xref: /openbmc/linux/arch/um/drivers/chan_kern.c (revision e290ed81)
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{linux.intel,addtoit}.com)
3  * Licensed under the GPL
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/tty.h>
8 #include <linux/tty_flip.h>
9 #include "chan_kern.h"
10 #include "os.h"
11 
12 #ifdef CONFIG_NOCONFIG_CHAN
13 static void *not_configged_init(char *str, int device,
14 				const struct chan_opts *opts)
15 {
16 	printk(KERN_ERR "Using a channel type which is configured out of "
17 	       "UML\n");
18 	return NULL;
19 }
20 
21 static int not_configged_open(int input, int output, int primary, void *data,
22 			      char **dev_out)
23 {
24 	printk(KERN_ERR "Using a channel type which is configured out of "
25 	       "UML\n");
26 	return -ENODEV;
27 }
28 
29 static void not_configged_close(int fd, void *data)
30 {
31 	printk(KERN_ERR "Using a channel type which is configured out of "
32 	       "UML\n");
33 }
34 
35 static int not_configged_read(int fd, char *c_out, void *data)
36 {
37 	printk(KERN_ERR "Using a channel type which is configured out of "
38 	       "UML\n");
39 	return -EIO;
40 }
41 
42 static int not_configged_write(int fd, const char *buf, int len, void *data)
43 {
44 	printk(KERN_ERR "Using a channel type which is configured out of "
45 	       "UML\n");
46 	return -EIO;
47 }
48 
49 static int not_configged_console_write(int fd, const char *buf, int len)
50 {
51 	printk(KERN_ERR "Using a channel type which is configured out of "
52 	       "UML\n");
53 	return -EIO;
54 }
55 
56 static int not_configged_window_size(int fd, void *data, unsigned short *rows,
57 				     unsigned short *cols)
58 {
59 	printk(KERN_ERR "Using a channel type which is configured out of "
60 	       "UML\n");
61 	return -ENODEV;
62 }
63 
64 static void not_configged_free(void *data)
65 {
66 	printk(KERN_ERR "Using a channel type which is configured out of "
67 	       "UML\n");
68 }
69 
70 static const struct chan_ops not_configged_ops = {
71 	.init		= not_configged_init,
72 	.open		= not_configged_open,
73 	.close		= not_configged_close,
74 	.read		= not_configged_read,
75 	.write		= not_configged_write,
76 	.console_write	= not_configged_console_write,
77 	.window_size	= not_configged_window_size,
78 	.free		= not_configged_free,
79 	.winch		= 0,
80 };
81 #endif /* CONFIG_NOCONFIG_CHAN */
82 
83 static void tty_receive_char(struct tty_struct *tty, char ch)
84 {
85 	if (tty == NULL)
86 		return;
87 
88 	if (I_IXON(tty) && !I_IXOFF(tty) && !tty->raw) {
89 		if (ch == STOP_CHAR(tty)) {
90 			stop_tty(tty);
91 			return;
92 		}
93 		else if (ch == START_CHAR(tty)) {
94 			start_tty(tty);
95 			return;
96 		}
97 	}
98 
99 	tty_insert_flip_char(tty, ch, TTY_NORMAL);
100 }
101 
102 static int open_one_chan(struct chan *chan)
103 {
104 	int fd, err;
105 
106 	if (chan->opened)
107 		return 0;
108 
109 	if (chan->ops->open == NULL)
110 		fd = 0;
111 	else fd = (*chan->ops->open)(chan->input, chan->output, chan->primary,
112 				     chan->data, &chan->dev);
113 	if (fd < 0)
114 		return fd;
115 
116 	err = os_set_fd_block(fd, 0);
117 	if (err) {
118 		(*chan->ops->close)(fd, chan->data);
119 		return err;
120 	}
121 
122 	chan->fd = fd;
123 
124 	chan->opened = 1;
125 	return 0;
126 }
127 
128 static int open_chan(struct list_head *chans)
129 {
130 	struct list_head *ele;
131 	struct chan *chan;
132 	int ret, err = 0;
133 
134 	list_for_each(ele, chans) {
135 		chan = list_entry(ele, struct chan, list);
136 		ret = open_one_chan(chan);
137 		if (chan->primary)
138 			err = ret;
139 	}
140 	return err;
141 }
142 
143 void chan_enable_winch(struct list_head *chans, struct tty_struct *tty)
144 {
145 	struct list_head *ele;
146 	struct chan *chan;
147 
148 	list_for_each(ele, chans) {
149 		chan = list_entry(ele, struct chan, list);
150 		if (chan->primary && chan->output && chan->ops->winch) {
151 			register_winch(chan->fd, tty);
152 			return;
153 		}
154 	}
155 }
156 
157 int enable_chan(struct line *line)
158 {
159 	struct list_head *ele;
160 	struct chan *chan;
161 	int err;
162 
163 	list_for_each(ele, &line->chan_list) {
164 		chan = list_entry(ele, struct chan, list);
165 		err = open_one_chan(chan);
166 		if (err) {
167 			if (chan->primary)
168 				goto out_close;
169 
170 			continue;
171 		}
172 
173 		if (chan->enabled)
174 			continue;
175 		err = line_setup_irq(chan->fd, chan->input, chan->output, line,
176 				     chan);
177 		if (err)
178 			goto out_close;
179 
180 		chan->enabled = 1;
181 	}
182 
183 	return 0;
184 
185  out_close:
186 	close_chan(&line->chan_list, 0);
187 	return err;
188 }
189 
190 /* Items are added in IRQ context, when free_irq can't be called, and
191  * removed in process context, when it can.
192  * This handles interrupt sources which disappear, and which need to
193  * be permanently disabled.  This is discovered in IRQ context, but
194  * the freeing of the IRQ must be done later.
195  */
196 static DEFINE_SPINLOCK(irqs_to_free_lock);
197 static LIST_HEAD(irqs_to_free);
198 
199 void free_irqs(void)
200 {
201 	struct chan *chan;
202 	LIST_HEAD(list);
203 	struct list_head *ele;
204 	unsigned long flags;
205 
206 	spin_lock_irqsave(&irqs_to_free_lock, flags);
207 	list_splice_init(&irqs_to_free, &list);
208 	spin_unlock_irqrestore(&irqs_to_free_lock, flags);
209 
210 	list_for_each(ele, &list) {
211 		chan = list_entry(ele, struct chan, free_list);
212 
213 		if (chan->input && chan->enabled)
214 			free_irq(chan->line->driver->read_irq, chan);
215 		if (chan->output && chan->enabled)
216 			free_irq(chan->line->driver->write_irq, chan);
217 		chan->enabled = 0;
218 	}
219 }
220 
221 static void close_one_chan(struct chan *chan, int delay_free_irq)
222 {
223 	unsigned long flags;
224 
225 	if (!chan->opened)
226 		return;
227 
228 	if (delay_free_irq) {
229 		spin_lock_irqsave(&irqs_to_free_lock, flags);
230 		list_add(&chan->free_list, &irqs_to_free);
231 		spin_unlock_irqrestore(&irqs_to_free_lock, flags);
232 	}
233 	else {
234 		if (chan->input && chan->enabled)
235 			free_irq(chan->line->driver->read_irq, chan);
236 		if (chan->output && chan->enabled)
237 			free_irq(chan->line->driver->write_irq, chan);
238 		chan->enabled = 0;
239 	}
240 	if (chan->ops->close != NULL)
241 		(*chan->ops->close)(chan->fd, chan->data);
242 
243 	chan->opened = 0;
244 	chan->fd = -1;
245 }
246 
247 void close_chan(struct list_head *chans, int delay_free_irq)
248 {
249 	struct chan *chan;
250 
251 	/* Close in reverse order as open in case more than one of them
252 	 * refers to the same device and they save and restore that device's
253 	 * state.  Then, the first one opened will have the original state,
254 	 * so it must be the last closed.
255 	 */
256 	list_for_each_entry_reverse(chan, chans, list) {
257 		close_one_chan(chan, delay_free_irq);
258 	}
259 }
260 
261 void deactivate_chan(struct list_head *chans, int irq)
262 {
263 	struct list_head *ele;
264 
265 	struct chan *chan;
266 	list_for_each(ele, chans) {
267 		chan = list_entry(ele, struct chan, list);
268 
269 		if (chan->enabled && chan->input)
270 			deactivate_fd(chan->fd, irq);
271 	}
272 }
273 
274 void reactivate_chan(struct list_head *chans, int irq)
275 {
276 	struct list_head *ele;
277 	struct chan *chan;
278 
279 	list_for_each(ele, chans) {
280 		chan = list_entry(ele, struct chan, list);
281 
282 		if (chan->enabled && chan->input)
283 			reactivate_fd(chan->fd, irq);
284 	}
285 }
286 
287 int write_chan(struct list_head *chans, const char *buf, int len,
288 	       int write_irq)
289 {
290 	struct list_head *ele;
291 	struct chan *chan = NULL;
292 	int n, ret = 0;
293 
294 	if (len == 0)
295 		return 0;
296 
297 	list_for_each(ele, chans) {
298 		chan = list_entry(ele, struct chan, list);
299 		if (!chan->output || (chan->ops->write == NULL))
300 			continue;
301 
302 		n = chan->ops->write(chan->fd, buf, len, chan->data);
303 		if (chan->primary) {
304 			ret = n;
305 			if ((ret == -EAGAIN) || ((ret >= 0) && (ret < len)))
306 				reactivate_fd(chan->fd, write_irq);
307 		}
308 	}
309 	return ret;
310 }
311 
312 int console_write_chan(struct list_head *chans, const char *buf, int len)
313 {
314 	struct list_head *ele;
315 	struct chan *chan;
316 	int n, ret = 0;
317 
318 	list_for_each(ele, chans) {
319 		chan = list_entry(ele, struct chan, list);
320 		if (!chan->output || (chan->ops->console_write == NULL))
321 			continue;
322 
323 		n = chan->ops->console_write(chan->fd, buf, len);
324 		if (chan->primary)
325 			ret = n;
326 	}
327 	return ret;
328 }
329 
330 int console_open_chan(struct line *line, struct console *co)
331 {
332 	int err;
333 
334 	err = open_chan(&line->chan_list);
335 	if (err)
336 		return err;
337 
338 	printk(KERN_INFO "Console initialized on /dev/%s%d\n", co->name,
339 	       co->index);
340 	return 0;
341 }
342 
343 int chan_window_size(struct list_head *chans, unsigned short *rows_out,
344 		      unsigned short *cols_out)
345 {
346 	struct list_head *ele;
347 	struct chan *chan;
348 
349 	list_for_each(ele, chans) {
350 		chan = list_entry(ele, struct chan, list);
351 		if (chan->primary) {
352 			if (chan->ops->window_size == NULL)
353 				return 0;
354 			return chan->ops->window_size(chan->fd, chan->data,
355 						      rows_out, cols_out);
356 		}
357 	}
358 	return 0;
359 }
360 
361 static void free_one_chan(struct chan *chan, int delay_free_irq)
362 {
363 	list_del(&chan->list);
364 
365 	close_one_chan(chan, delay_free_irq);
366 
367 	if (chan->ops->free != NULL)
368 		(*chan->ops->free)(chan->data);
369 
370 	if (chan->primary && chan->output)
371 		ignore_sigio_fd(chan->fd);
372 	kfree(chan);
373 }
374 
375 static void free_chan(struct list_head *chans, int delay_free_irq)
376 {
377 	struct list_head *ele, *next;
378 	struct chan *chan;
379 
380 	list_for_each_safe(ele, next, chans) {
381 		chan = list_entry(ele, struct chan, list);
382 		free_one_chan(chan, delay_free_irq);
383 	}
384 }
385 
386 static int one_chan_config_string(struct chan *chan, char *str, int size,
387 				  char **error_out)
388 {
389 	int n = 0;
390 
391 	if (chan == NULL) {
392 		CONFIG_CHUNK(str, size, n, "none", 1);
393 		return n;
394 	}
395 
396 	CONFIG_CHUNK(str, size, n, chan->ops->type, 0);
397 
398 	if (chan->dev == NULL) {
399 		CONFIG_CHUNK(str, size, n, "", 1);
400 		return n;
401 	}
402 
403 	CONFIG_CHUNK(str, size, n, ":", 0);
404 	CONFIG_CHUNK(str, size, n, chan->dev, 0);
405 
406 	return n;
407 }
408 
409 static int chan_pair_config_string(struct chan *in, struct chan *out,
410 				   char *str, int size, char **error_out)
411 {
412 	int n;
413 
414 	n = one_chan_config_string(in, str, size, error_out);
415 	str += n;
416 	size -= n;
417 
418 	if (in == out) {
419 		CONFIG_CHUNK(str, size, n, "", 1);
420 		return n;
421 	}
422 
423 	CONFIG_CHUNK(str, size, n, ",", 1);
424 	n = one_chan_config_string(out, str, size, error_out);
425 	str += n;
426 	size -= n;
427 	CONFIG_CHUNK(str, size, n, "", 1);
428 
429 	return n;
430 }
431 
432 int chan_config_string(struct list_head *chans, char *str, int size,
433 		       char **error_out)
434 {
435 	struct list_head *ele;
436 	struct chan *chan, *in = NULL, *out = NULL;
437 
438 	list_for_each(ele, chans) {
439 		chan = list_entry(ele, struct chan, list);
440 		if (!chan->primary)
441 			continue;
442 		if (chan->input)
443 			in = chan;
444 		if (chan->output)
445 			out = chan;
446 	}
447 
448 	return chan_pair_config_string(in, out, str, size, error_out);
449 }
450 
451 struct chan_type {
452 	char *key;
453 	const struct chan_ops *ops;
454 };
455 
456 static const struct chan_type chan_table[] = {
457 	{ "fd", &fd_ops },
458 
459 #ifdef CONFIG_NULL_CHAN
460 	{ "null", &null_ops },
461 #else
462 	{ "null", &not_configged_ops },
463 #endif
464 
465 #ifdef CONFIG_PORT_CHAN
466 	{ "port", &port_ops },
467 #else
468 	{ "port", &not_configged_ops },
469 #endif
470 
471 #ifdef CONFIG_PTY_CHAN
472 	{ "pty", &pty_ops },
473 	{ "pts", &pts_ops },
474 #else
475 	{ "pty", &not_configged_ops },
476 	{ "pts", &not_configged_ops },
477 #endif
478 
479 #ifdef CONFIG_TTY_CHAN
480 	{ "tty", &tty_ops },
481 #else
482 	{ "tty", &not_configged_ops },
483 #endif
484 
485 #ifdef CONFIG_XTERM_CHAN
486 	{ "xterm", &xterm_ops },
487 #else
488 	{ "xterm", &not_configged_ops },
489 #endif
490 };
491 
492 static struct chan *parse_chan(struct line *line, char *str, int device,
493 			       const struct chan_opts *opts, char **error_out)
494 {
495 	const struct chan_type *entry;
496 	const struct chan_ops *ops;
497 	struct chan *chan;
498 	void *data;
499 	int i;
500 
501 	ops = NULL;
502 	data = NULL;
503 	for(i = 0; i < ARRAY_SIZE(chan_table); i++) {
504 		entry = &chan_table[i];
505 		if (!strncmp(str, entry->key, strlen(entry->key))) {
506 			ops = entry->ops;
507 			str += strlen(entry->key);
508 			break;
509 		}
510 	}
511 	if (ops == NULL) {
512 		*error_out = "No match for configured backends";
513 		return NULL;
514 	}
515 
516 	data = (*ops->init)(str, device, opts);
517 	if (data == NULL) {
518 		*error_out = "Configuration failed";
519 		return NULL;
520 	}
521 
522 	chan = kmalloc(sizeof(*chan), GFP_ATOMIC);
523 	if (chan == NULL) {
524 		*error_out = "Memory allocation failed";
525 		return NULL;
526 	}
527 	*chan = ((struct chan) { .list	 	= LIST_HEAD_INIT(chan->list),
528 				 .free_list 	=
529 				 	LIST_HEAD_INIT(chan->free_list),
530 				 .line		= line,
531 				 .primary	= 1,
532 				 .input		= 0,
533 				 .output 	= 0,
534 				 .opened  	= 0,
535 				 .enabled  	= 0,
536 				 .fd 		= -1,
537 				 .ops 		= ops,
538 				 .data 		= data });
539 	return chan;
540 }
541 
542 int parse_chan_pair(char *str, struct line *line, int device,
543 		    const struct chan_opts *opts, char **error_out)
544 {
545 	struct list_head *chans = &line->chan_list;
546 	struct chan *new;
547 	char *in, *out;
548 
549 	if (!list_empty(chans)) {
550 		free_chan(chans, 0);
551 		INIT_LIST_HEAD(chans);
552 	}
553 
554 	out = strchr(str, ',');
555 	if (out != NULL) {
556 		in = str;
557 		*out = '\0';
558 		out++;
559 		new = parse_chan(line, in, device, opts, error_out);
560 		if (new == NULL)
561 			return -1;
562 
563 		new->input = 1;
564 		list_add(&new->list, chans);
565 
566 		new = parse_chan(line, out, device, opts, error_out);
567 		if (new == NULL)
568 			return -1;
569 
570 		list_add(&new->list, chans);
571 		new->output = 1;
572 	}
573 	else {
574 		new = parse_chan(line, str, device, opts, error_out);
575 		if (new == NULL)
576 			return -1;
577 
578 		list_add(&new->list, chans);
579 		new->input = 1;
580 		new->output = 1;
581 	}
582 	return 0;
583 }
584 
585 void chan_interrupt(struct list_head *chans, struct delayed_work *task,
586 		    struct tty_struct *tty, int irq)
587 {
588 	struct list_head *ele, *next;
589 	struct chan *chan;
590 	int err;
591 	char c;
592 
593 	list_for_each_safe(ele, next, chans) {
594 		chan = list_entry(ele, struct chan, list);
595 		if (!chan->input || (chan->ops->read == NULL))
596 			continue;
597 		do {
598 			if (tty && !tty_buffer_request_room(tty, 1)) {
599 				schedule_delayed_work(task, 1);
600 				goto out;
601 			}
602 			err = chan->ops->read(chan->fd, &c, chan->data);
603 			if (err > 0)
604 				tty_receive_char(tty, c);
605 		} while (err > 0);
606 
607 		if (err == 0)
608 			reactivate_fd(chan->fd, irq);
609 		if (err == -EIO) {
610 			if (chan->primary) {
611 				if (tty != NULL)
612 					tty_hangup(tty);
613 				close_chan(chans, 1);
614 				return;
615 			}
616 			else close_one_chan(chan, 1);
617 		}
618 	}
619  out:
620 	if (tty)
621 		tty_flip_buffer_push(tty);
622 }
623