vp->rx_queue->queue_depth = get_depth(vp->parsed); 1182 } else { 1183 vp->header_rxbuffer = kmalloc( 1184 vp->rx_header_size, 1185 GFP_KERNEL 1186 ); 1187 if (vp->header_rxbuffer == NULL) 1188 goto out_close; 1189 } 1190 if ((vp->options & VECTOR_TX) > 0) { 1191 vp->tx_queue = create_queue( 1192 vp, 1193 get_depth(vp->parsed), 1194 vp->header_size, 1195 MAX_IOV_SIZE 1196 ); 1197 } else { 1198 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL); 1199 if (vp->header_txbuffer == NULL) 1200 goto out_close; 1201 } 1202 1203 /* READ IRQ */ 1204 err = um_request_irq( 1205 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd, 1206 IRQ_READ, vector_rx_interrupt, 1207 IRQF_SHARED, dev->name, dev); 1208 if (err != 0) { 1209 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err); 1210 err = -ENETUNREACH; 1211 goto out_close; 1212 } 1213 vp->rx_irq = irq_rr + VECTOR_BASE_IRQ; 1214 dev->irq = irq_rr + VECTOR_BASE_IRQ; 1215 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; 1216 1217 /* WRITE IRQ - we need it only if we have vector TX */ 1218 if ((vp->options & VECTOR_TX) > 0) { 1219 err = um_request_irq( 1220 irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd, 1221 IRQ_WRITE, vector_tx_interrupt, 1222 IRQF_SHARED, dev->name, dev); 1223 if (err != 0) { 1224 netdev_err(dev, 1225 "vector_open: failed to get tx irq(%d)\n", err); 1226 err = -ENETUNREACH; 1227 goto out_close; 1228 } 1229 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ; 1230 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; 1231 } 1232 1233 if ((vp->options & VECTOR_QDISC_BYPASS) != 0) { 1234 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd)) 1235 vp->options = vp->options | VECTOR_BPF; 1236 } 1237 1238 if ((vp->options & VECTOR_BPF) != 0) 1239 vp->bpf = uml_vector_default_bpf(vp->fds->rx_fd, dev->dev_addr); 1240 1241 netif_start_queue(dev); 1242 1243 /* clear buffer - it can happen that the host side of the interface 1244 * is full when we get here. In this case, new data is never queued, 1245 * SIGIOs never arrive, and the net never works. 1246 */ 1247 1248 vector_rx(vp); 1249 1250 vector_reset_stats(vp); 1251 vdevice = find_device(vp->unit); 1252 vdevice->opened = 1; 1253 1254 if ((vp->options & VECTOR_TX) != 0) 1255 add_timer(&vp->tl); 1256 return 0; 1257 out_close: 1258 vector_net_close(dev); 1259 return err; 1260 } 1261 1262 1263 static void vector_net_set_multicast_list(struct net_device *dev) 1264 { 1265 /* TODO: - we can do some BPF games here */ 1266 return; 1267 } 1268 1269 static void vector_net_tx_timeout(struct net_device *dev) 1270 { 1271 struct vector_private *vp = netdev_priv(dev); 1272 1273 vp->estats.tx_timeout_count++; 1274 netif_trans_update(dev); 1275 schedule_work(&vp->reset_tx); 1276 } 1277 1278 static netdev_features_t vector_fix_features(struct net_device *dev, 1279 netdev_features_t features) 1280 { 1281 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 1282 return features; 1283 } 1284 1285 static int vector_set_features(struct net_device *dev, 1286 netdev_features_t features) 1287 { 1288 struct vector_private *vp = netdev_priv(dev); 1289 /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is 1290 * no way to negotiate it on raw sockets, so we can change 1291 * only our side. 1292 */ 1293 if (features & NETIF_F_GRO) 1294 /* All new frame buffers will be GRO-sized */ 1295 vp->req_size = 65536; 1296 else 1297 /* All new frame buffers will be normal sized */ 1298 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN; 1299 return 0; 1300 } 1301 1302 #ifdef CONFIG_NET_POLL_CONTROLLER 1303 static void vector_net_poll_controller(struct net_device *dev) 1304 { 1305 disable_irq(dev->irq); 1306 vector_rx_interrupt(dev->irq, dev); 1307 enable_irq(dev->irq); 1308 } 1309 #endif 1310 1311 static void vector_net_get_drvinfo(struct net_device *dev, 1312 struct ethtool_drvinfo *info) 1313 { 1314 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver)); 1315 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version)); 1316 } 1317 1318 static void vector_get_ringparam(struct net_device *netdev, 1319 struct ethtool_ringparam *ring) 1320 { 1321 struct vector_private *vp = netdev_priv(netdev); 1322 1323 ring->rx_max_pending = vp->rx_queue->max_depth; 1324 ring->tx_max_pending = vp->tx_queue->max_depth; 1325 ring->rx_pending = vp->rx_queue->max_depth; 1326 ring->tx_pending = vp->tx_queue->max_depth; 1327 } 1328 1329 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf) 1330 { 1331 switch (stringset) { 1332 case ETH_SS_TEST: 1333 *buf = '\0'; 1334 break; 1335 case ETH_SS_STATS: 1336 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 1337 break; 1338 default: 1339 WARN_ON(1); 1340 break; 1341 } 1342 } 1343 1344 static int vector_get_sset_count(struct net_device *dev, int sset) 1345 { 1346 switch (sset) { 1347 case ETH_SS_TEST: 1348 return 0; 1349 case ETH_SS_STATS: 1350 return VECTOR_NUM_STATS; 1351 default: 1352 return -EOPNOTSUPP; 1353 } 1354 } 1355 1356 static void vector_get_ethtool_stats(struct net_device *dev, 1357 struct ethtool_stats *estats, 1358 u64 *tmp_stats) 1359 { 1360 struct vector_private *vp = netdev_priv(dev); 1361 1362 memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats)); 1363 } 1364 1365 static int vector_get_coalesce(struct net_device *netdev, 1366 struct ethtool_coalesce *ec) 1367 { 1368 struct vector_private *vp = netdev_priv(netdev); 1369 1370 ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ; 1371 return 0; 1372 } 1373 1374 static int vector_set_coalesce(struct net_device *netdev, 1375 struct ethtool_coalesce *ec) 1376 { 1377 struct vector_private *vp = netdev_priv(netdev); 1378 1379 vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000; 1380 if (vp->coalesce == 0) 1381 vp->coalesce = 1; 1382 return 0; 1383 } 1384 1385 static const struct ethtool_ops vector_net_ethtool_ops = { 1386 .get_drvinfo = vector_net_get_drvinfo, 1387 .get_link = ethtool_op_get_link, 1388 .get_ts_info = ethtool_op_get_ts_info, 1389 .get_ringparam = vector_get_ringparam, 1390 .get_strings = vector_get_strings, 1391 .get_sset_count = vector_get_sset_count, 1392 .get_ethtool_stats = vector_get_ethtool_stats, 1393 .get_coalesce = vector_get_coalesce, 1394 .set_coalesce = vector_set_coalesce, 1395 }; 1396 1397 1398 static const struct net_device_ops vector_netdev_ops = { 1399 .ndo_open = vector_net_open, 1400 .ndo_stop = vector_net_close, 1401 .ndo_start_xmit = vector_net_start_xmit, 1402 .ndo_set_rx_mode = vector_net_set_multicast_list, 1403 .ndo_tx_timeout = vector_net_tx_timeout, 1404 .ndo_set_mac_address = eth_mac_addr, 1405 .ndo_validate_addr = eth_validate_addr, 1406 .ndo_fix_features = vector_fix_features, 1407 .ndo_set_features = vector_set_features, 1408 #ifdef CONFIG_NET_POLL_CONTROLLER 1409 .ndo_poll_controller = vector_net_poll_controller, 1410 #endif 1411 }; 1412 1413 1414 static void vector_timer_expire(struct timer_list *t) 1415 { 1416 struct vector_private *vp = from_timer(vp, t, tl); 1417 1418 vp->estats.tx_kicks++; 1419 vector_send(vp->tx_queue); 1420 } 1421 1422 static void vector_eth_configure( 1423 int n, 1424 struct arglist *def 1425 ) 1426 { 1427 struct vector_device *device; 1428 struct net_device *dev; 1429 struct vector_private *vp; 1430 int err; 1431 1432 device = kzalloc(sizeof(*device), GFP_KERNEL); 1433 if (device == NULL) { 1434 printk(KERN_ERR "eth_configure failed to allocate struct " 1435 "vector_device\n"); 1436 return; 1437 } 1438 dev = alloc_etherdev(sizeof(struct vector_private)); 1439 if (dev == NULL) { 1440 printk(KERN_ERR "eth_configure: failed to allocate struct " 1441 "net_device for vec%d\n", n); 1442 goto out_free_device; 1443 } 1444 1445 dev->mtu = get_mtu(def); 1446 1447 INIT_LIST_HEAD(&device->list); 1448 device->unit = n; 1449 1450 /* If this name ends up conflicting with an existing registered 1451 * netdevice, that is OK, register_netdev{,ice}() will notice this 1452 * and fail. 1453 */ 1454 snprintf(dev->name, sizeof(dev->name), "vec%d", n); 1455 uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac")); 1456 vp = netdev_priv(dev); 1457 1458 /* sysfs register */ 1459 if (!driver_registered) { 1460 platform_driver_register(¨_net_driver); 1461 driver_registered = 1; 1462 } 1463 device->pdev.id = n; 1464 device->pdev.name = DRIVER_NAME; 1465 device->pdev.dev.release = vector_device_release; 1466 dev_set_drvdata(&device->pdev.dev, device); 1467 if (platform_device_register(&device->pdev)) 1468 goto out_free_netdev; 1469 SET_NETDEV_DEV(dev, &device->pdev.dev); 1470 1471 device->dev = dev; 1472 1473 *vp = ((struct vector_private) 1474 { 1475 .list = LIST_HEAD_INIT(vp->list), 1476 .dev = dev, 1477 .unit = n, 1478 .options = get_transport_options(def), 1479 .rx_irq = 0, 1480 .tx_irq = 0, 1481 .parsed = def, 1482 .max_packet = get_mtu(def) + ETH_HEADER_OTHER, 1483 /* TODO - we need to calculate headroom so that ip header 1484 * is 16 byte aligned all the time 1485 */ 1486 .headroom = get_headroom(def), 1487 .form_header = NULL, 1488 .verify_header = NULL, 1489 .header_rxbuffer = NULL, 1490 .header_txbuffer = NULL, 1491 .header_size = 0, 1492 .rx_header_size = 0, 1493 .rexmit_scheduled = false, 1494 .opened = false, 1495 .transport_data = NULL, 1496 .in_write_poll = false, 1497 .coalesce = 2, 1498 .req_size = get_req_size(def) 1499 }); 1500 1501 dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST); 1502 tasklet_init(&vp->tx_poll, vector_tx_poll, (unsigned long)vp); 1503 INIT_WORK(&vp->reset_tx, vector_reset_tx); 1504 1505 timer_setup(&vp->tl, vector_timer_expire, 0); 1506 spin_lock_init(&vp->lock); 1507 1508 /* FIXME */ 1509 dev->netdev_ops = &vector_netdev_ops; 1510 dev->ethtool_ops = &vector_net_ethtool_ops; 1511 dev->watchdog_timeo = (HZ >> 1); 1512 /* primary IRQ - fixme */ 1513 dev->irq = 0; /* we will adjust this once opened */ 1514 1515 rtnl_lock(); 1516 err = register_netdevice(dev); 1517 rtnl_unlock(); 1518 if (err) 1519 goto out_undo_user_init; 1520 1521 spin_lock(&vector_devices_lock); 1522 list_add(&device->list, &vector_devices); 1523 spin_unlock(&vector_devices_lock); 1524 1525 return; 1526 1527 out_undo_user_init: 1528 return; 1529 out_free_netdev: 1530 free_netdev(dev); 1531 out_free_device: 1532 kfree(device); 1533 } 1534 1535 1536 1537 1538 /* 1539 * Invoked late in the init 1540 */ 1541 1542 static int __init vector_init(void) 1543 { 1544 struct list_head *ele; 1545 struct vector_cmd_line_arg *def; 1546 struct arglist *parsed; 1547 1548 list_for_each(ele, &vec_cmd_line) { 1549 def = list_entry(ele, struct vector_cmd_line_arg, list); 1550 parsed = uml_parse_vector_ifspec(def->arguments); 1551 if (parsed != NULL) 1552 vector_eth_configure(def->unit, parsed); 1553 } 1554 return 0; 1555 } 1556 1557 1558 /* Invoked at initial argument parsing, only stores 1559 * arguments until a proper vector_init is called 1560 * later 1561 */ 1562 1563 static int __init vector_setup(char *str) 1564 { 1565 char *error; 1566 int n, err; 1567 struct vector_cmd_line_arg *new; 1568 1569 err = vector_parse(str, &n, &str, &error); 1570 if (err) { 1571 printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n", 1572 str, error); 1573 return 1; 1574 } 1575 new = alloc_bootmem(sizeof(*new)); 1576 INIT_LIST_HEAD(&new->list); 1577 new->unit = n; 1578 new->arguments = str; 1579 list_add_tail(&new->list, &vec_cmd_line); 1580 return 1; 1581 } 1582 1583 __setup("vec", vector_setup); 1584 __uml_help(vector_setup, 1585 "vec[0-9]+:<option>=<value>,<option>=<value>\n" 1586 " Configure a vector io network device.\n\n" 1587 ); 1588 1589 late_initcall(vector_init); 1590 1591 static struct mc_device vector_mc = { 1592 .list = LIST_HEAD_INIT(vector_mc.list), 1593 .name = "vec", 1594 .config = vector_config, 1595 .get_config = NULL, 1596 .id = vector_id, 1597 .remove = vector_remove, 1598 }; 1599 1600 #ifdef CONFIG_INET 1601 static int vector_inetaddr_event( 1602 struct notifier_block *this, 1603 unsigned long event, 1604 void *ptr) 1605 { 1606 return NOTIFY_DONE; 1607 } 1608 1609 static struct notifier_block vector_inetaddr_notifier = { 1610 .notifier_call = vector_inetaddr_event, 1611 }; 1612 1613 static void inet_register(void) 1614 { 1615 register_inetaddr_notifier(&vector_inetaddr_notifier); 1616 } 1617 #else 1618 static inline void inet_register(void) 1619 { 1620 } 1621 #endif 1622 1623 static int vector_net_init(void) 1624 { 1625 mconsole_register_dev(&vector_mc); 1626 inet_register(); 1627 return 0; 1628 } 1629 1630 __initcall(vector_net_init); 1631 1632 1633 1634