xref: /openbmc/linux/arch/sparc/net/bpf_jit_comp_64.c (revision ef2b56df)
1 #include <linux/moduleloader.h>
2 #include <linux/workqueue.h>
3 #include <linux/netdevice.h>
4 #include <linux/filter.h>
5 #include <linux/bpf.h>
6 #include <linux/cache.h>
7 #include <linux/if_vlan.h>
8 
9 #include <asm/cacheflush.h>
10 #include <asm/ptrace.h>
11 
12 #include "bpf_jit_64.h"
13 
14 int bpf_jit_enable __read_mostly;
15 
16 static inline bool is_simm13(unsigned int value)
17 {
18 	return value + 0x1000 < 0x2000;
19 }
20 
21 static inline bool is_simm10(unsigned int value)
22 {
23 	return value + 0x200 < 0x400;
24 }
25 
26 static inline bool is_simm5(unsigned int value)
27 {
28 	return value + 0x10 < 0x20;
29 }
30 
31 static inline bool is_sethi(unsigned int value)
32 {
33 	return (value & ~0x3fffff) == 0;
34 }
35 
36 static void bpf_flush_icache(void *start_, void *end_)
37 {
38 	/* Cheetah's I-cache is fully coherent.  */
39 	if (tlb_type == spitfire) {
40 		unsigned long start = (unsigned long) start_;
41 		unsigned long end = (unsigned long) end_;
42 
43 		start &= ~7UL;
44 		end = (end + 7UL) & ~7UL;
45 		while (start < end) {
46 			flushi(start);
47 			start += 32;
48 		}
49 	}
50 }
51 
52 #define SEEN_DATAREF 1 /* might call external helpers */
53 #define SEEN_XREG    2 /* ebx is used */
54 #define SEEN_MEM     4 /* use mem[] for temporary storage */
55 
56 #define S13(X)		((X) & 0x1fff)
57 #define S5(X)		((X) & 0x1f)
58 #define IMMED		0x00002000
59 #define RD(X)		((X) << 25)
60 #define RS1(X)		((X) << 14)
61 #define RS2(X)		((X))
62 #define OP(X)		((X) << 30)
63 #define OP2(X)		((X) << 22)
64 #define OP3(X)		((X) << 19)
65 #define COND(X)		(((X) & 0xf) << 25)
66 #define CBCOND(X)	(((X) & 0x1f) << 25)
67 #define F1(X)		OP(X)
68 #define F2(X, Y)	(OP(X) | OP2(Y))
69 #define F3(X, Y)	(OP(X) | OP3(Y))
70 #define ASI(X)		(((X) & 0xff) << 5)
71 
72 #define CONDN		COND(0x0)
73 #define CONDE		COND(0x1)
74 #define CONDLE		COND(0x2)
75 #define CONDL		COND(0x3)
76 #define CONDLEU		COND(0x4)
77 #define CONDCS		COND(0x5)
78 #define CONDNEG		COND(0x6)
79 #define CONDVC		COND(0x7)
80 #define CONDA		COND(0x8)
81 #define CONDNE		COND(0x9)
82 #define CONDG		COND(0xa)
83 #define CONDGE		COND(0xb)
84 #define CONDGU		COND(0xc)
85 #define CONDCC		COND(0xd)
86 #define CONDPOS		COND(0xe)
87 #define CONDVS		COND(0xf)
88 
89 #define CONDGEU		CONDCC
90 #define CONDLU		CONDCS
91 
92 #define WDISP22(X)	(((X) >> 2) & 0x3fffff)
93 #define WDISP19(X)	(((X) >> 2) & 0x7ffff)
94 
95 /* The 10-bit branch displacement for CBCOND is split into two fields */
96 static u32 WDISP10(u32 off)
97 {
98 	u32 ret = ((off >> 2) & 0xff) << 5;
99 
100 	ret |= ((off >> (2 + 8)) & 0x03) << 19;
101 
102 	return ret;
103 }
104 
105 #define CBCONDE		CBCOND(0x09)
106 #define CBCONDLE	CBCOND(0x0a)
107 #define CBCONDL		CBCOND(0x0b)
108 #define CBCONDLEU	CBCOND(0x0c)
109 #define CBCONDCS	CBCOND(0x0d)
110 #define CBCONDN		CBCOND(0x0e)
111 #define CBCONDVS	CBCOND(0x0f)
112 #define CBCONDNE	CBCOND(0x19)
113 #define CBCONDG		CBCOND(0x1a)
114 #define CBCONDGE	CBCOND(0x1b)
115 #define CBCONDGU	CBCOND(0x1c)
116 #define CBCONDCC	CBCOND(0x1d)
117 #define CBCONDPOS	CBCOND(0x1e)
118 #define CBCONDVC	CBCOND(0x1f)
119 
120 #define CBCONDGEU	CBCONDCC
121 #define CBCONDLU	CBCONDCS
122 
123 #define ANNUL		(1 << 29)
124 #define XCC		(1 << 21)
125 
126 #define BRANCH		(F2(0, 1) | XCC)
127 #define CBCOND_OP	(F2(0, 3) | XCC)
128 
129 #define BA		(BRANCH | CONDA)
130 #define BG		(BRANCH | CONDG)
131 #define BGU		(BRANCH | CONDGU)
132 #define BLEU		(BRANCH | CONDLEU)
133 #define BGE		(BRANCH | CONDGE)
134 #define BGEU		(BRANCH | CONDGEU)
135 #define BLU		(BRANCH | CONDLU)
136 #define BE		(BRANCH | CONDE)
137 #define BNE		(BRANCH | CONDNE)
138 
139 #define SETHI(K, REG)	\
140 	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
141 #define OR_LO(K, REG)	\
142 	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
143 
144 #define ADD		F3(2, 0x00)
145 #define AND		F3(2, 0x01)
146 #define ANDCC		F3(2, 0x11)
147 #define OR		F3(2, 0x02)
148 #define XOR		F3(2, 0x03)
149 #define SUB		F3(2, 0x04)
150 #define SUBCC		F3(2, 0x14)
151 #define MUL		F3(2, 0x0a)
152 #define MULX		F3(2, 0x09)
153 #define UDIVX		F3(2, 0x0d)
154 #define DIV		F3(2, 0x0e)
155 #define SLL		F3(2, 0x25)
156 #define SLLX		(F3(2, 0x25)|(1<<12))
157 #define SRA		F3(2, 0x27)
158 #define SRAX		(F3(2, 0x27)|(1<<12))
159 #define SRL		F3(2, 0x26)
160 #define SRLX		(F3(2, 0x26)|(1<<12))
161 #define JMPL		F3(2, 0x38)
162 #define SAVE		F3(2, 0x3c)
163 #define RESTORE		F3(2, 0x3d)
164 #define CALL		F1(1)
165 #define BR		F2(0, 0x01)
166 #define RD_Y		F3(2, 0x28)
167 #define WR_Y		F3(2, 0x30)
168 
169 #define LD32		F3(3, 0x00)
170 #define LD8		F3(3, 0x01)
171 #define LD16		F3(3, 0x02)
172 #define LD64		F3(3, 0x0b)
173 #define LD64A		F3(3, 0x1b)
174 #define ST8		F3(3, 0x05)
175 #define ST16		F3(3, 0x06)
176 #define ST32		F3(3, 0x04)
177 #define ST64		F3(3, 0x0e)
178 
179 #define CAS		F3(3, 0x3c)
180 #define CASX		F3(3, 0x3e)
181 
182 #define LDPTR		LD64
183 #define BASE_STACKFRAME	176
184 
185 #define LD32I		(LD32 | IMMED)
186 #define LD8I		(LD8 | IMMED)
187 #define LD16I		(LD16 | IMMED)
188 #define LD64I		(LD64 | IMMED)
189 #define LDPTRI		(LDPTR | IMMED)
190 #define ST32I		(ST32 | IMMED)
191 
192 struct jit_ctx {
193 	struct bpf_prog		*prog;
194 	unsigned int		*offset;
195 	int			idx;
196 	int			epilogue_offset;
197 	bool 			tmp_1_used;
198 	bool 			tmp_2_used;
199 	bool 			tmp_3_used;
200 	bool			saw_ld_abs_ind;
201 	bool			saw_frame_pointer;
202 	bool			saw_call;
203 	bool			saw_tail_call;
204 	u32			*image;
205 };
206 
207 #define TMP_REG_1	(MAX_BPF_JIT_REG + 0)
208 #define TMP_REG_2	(MAX_BPF_JIT_REG + 1)
209 #define SKB_HLEN_REG	(MAX_BPF_JIT_REG + 2)
210 #define SKB_DATA_REG	(MAX_BPF_JIT_REG + 3)
211 #define TMP_REG_3	(MAX_BPF_JIT_REG + 4)
212 
213 /* Map BPF registers to SPARC registers */
214 static const int bpf2sparc[] = {
215 	/* return value from in-kernel function, and exit value from eBPF */
216 	[BPF_REG_0] = O5,
217 
218 	/* arguments from eBPF program to in-kernel function */
219 	[BPF_REG_1] = O0,
220 	[BPF_REG_2] = O1,
221 	[BPF_REG_3] = O2,
222 	[BPF_REG_4] = O3,
223 	[BPF_REG_5] = O4,
224 
225 	/* callee saved registers that in-kernel function will preserve */
226 	[BPF_REG_6] = L0,
227 	[BPF_REG_7] = L1,
228 	[BPF_REG_8] = L2,
229 	[BPF_REG_9] = L3,
230 
231 	/* read-only frame pointer to access stack */
232 	[BPF_REG_FP] = L6,
233 
234 	[BPF_REG_AX] = G7,
235 
236 	/* temporary register for internal BPF JIT */
237 	[TMP_REG_1] = G1,
238 	[TMP_REG_2] = G2,
239 	[TMP_REG_3] = G3,
240 
241 	[SKB_HLEN_REG] = L4,
242 	[SKB_DATA_REG] = L5,
243 };
244 
245 static void emit(const u32 insn, struct jit_ctx *ctx)
246 {
247 	if (ctx->image != NULL)
248 		ctx->image[ctx->idx] = insn;
249 
250 	ctx->idx++;
251 }
252 
253 static void emit_call(u32 *func, struct jit_ctx *ctx)
254 {
255 	if (ctx->image != NULL) {
256 		void *here = &ctx->image[ctx->idx];
257 		unsigned int off;
258 
259 		off = (void *)func - here;
260 		ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
261 	}
262 	ctx->idx++;
263 }
264 
265 static void emit_nop(struct jit_ctx *ctx)
266 {
267 	emit(SETHI(0, G0), ctx);
268 }
269 
270 static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
271 {
272 	emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
273 }
274 
275 /* Emit 32-bit constant, zero extended. */
276 static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
277 {
278 	emit(SETHI(K, reg), ctx);
279 	emit(OR_LO(K, reg), ctx);
280 }
281 
282 /* Emit 32-bit constant, sign extended. */
283 static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
284 {
285 	if (K >= 0) {
286 		emit(SETHI(K, reg), ctx);
287 		emit(OR_LO(K, reg), ctx);
288 	} else {
289 		u32 hbits = ~(u32) K;
290 		u32 lbits = -0x400 | (u32) K;
291 
292 		emit(SETHI(hbits, reg), ctx);
293 		emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
294 	}
295 }
296 
297 static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
298 {
299 	emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
300 }
301 
302 static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
303 {
304 	emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
305 }
306 
307 static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
308 		       struct jit_ctx *ctx)
309 {
310 	bool small_immed = is_simm13(imm);
311 	unsigned int insn = opcode;
312 
313 	insn |= RS1(dst) | RD(dst);
314 	if (small_immed) {
315 		emit(insn | IMMED | S13(imm), ctx);
316 	} else {
317 		unsigned int tmp = bpf2sparc[TMP_REG_1];
318 
319 		ctx->tmp_1_used = true;
320 
321 		emit_set_const_sext(imm, tmp, ctx);
322 		emit(insn | RS2(tmp), ctx);
323 	}
324 }
325 
326 static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
327 			unsigned int dst, struct jit_ctx *ctx)
328 {
329 	bool small_immed = is_simm13(imm);
330 	unsigned int insn = opcode;
331 
332 	insn |= RS1(src) | RD(dst);
333 	if (small_immed) {
334 		emit(insn | IMMED | S13(imm), ctx);
335 	} else {
336 		unsigned int tmp = bpf2sparc[TMP_REG_1];
337 
338 		ctx->tmp_1_used = true;
339 
340 		emit_set_const_sext(imm, tmp, ctx);
341 		emit(insn | RS2(tmp), ctx);
342 	}
343 }
344 
345 static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
346 {
347 	if (K >= 0 && is_simm13(K)) {
348 		/* or %g0, K, DEST */
349 		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
350 	} else {
351 		emit_set_const(K, dest, ctx);
352 	}
353 }
354 
355 static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
356 {
357 	if (is_simm13(K)) {
358 		/* or %g0, K, DEST */
359 		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
360 	} else {
361 		emit_set_const(K, dest, ctx);
362 	}
363 }
364 
365 static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
366 {
367 	if (is_simm13(K)) {
368 		/* or %g0, K, DEST */
369 		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
370 	} else {
371 		emit_set_const_sext(K, dest, ctx);
372 	}
373 }
374 
375 static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
376 				   int *hbsp, int *lbsp, int *abbasp)
377 {
378 	int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
379 	int i;
380 
381 	lowest_bit_set = highest_bit_set = -1;
382 	i = 0;
383 	do {
384 		if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
385 			lowest_bit_set = i;
386 		if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
387 			highest_bit_set = (64 - i - 1);
388 	}  while (++i < 32 && (highest_bit_set == -1 ||
389 			       lowest_bit_set == -1));
390 	if (i == 32) {
391 		i = 0;
392 		do {
393 			if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
394 				lowest_bit_set = i + 32;
395 			if (highest_bit_set == -1 &&
396 			    ((low_bits >> (32 - i - 1)) & 1))
397 				highest_bit_set = 32 - i - 1;
398 		} while (++i < 32 && (highest_bit_set == -1 ||
399 				      lowest_bit_set == -1));
400 	}
401 
402 	all_bits_between_are_set = 1;
403 	for (i = lowest_bit_set; i <= highest_bit_set; i++) {
404 		if (i < 32) {
405 			if ((low_bits & (1 << i)) != 0)
406 				continue;
407 		} else {
408 			if ((high_bits & (1 << (i - 32))) != 0)
409 				continue;
410 		}
411 		all_bits_between_are_set = 0;
412 		break;
413 	}
414 	*hbsp = highest_bit_set;
415 	*lbsp = lowest_bit_set;
416 	*abbasp = all_bits_between_are_set;
417 }
418 
419 static unsigned long create_simple_focus_bits(unsigned long high_bits,
420 					      unsigned long low_bits,
421 					      int lowest_bit_set, int shift)
422 {
423 	long hi, lo;
424 
425 	if (lowest_bit_set < 32) {
426 		lo = (low_bits >> lowest_bit_set) << shift;
427 		hi = ((high_bits << (32 - lowest_bit_set)) << shift);
428 	} else {
429 		lo = 0;
430 		hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
431 	}
432 	return hi | lo;
433 }
434 
435 static bool const64_is_2insns(unsigned long high_bits,
436 			      unsigned long low_bits)
437 {
438 	int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
439 
440 	if (high_bits == 0 || high_bits == 0xffffffff)
441 		return true;
442 
443 	analyze_64bit_constant(high_bits, low_bits,
444 			       &highest_bit_set, &lowest_bit_set,
445 			       &all_bits_between_are_set);
446 
447 	if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
448 	    all_bits_between_are_set != 0)
449 		return true;
450 
451 	if (highest_bit_set - lowest_bit_set < 21)
452 		return true;
453 
454 	return false;
455 }
456 
457 static void sparc_emit_set_const64_quick2(unsigned long high_bits,
458 					  unsigned long low_imm,
459 					  unsigned int dest,
460 					  int shift_count, struct jit_ctx *ctx)
461 {
462 	emit_loadimm32(high_bits, dest, ctx);
463 
464 	/* Now shift it up into place.  */
465 	emit_alu_K(SLLX, dest, shift_count, ctx);
466 
467 	/* If there is a low immediate part piece, finish up by
468 	 * putting that in as well.
469 	 */
470 	if (low_imm != 0)
471 		emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
472 }
473 
474 static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
475 {
476 	int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
477 	unsigned int tmp = bpf2sparc[TMP_REG_1];
478 	u32 low_bits = (K & 0xffffffff);
479 	u32 high_bits = (K >> 32);
480 
481 	/* These two tests also take care of all of the one
482 	 * instruction cases.
483 	 */
484 	if (high_bits == 0xffffffff && (low_bits & 0x80000000))
485 		return emit_loadimm_sext(K, dest, ctx);
486 	if (high_bits == 0x00000000)
487 		return emit_loadimm32(K, dest, ctx);
488 
489 	analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
490 			       &lowest_bit_set, &all_bits_between_are_set);
491 
492 	/* 1) mov	-1, %reg
493 	 *    sllx	%reg, shift, %reg
494 	 * 2) mov	-1, %reg
495 	 *    srlx	%reg, shift, %reg
496 	 * 3) mov	some_small_const, %reg
497 	 *    sllx	%reg, shift, %reg
498 	 */
499 	if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
500 	     all_bits_between_are_set != 0) ||
501 	    ((highest_bit_set - lowest_bit_set) < 12)) {
502 		int shift = lowest_bit_set;
503 		long the_const = -1;
504 
505 		if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
506 		    all_bits_between_are_set == 0) {
507 			the_const =
508 				create_simple_focus_bits(high_bits, low_bits,
509 							 lowest_bit_set, 0);
510 		} else if (lowest_bit_set == 0)
511 			shift = -(63 - highest_bit_set);
512 
513 		emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
514 		if (shift > 0)
515 			emit_alu_K(SLLX, dest, shift, ctx);
516 		else if (shift < 0)
517 			emit_alu_K(SRLX, dest, -shift, ctx);
518 
519 		return;
520 	}
521 
522 	/* Now a range of 22 or less bits set somewhere.
523 	 * 1) sethi	%hi(focus_bits), %reg
524 	 *    sllx	%reg, shift, %reg
525 	 * 2) sethi	%hi(focus_bits), %reg
526 	 *    srlx	%reg, shift, %reg
527 	 */
528 	if ((highest_bit_set - lowest_bit_set) < 21) {
529 		unsigned long focus_bits =
530 			create_simple_focus_bits(high_bits, low_bits,
531 						 lowest_bit_set, 10);
532 
533 		emit(SETHI(focus_bits, dest), ctx);
534 
535 		/* If lowest_bit_set == 10 then a sethi alone could
536 		 * have done it.
537 		 */
538 		if (lowest_bit_set < 10)
539 			emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
540 		else if (lowest_bit_set > 10)
541 			emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
542 		return;
543 	}
544 
545 	/* Ok, now 3 instruction sequences.  */
546 	if (low_bits == 0) {
547 		emit_loadimm32(high_bits, dest, ctx);
548 		emit_alu_K(SLLX, dest, 32, ctx);
549 		return;
550 	}
551 
552 	/* We may be able to do something quick
553 	 * when the constant is negated, so try that.
554 	 */
555 	if (const64_is_2insns((~high_bits) & 0xffffffff,
556 			      (~low_bits) & 0xfffffc00)) {
557 		/* NOTE: The trailing bits get XOR'd so we need the
558 		 * non-negated bits, not the negated ones.
559 		 */
560 		unsigned long trailing_bits = low_bits & 0x3ff;
561 
562 		if ((((~high_bits) & 0xffffffff) == 0 &&
563 		     ((~low_bits) & 0x80000000) == 0) ||
564 		    (((~high_bits) & 0xffffffff) == 0xffffffff &&
565 		     ((~low_bits) & 0x80000000) != 0)) {
566 			unsigned long fast_int = (~low_bits & 0xffffffff);
567 
568 			if ((is_sethi(fast_int) &&
569 			     (~high_bits & 0xffffffff) == 0)) {
570 				emit(SETHI(fast_int, dest), ctx);
571 			} else if (is_simm13(fast_int)) {
572 				emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
573 			} else {
574 				emit_loadimm64(fast_int, dest, ctx);
575 			}
576 		} else {
577 			u64 n = ((~low_bits) & 0xfffffc00) |
578 				(((unsigned long)((~high_bits) & 0xffffffff))<<32);
579 			emit_loadimm64(n, dest, ctx);
580 		}
581 
582 		low_bits = -0x400 | trailing_bits;
583 
584 		emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
585 		return;
586 	}
587 
588 	/* 1) sethi	%hi(xxx), %reg
589 	 *    or	%reg, %lo(xxx), %reg
590 	 *    sllx	%reg, yyy, %reg
591 	 */
592 	if ((highest_bit_set - lowest_bit_set) < 32) {
593 		unsigned long focus_bits =
594 			create_simple_focus_bits(high_bits, low_bits,
595 						 lowest_bit_set, 0);
596 
597 		/* So what we know is that the set bits straddle the
598 		 * middle of the 64-bit word.
599 		 */
600 		sparc_emit_set_const64_quick2(focus_bits, 0, dest,
601 					      lowest_bit_set, ctx);
602 		return;
603 	}
604 
605 	/* 1) sethi	%hi(high_bits), %reg
606 	 *    or	%reg, %lo(high_bits), %reg
607 	 *    sllx	%reg, 32, %reg
608 	 *    or	%reg, low_bits, %reg
609 	 */
610 	if (is_simm13(low_bits) && ((int)low_bits > 0)) {
611 		sparc_emit_set_const64_quick2(high_bits, low_bits,
612 					      dest, 32, ctx);
613 		return;
614 	}
615 
616 	/* Oh well, we tried... Do a full 64-bit decomposition.  */
617 	ctx->tmp_1_used = true;
618 
619 	emit_loadimm32(high_bits, tmp, ctx);
620 	emit_loadimm32(low_bits, dest, ctx);
621 	emit_alu_K(SLLX, tmp, 32, ctx);
622 	emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
623 }
624 
625 static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
626 			struct jit_ctx *ctx)
627 {
628 	unsigned int off = to_idx - from_idx;
629 
630 	if (br_opc & XCC)
631 		emit(br_opc | WDISP19(off << 2), ctx);
632 	else
633 		emit(br_opc | WDISP22(off << 2), ctx);
634 }
635 
636 static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
637 			const u8 dst, const u8 src, struct jit_ctx *ctx)
638 {
639 	unsigned int off = to_idx - from_idx;
640 
641 	emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
642 }
643 
644 static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
645 			 const u8 dst, s32 imm, struct jit_ctx *ctx)
646 {
647 	unsigned int off = to_idx - from_idx;
648 
649 	emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
650 }
651 
652 #define emit_read_y(REG, CTX)	emit(RD_Y | RD(REG), CTX)
653 #define emit_write_y(REG, CTX)	emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
654 
655 #define emit_cmp(R1, R2, CTX)				\
656 	emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
657 
658 #define emit_cmpi(R1, IMM, CTX)				\
659 	emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
660 
661 #define emit_btst(R1, R2, CTX)				\
662 	emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
663 
664 #define emit_btsti(R1, IMM, CTX)			\
665 	emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
666 
667 static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
668 				   const s32 imm, bool is_imm, int branch_dst,
669 				   struct jit_ctx *ctx)
670 {
671 	bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
672 	const u8 tmp = bpf2sparc[TMP_REG_1];
673 
674 	branch_dst = ctx->offset[branch_dst];
675 
676 	if (!is_simm10(branch_dst - ctx->idx) ||
677 	    BPF_OP(code) == BPF_JSET)
678 		use_cbcond = false;
679 
680 	if (is_imm) {
681 		bool fits = true;
682 
683 		if (use_cbcond) {
684 			if (!is_simm5(imm))
685 				fits = false;
686 		} else if (!is_simm13(imm)) {
687 			fits = false;
688 		}
689 		if (!fits) {
690 			ctx->tmp_1_used = true;
691 			emit_loadimm_sext(imm, tmp, ctx);
692 			src = tmp;
693 			is_imm = false;
694 		}
695 	}
696 
697 	if (!use_cbcond) {
698 		u32 br_opcode;
699 
700 		if (BPF_OP(code) == BPF_JSET) {
701 			if (is_imm)
702 				emit_btsti(dst, imm, ctx);
703 			else
704 				emit_btst(dst, src, ctx);
705 		} else {
706 			if (is_imm)
707 				emit_cmpi(dst, imm, ctx);
708 			else
709 				emit_cmp(dst, src, ctx);
710 		}
711 		switch (BPF_OP(code)) {
712 		case BPF_JEQ:
713 			br_opcode = BE;
714 			break;
715 		case BPF_JGT:
716 			br_opcode = BGU;
717 			break;
718 		case BPF_JGE:
719 			br_opcode = BGEU;
720 			break;
721 		case BPF_JSET:
722 		case BPF_JNE:
723 			br_opcode = BNE;
724 			break;
725 		case BPF_JSGT:
726 			br_opcode = BG;
727 			break;
728 		case BPF_JSGE:
729 			br_opcode = BGE;
730 			break;
731 		default:
732 			/* Make sure we dont leak kernel information to the
733 			 * user.
734 			 */
735 			return -EFAULT;
736 		}
737 		emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
738 		emit_nop(ctx);
739 	} else {
740 		u32 cbcond_opcode;
741 
742 		switch (BPF_OP(code)) {
743 		case BPF_JEQ:
744 			cbcond_opcode = CBCONDE;
745 			break;
746 		case BPF_JGT:
747 			cbcond_opcode = CBCONDGU;
748 			break;
749 		case BPF_JGE:
750 			cbcond_opcode = CBCONDGEU;
751 			break;
752 		case BPF_JNE:
753 			cbcond_opcode = CBCONDNE;
754 			break;
755 		case BPF_JSGT:
756 			cbcond_opcode = CBCONDG;
757 			break;
758 		case BPF_JSGE:
759 			cbcond_opcode = CBCONDGE;
760 			break;
761 		default:
762 			/* Make sure we dont leak kernel information to the
763 			 * user.
764 			 */
765 			return -EFAULT;
766 		}
767 		cbcond_opcode |= CBCOND_OP;
768 		if (is_imm)
769 			emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
770 				     dst, imm, ctx);
771 		else
772 			emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
773 				    dst, src, ctx);
774 	}
775 	return 0;
776 }
777 
778 static void load_skb_regs(struct jit_ctx *ctx, u8 r_skb)
779 {
780 	const u8 r_headlen = bpf2sparc[SKB_HLEN_REG];
781 	const u8 r_data = bpf2sparc[SKB_DATA_REG];
782 	const u8 r_tmp = bpf2sparc[TMP_REG_1];
783 	unsigned int off;
784 
785 	off = offsetof(struct sk_buff, len);
786 	emit(LD32I | RS1(r_skb) | S13(off) | RD(r_headlen), ctx);
787 
788 	off = offsetof(struct sk_buff, data_len);
789 	emit(LD32I | RS1(r_skb) | S13(off) | RD(r_tmp), ctx);
790 
791 	emit(SUB | RS1(r_headlen) | RS2(r_tmp) | RD(r_headlen), ctx);
792 
793 	off = offsetof(struct sk_buff, data);
794 	emit(LDPTRI | RS1(r_skb) | S13(off) | RD(r_data), ctx);
795 }
796 
797 /* Just skip the save instruction and the ctx register move.  */
798 #define BPF_TAILCALL_PROLOGUE_SKIP	16
799 #define BPF_TAILCALL_CNT_SP_OFF		(STACK_BIAS + 128)
800 
801 static void build_prologue(struct jit_ctx *ctx)
802 {
803 	s32 stack_needed = BASE_STACKFRAME;
804 
805 	if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
806 		struct bpf_prog *prog = ctx->prog;
807 		u32 stack_depth;
808 
809 		stack_depth = prog->aux->stack_depth;
810 		stack_needed += round_up(stack_depth, 16);
811 	}
812 
813 	if (ctx->saw_tail_call)
814 		stack_needed += 8;
815 
816 	/* save %sp, -176, %sp */
817 	emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
818 
819 	/* tail_call_cnt = 0 */
820 	if (ctx->saw_tail_call) {
821 		u32 off = BPF_TAILCALL_CNT_SP_OFF;
822 
823 		emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
824 	} else {
825 		emit_nop(ctx);
826 	}
827 	if (ctx->saw_frame_pointer) {
828 		const u8 vfp = bpf2sparc[BPF_REG_FP];
829 
830 		emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
831 	}
832 
833 	emit_reg_move(I0, O0, ctx);
834 	/* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
835 
836 	if (ctx->saw_ld_abs_ind)
837 		load_skb_regs(ctx, bpf2sparc[BPF_REG_1]);
838 }
839 
840 static void build_epilogue(struct jit_ctx *ctx)
841 {
842 	ctx->epilogue_offset = ctx->idx;
843 
844 	/* ret (jmpl %i7 + 8, %g0) */
845 	emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
846 
847 	/* restore %i5, %g0, %o0 */
848 	emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
849 }
850 
851 static void emit_tail_call(struct jit_ctx *ctx)
852 {
853 	const u8 bpf_array = bpf2sparc[BPF_REG_2];
854 	const u8 bpf_index = bpf2sparc[BPF_REG_3];
855 	const u8 tmp = bpf2sparc[TMP_REG_1];
856 	u32 off;
857 
858 	ctx->saw_tail_call = true;
859 
860 	off = offsetof(struct bpf_array, map.max_entries);
861 	emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
862 	emit_cmp(bpf_index, tmp, ctx);
863 #define OFFSET1 17
864 	emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
865 	emit_nop(ctx);
866 
867 	off = BPF_TAILCALL_CNT_SP_OFF;
868 	emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
869 	emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
870 #define OFFSET2 13
871 	emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
872 	emit_nop(ctx);
873 
874 	emit_alu_K(ADD, tmp, 1, ctx);
875 	off = BPF_TAILCALL_CNT_SP_OFF;
876 	emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
877 
878 	emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
879 	emit_alu(ADD, bpf_array, tmp, ctx);
880 	off = offsetof(struct bpf_array, ptrs);
881 	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
882 
883 	emit_cmpi(tmp, 0, ctx);
884 #define OFFSET3 5
885 	emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
886 	emit_nop(ctx);
887 
888 	off = offsetof(struct bpf_prog, bpf_func);
889 	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
890 
891 	off = BPF_TAILCALL_PROLOGUE_SKIP;
892 	emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
893 	emit_nop(ctx);
894 }
895 
896 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
897 {
898 	const u8 code = insn->code;
899 	const u8 dst = bpf2sparc[insn->dst_reg];
900 	const u8 src = bpf2sparc[insn->src_reg];
901 	const int i = insn - ctx->prog->insnsi;
902 	const s16 off = insn->off;
903 	const s32 imm = insn->imm;
904 	u32 *func;
905 
906 	if (insn->src_reg == BPF_REG_FP)
907 		ctx->saw_frame_pointer = true;
908 
909 	switch (code) {
910 	/* dst = src */
911 	case BPF_ALU | BPF_MOV | BPF_X:
912 		emit_alu3_K(SRL, src, 0, dst, ctx);
913 		break;
914 	case BPF_ALU64 | BPF_MOV | BPF_X:
915 		emit_reg_move(src, dst, ctx);
916 		break;
917 	/* dst = dst OP src */
918 	case BPF_ALU | BPF_ADD | BPF_X:
919 	case BPF_ALU64 | BPF_ADD | BPF_X:
920 		emit_alu(ADD, src, dst, ctx);
921 		goto do_alu32_trunc;
922 	case BPF_ALU | BPF_SUB | BPF_X:
923 	case BPF_ALU64 | BPF_SUB | BPF_X:
924 		emit_alu(SUB, src, dst, ctx);
925 		goto do_alu32_trunc;
926 	case BPF_ALU | BPF_AND | BPF_X:
927 	case BPF_ALU64 | BPF_AND | BPF_X:
928 		emit_alu(AND, src, dst, ctx);
929 		goto do_alu32_trunc;
930 	case BPF_ALU | BPF_OR | BPF_X:
931 	case BPF_ALU64 | BPF_OR | BPF_X:
932 		emit_alu(OR, src, dst, ctx);
933 		goto do_alu32_trunc;
934 	case BPF_ALU | BPF_XOR | BPF_X:
935 	case BPF_ALU64 | BPF_XOR | BPF_X:
936 		emit_alu(XOR, src, dst, ctx);
937 		goto do_alu32_trunc;
938 	case BPF_ALU | BPF_MUL | BPF_X:
939 		emit_alu(MUL, src, dst, ctx);
940 		goto do_alu32_trunc;
941 	case BPF_ALU64 | BPF_MUL | BPF_X:
942 		emit_alu(MULX, src, dst, ctx);
943 		break;
944 	case BPF_ALU | BPF_DIV | BPF_X:
945 		emit_cmp(src, G0, ctx);
946 		emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
947 		emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
948 
949 		emit_write_y(G0, ctx);
950 		emit_alu(DIV, src, dst, ctx);
951 		break;
952 
953 	case BPF_ALU64 | BPF_DIV | BPF_X:
954 		emit_cmp(src, G0, ctx);
955 		emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
956 		emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
957 
958 		emit_alu(UDIVX, src, dst, ctx);
959 		break;
960 
961 	case BPF_ALU | BPF_MOD | BPF_X: {
962 		const u8 tmp = bpf2sparc[TMP_REG_1];
963 
964 		ctx->tmp_1_used = true;
965 
966 		emit_cmp(src, G0, ctx);
967 		emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
968 		emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
969 
970 		emit_write_y(G0, ctx);
971 		emit_alu3(DIV, dst, src, tmp, ctx);
972 		emit_alu3(MULX, tmp, src, tmp, ctx);
973 		emit_alu3(SUB, dst, tmp, dst, ctx);
974 		goto do_alu32_trunc;
975 	}
976 	case BPF_ALU64 | BPF_MOD | BPF_X: {
977 		const u8 tmp = bpf2sparc[TMP_REG_1];
978 
979 		ctx->tmp_1_used = true;
980 
981 		emit_cmp(src, G0, ctx);
982 		emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
983 		emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
984 
985 		emit_alu3(UDIVX, dst, src, tmp, ctx);
986 		emit_alu3(MULX, tmp, src, tmp, ctx);
987 		emit_alu3(SUB, dst, tmp, dst, ctx);
988 		break;
989 	}
990 	case BPF_ALU | BPF_LSH | BPF_X:
991 		emit_alu(SLL, src, dst, ctx);
992 		goto do_alu32_trunc;
993 	case BPF_ALU64 | BPF_LSH | BPF_X:
994 		emit_alu(SLLX, src, dst, ctx);
995 		break;
996 	case BPF_ALU | BPF_RSH | BPF_X:
997 		emit_alu(SRL, src, dst, ctx);
998 		break;
999 	case BPF_ALU64 | BPF_RSH | BPF_X:
1000 		emit_alu(SRLX, src, dst, ctx);
1001 		break;
1002 	case BPF_ALU | BPF_ARSH | BPF_X:
1003 		emit_alu(SRA, src, dst, ctx);
1004 		goto do_alu32_trunc;
1005 	case BPF_ALU64 | BPF_ARSH | BPF_X:
1006 		emit_alu(SRAX, src, dst, ctx);
1007 		break;
1008 
1009 	/* dst = -dst */
1010 	case BPF_ALU | BPF_NEG:
1011 	case BPF_ALU64 | BPF_NEG:
1012 		emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
1013 		goto do_alu32_trunc;
1014 
1015 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1016 		switch (imm) {
1017 		case 16:
1018 			emit_alu_K(SLL, dst, 16, ctx);
1019 			emit_alu_K(SRL, dst, 16, ctx);
1020 			break;
1021 		case 32:
1022 			emit_alu_K(SRL, dst, 0, ctx);
1023 			break;
1024 		case 64:
1025 			/* nop */
1026 			break;
1027 
1028 		}
1029 		break;
1030 
1031 	/* dst = BSWAP##imm(dst) */
1032 	case BPF_ALU | BPF_END | BPF_FROM_LE: {
1033 		const u8 tmp = bpf2sparc[TMP_REG_1];
1034 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1035 
1036 		ctx->tmp_1_used = true;
1037 		switch (imm) {
1038 		case 16:
1039 			emit_alu3_K(AND, dst, 0xff, tmp, ctx);
1040 			emit_alu3_K(SRL, dst, 8, dst, ctx);
1041 			emit_alu3_K(AND, dst, 0xff, dst, ctx);
1042 			emit_alu3_K(SLL, tmp, 8, tmp, ctx);
1043 			emit_alu(OR, tmp, dst, ctx);
1044 			break;
1045 
1046 		case 32:
1047 			ctx->tmp_2_used = true;
1048 			emit_alu3_K(SRL, dst, 24, tmp, ctx);	/* tmp  = dst >> 24 */
1049 			emit_alu3_K(SRL, dst, 16, tmp2, ctx);	/* tmp2 = dst >> 16 */
1050 			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1051 			emit_alu3_K(SLL, tmp2, 8, tmp2, ctx);	/* tmp2 = tmp2 << 8 */
1052 			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
1053 			emit_alu3_K(SRL, dst, 8, tmp2, ctx);	/* tmp2 = dst >> 8 */
1054 			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1055 			emit_alu3_K(SLL, tmp2, 16, tmp2, ctx);	/* tmp2 = tmp2 << 16 */
1056 			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
1057 			emit_alu3_K(AND, dst, 0xff, dst, ctx);	/* dst	= dst & 0xff */
1058 			emit_alu3_K(SLL, dst, 24, dst, ctx);	/* dst  = dst << 24 */
1059 			emit_alu(OR, tmp, dst, ctx);		/* dst  = dst | tmp */
1060 			break;
1061 
1062 		case 64:
1063 			emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
1064 			emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1065 			emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1066 			break;
1067 		}
1068 		break;
1069 	}
1070 	/* dst = imm */
1071 	case BPF_ALU | BPF_MOV | BPF_K:
1072 		emit_loadimm32(imm, dst, ctx);
1073 		break;
1074 	case BPF_ALU64 | BPF_MOV | BPF_K:
1075 		emit_loadimm_sext(imm, dst, ctx);
1076 		break;
1077 	/* dst = dst OP imm */
1078 	case BPF_ALU | BPF_ADD | BPF_K:
1079 	case BPF_ALU64 | BPF_ADD | BPF_K:
1080 		emit_alu_K(ADD, dst, imm, ctx);
1081 		goto do_alu32_trunc;
1082 	case BPF_ALU | BPF_SUB | BPF_K:
1083 	case BPF_ALU64 | BPF_SUB | BPF_K:
1084 		emit_alu_K(SUB, dst, imm, ctx);
1085 		goto do_alu32_trunc;
1086 	case BPF_ALU | BPF_AND | BPF_K:
1087 	case BPF_ALU64 | BPF_AND | BPF_K:
1088 		emit_alu_K(AND, dst, imm, ctx);
1089 		goto do_alu32_trunc;
1090 	case BPF_ALU | BPF_OR | BPF_K:
1091 	case BPF_ALU64 | BPF_OR | BPF_K:
1092 		emit_alu_K(OR, dst, imm, ctx);
1093 		goto do_alu32_trunc;
1094 	case BPF_ALU | BPF_XOR | BPF_K:
1095 	case BPF_ALU64 | BPF_XOR | BPF_K:
1096 		emit_alu_K(XOR, dst, imm, ctx);
1097 		goto do_alu32_trunc;
1098 	case BPF_ALU | BPF_MUL | BPF_K:
1099 		emit_alu_K(MUL, dst, imm, ctx);
1100 		goto do_alu32_trunc;
1101 	case BPF_ALU64 | BPF_MUL | BPF_K:
1102 		emit_alu_K(MULX, dst, imm, ctx);
1103 		break;
1104 	case BPF_ALU | BPF_DIV | BPF_K:
1105 		if (imm == 0)
1106 			return -EINVAL;
1107 
1108 		emit_write_y(G0, ctx);
1109 		emit_alu_K(DIV, dst, imm, ctx);
1110 		goto do_alu32_trunc;
1111 	case BPF_ALU64 | BPF_DIV | BPF_K:
1112 		if (imm == 0)
1113 			return -EINVAL;
1114 
1115 		emit_alu_K(UDIVX, dst, imm, ctx);
1116 		break;
1117 	case BPF_ALU64 | BPF_MOD | BPF_K:
1118 	case BPF_ALU | BPF_MOD | BPF_K: {
1119 		const u8 tmp = bpf2sparc[TMP_REG_2];
1120 		unsigned int div;
1121 
1122 		if (imm == 0)
1123 			return -EINVAL;
1124 
1125 		div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
1126 
1127 		ctx->tmp_2_used = true;
1128 
1129 		if (BPF_CLASS(code) != BPF_ALU64)
1130 			emit_write_y(G0, ctx);
1131 		if (is_simm13(imm)) {
1132 			emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
1133 			emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
1134 			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1135 		} else {
1136 			const u8 tmp1 = bpf2sparc[TMP_REG_1];
1137 
1138 			ctx->tmp_1_used = true;
1139 
1140 			emit_set_const_sext(imm, tmp1, ctx);
1141 			emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
1142 			emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
1143 			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1144 		}
1145 		goto do_alu32_trunc;
1146 	}
1147 	case BPF_ALU | BPF_LSH | BPF_K:
1148 		emit_alu_K(SLL, dst, imm, ctx);
1149 		goto do_alu32_trunc;
1150 	case BPF_ALU64 | BPF_LSH | BPF_K:
1151 		emit_alu_K(SLLX, dst, imm, ctx);
1152 		break;
1153 	case BPF_ALU | BPF_RSH | BPF_K:
1154 		emit_alu_K(SRL, dst, imm, ctx);
1155 		break;
1156 	case BPF_ALU64 | BPF_RSH | BPF_K:
1157 		emit_alu_K(SRLX, dst, imm, ctx);
1158 		break;
1159 	case BPF_ALU | BPF_ARSH | BPF_K:
1160 		emit_alu_K(SRA, dst, imm, ctx);
1161 		goto do_alu32_trunc;
1162 	case BPF_ALU64 | BPF_ARSH | BPF_K:
1163 		emit_alu_K(SRAX, dst, imm, ctx);
1164 		break;
1165 
1166 	do_alu32_trunc:
1167 		if (BPF_CLASS(code) == BPF_ALU)
1168 			emit_alu_K(SRL, dst, 0, ctx);
1169 		break;
1170 
1171 	/* JUMP off */
1172 	case BPF_JMP | BPF_JA:
1173 		emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
1174 		emit_nop(ctx);
1175 		break;
1176 	/* IF (dst COND src) JUMP off */
1177 	case BPF_JMP | BPF_JEQ | BPF_X:
1178 	case BPF_JMP | BPF_JGT | BPF_X:
1179 	case BPF_JMP | BPF_JGE | BPF_X:
1180 	case BPF_JMP | BPF_JNE | BPF_X:
1181 	case BPF_JMP | BPF_JSGT | BPF_X:
1182 	case BPF_JMP | BPF_JSGE | BPF_X:
1183 	case BPF_JMP | BPF_JSET | BPF_X: {
1184 		int err;
1185 
1186 		err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
1187 		if (err)
1188 			return err;
1189 		break;
1190 	}
1191 	/* IF (dst COND imm) JUMP off */
1192 	case BPF_JMP | BPF_JEQ | BPF_K:
1193 	case BPF_JMP | BPF_JGT | BPF_K:
1194 	case BPF_JMP | BPF_JGE | BPF_K:
1195 	case BPF_JMP | BPF_JNE | BPF_K:
1196 	case BPF_JMP | BPF_JSGT | BPF_K:
1197 	case BPF_JMP | BPF_JSGE | BPF_K:
1198 	case BPF_JMP | BPF_JSET | BPF_K: {
1199 		int err;
1200 
1201 		err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
1202 		if (err)
1203 			return err;
1204 		break;
1205 	}
1206 
1207 	/* function call */
1208 	case BPF_JMP | BPF_CALL:
1209 	{
1210 		u8 *func = ((u8 *)__bpf_call_base) + imm;
1211 
1212 		ctx->saw_call = true;
1213 
1214 		emit_call((u32 *)func, ctx);
1215 		emit_nop(ctx);
1216 
1217 		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
1218 
1219 		if (bpf_helper_changes_pkt_data(func) && ctx->saw_ld_abs_ind)
1220 			load_skb_regs(ctx, bpf2sparc[BPF_REG_6]);
1221 		break;
1222 	}
1223 
1224 	/* tail call */
1225 	case BPF_JMP | BPF_TAIL_CALL:
1226 		emit_tail_call(ctx);
1227 		break;
1228 
1229 	/* function return */
1230 	case BPF_JMP | BPF_EXIT:
1231 		/* Optimization: when last instruction is EXIT,
1232 		   simply fallthrough to epilogue. */
1233 		if (i == ctx->prog->len - 1)
1234 			break;
1235 		emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
1236 		emit_nop(ctx);
1237 		break;
1238 
1239 	/* dst = imm64 */
1240 	case BPF_LD | BPF_IMM | BPF_DW:
1241 	{
1242 		const struct bpf_insn insn1 = insn[1];
1243 		u64 imm64;
1244 
1245 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
1246 		emit_loadimm64(imm64, dst, ctx);
1247 
1248 		return 1;
1249 	}
1250 
1251 	/* LDX: dst = *(size *)(src + off) */
1252 	case BPF_LDX | BPF_MEM | BPF_W:
1253 	case BPF_LDX | BPF_MEM | BPF_H:
1254 	case BPF_LDX | BPF_MEM | BPF_B:
1255 	case BPF_LDX | BPF_MEM | BPF_DW: {
1256 		const u8 tmp = bpf2sparc[TMP_REG_1];
1257 		u32 opcode = 0, rs2;
1258 
1259 		ctx->tmp_1_used = true;
1260 		switch (BPF_SIZE(code)) {
1261 		case BPF_W:
1262 			opcode = LD32;
1263 			break;
1264 		case BPF_H:
1265 			opcode = LD16;
1266 			break;
1267 		case BPF_B:
1268 			opcode = LD8;
1269 			break;
1270 		case BPF_DW:
1271 			opcode = LD64;
1272 			break;
1273 		}
1274 
1275 		if (is_simm13(off)) {
1276 			opcode |= IMMED;
1277 			rs2 = S13(off);
1278 		} else {
1279 			emit_loadimm(off, tmp, ctx);
1280 			rs2 = RS2(tmp);
1281 		}
1282 		emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
1283 		break;
1284 	}
1285 	/* ST: *(size *)(dst + off) = imm */
1286 	case BPF_ST | BPF_MEM | BPF_W:
1287 	case BPF_ST | BPF_MEM | BPF_H:
1288 	case BPF_ST | BPF_MEM | BPF_B:
1289 	case BPF_ST | BPF_MEM | BPF_DW: {
1290 		const u8 tmp = bpf2sparc[TMP_REG_1];
1291 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1292 		u32 opcode = 0, rs2;
1293 
1294 		ctx->tmp_2_used = true;
1295 		emit_loadimm(imm, tmp2, ctx);
1296 
1297 		switch (BPF_SIZE(code)) {
1298 		case BPF_W:
1299 			opcode = ST32;
1300 			break;
1301 		case BPF_H:
1302 			opcode = ST16;
1303 			break;
1304 		case BPF_B:
1305 			opcode = ST8;
1306 			break;
1307 		case BPF_DW:
1308 			opcode = ST64;
1309 			break;
1310 		}
1311 
1312 		if (is_simm13(off)) {
1313 			opcode |= IMMED;
1314 			rs2 = S13(off);
1315 		} else {
1316 			ctx->tmp_1_used = true;
1317 			emit_loadimm(off, tmp, ctx);
1318 			rs2 = RS2(tmp);
1319 		}
1320 		emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
1321 		break;
1322 	}
1323 
1324 	/* STX: *(size *)(dst + off) = src */
1325 	case BPF_STX | BPF_MEM | BPF_W:
1326 	case BPF_STX | BPF_MEM | BPF_H:
1327 	case BPF_STX | BPF_MEM | BPF_B:
1328 	case BPF_STX | BPF_MEM | BPF_DW: {
1329 		const u8 tmp = bpf2sparc[TMP_REG_1];
1330 		u32 opcode = 0, rs2;
1331 
1332 		switch (BPF_SIZE(code)) {
1333 		case BPF_W:
1334 			opcode = ST32;
1335 			break;
1336 		case BPF_H:
1337 			opcode = ST16;
1338 			break;
1339 		case BPF_B:
1340 			opcode = ST8;
1341 			break;
1342 		case BPF_DW:
1343 			opcode = ST64;
1344 			break;
1345 		}
1346 		if (is_simm13(off)) {
1347 			opcode |= IMMED;
1348 			rs2 = S13(off);
1349 		} else {
1350 			ctx->tmp_1_used = true;
1351 			emit_loadimm(off, tmp, ctx);
1352 			rs2 = RS2(tmp);
1353 		}
1354 		emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
1355 		break;
1356 	}
1357 
1358 	/* STX XADD: lock *(u32 *)(dst + off) += src */
1359 	case BPF_STX | BPF_XADD | BPF_W: {
1360 		const u8 tmp = bpf2sparc[TMP_REG_1];
1361 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1362 		const u8 tmp3 = bpf2sparc[TMP_REG_3];
1363 
1364 		ctx->tmp_1_used = true;
1365 		ctx->tmp_2_used = true;
1366 		ctx->tmp_3_used = true;
1367 		emit_loadimm(off, tmp, ctx);
1368 		emit_alu3(ADD, dst, tmp, tmp, ctx);
1369 
1370 		emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1371 		emit_alu3(ADD, tmp2, src, tmp3, ctx);
1372 		emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1373 		emit_cmp(tmp2, tmp3, ctx);
1374 		emit_branch(BNE, 4, 0, ctx);
1375 		emit_nop(ctx);
1376 		break;
1377 	}
1378 	/* STX XADD: lock *(u64 *)(dst + off) += src */
1379 	case BPF_STX | BPF_XADD | BPF_DW: {
1380 		const u8 tmp = bpf2sparc[TMP_REG_1];
1381 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1382 		const u8 tmp3 = bpf2sparc[TMP_REG_3];
1383 
1384 		ctx->tmp_1_used = true;
1385 		ctx->tmp_2_used = true;
1386 		ctx->tmp_3_used = true;
1387 		emit_loadimm(off, tmp, ctx);
1388 		emit_alu3(ADD, dst, tmp, tmp, ctx);
1389 
1390 		emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1391 		emit_alu3(ADD, tmp2, src, tmp3, ctx);
1392 		emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1393 		emit_cmp(tmp2, tmp3, ctx);
1394 		emit_branch(BNE, 4, 0, ctx);
1395 		emit_nop(ctx);
1396 		break;
1397 	}
1398 #define CHOOSE_LOAD_FUNC(K, func) \
1399 		((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
1400 
1401 	/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
1402 	case BPF_LD | BPF_ABS | BPF_W:
1403 		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_word);
1404 		goto common_load;
1405 	case BPF_LD | BPF_ABS | BPF_H:
1406 		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_half);
1407 		goto common_load;
1408 	case BPF_LD | BPF_ABS | BPF_B:
1409 		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_byte);
1410 		goto common_load;
1411 	/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
1412 	case BPF_LD | BPF_IND | BPF_W:
1413 		func = bpf_jit_load_word;
1414 		goto common_load;
1415 	case BPF_LD | BPF_IND | BPF_H:
1416 		func = bpf_jit_load_half;
1417 		goto common_load;
1418 
1419 	case BPF_LD | BPF_IND | BPF_B:
1420 		func = bpf_jit_load_byte;
1421 	common_load:
1422 		ctx->saw_ld_abs_ind = true;
1423 
1424 		emit_reg_move(bpf2sparc[BPF_REG_6], O0, ctx);
1425 		emit_loadimm(imm, O1, ctx);
1426 
1427 		if (BPF_MODE(code) == BPF_IND)
1428 			emit_alu(ADD, src, O1, ctx);
1429 
1430 		emit_call(func, ctx);
1431 		emit_alu_K(SRA, O1, 0, ctx);
1432 
1433 		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
1434 		break;
1435 
1436 	default:
1437 		pr_err_once("unknown opcode %02x\n", code);
1438 		return -EINVAL;
1439 	}
1440 
1441 	return 0;
1442 }
1443 
1444 static int build_body(struct jit_ctx *ctx)
1445 {
1446 	const struct bpf_prog *prog = ctx->prog;
1447 	int i;
1448 
1449 	for (i = 0; i < prog->len; i++) {
1450 		const struct bpf_insn *insn = &prog->insnsi[i];
1451 		int ret;
1452 
1453 		ret = build_insn(insn, ctx);
1454 
1455 		if (ret > 0) {
1456 			i++;
1457 			ctx->offset[i] = ctx->idx;
1458 			continue;
1459 		}
1460 		ctx->offset[i] = ctx->idx;
1461 		if (ret)
1462 			return ret;
1463 	}
1464 	return 0;
1465 }
1466 
1467 static void jit_fill_hole(void *area, unsigned int size)
1468 {
1469 	u32 *ptr;
1470 	/* We are guaranteed to have aligned memory. */
1471 	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
1472 		*ptr++ = 0x91d02005; /* ta 5 */
1473 }
1474 
1475 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1476 {
1477 	struct bpf_prog *tmp, *orig_prog = prog;
1478 	struct bpf_binary_header *header;
1479 	bool tmp_blinded = false;
1480 	struct jit_ctx ctx;
1481 	u32 image_size;
1482 	u8 *image_ptr;
1483 	int pass;
1484 
1485 	if (!bpf_jit_enable)
1486 		return orig_prog;
1487 
1488 	tmp = bpf_jit_blind_constants(prog);
1489 	/* If blinding was requested and we failed during blinding,
1490 	 * we must fall back to the interpreter.
1491 	 */
1492 	if (IS_ERR(tmp))
1493 		return orig_prog;
1494 	if (tmp != prog) {
1495 		tmp_blinded = true;
1496 		prog = tmp;
1497 	}
1498 
1499 	memset(&ctx, 0, sizeof(ctx));
1500 	ctx.prog = prog;
1501 
1502 	ctx.offset = kcalloc(prog->len, sizeof(unsigned int), GFP_KERNEL);
1503 	if (ctx.offset == NULL) {
1504 		prog = orig_prog;
1505 		goto out;
1506 	}
1507 
1508 	/* Fake pass to detect features used, and get an accurate assessment
1509 	 * of what the final image size will be.
1510 	 */
1511 	if (build_body(&ctx)) {
1512 		prog = orig_prog;
1513 		goto out_off;
1514 	}
1515 	build_prologue(&ctx);
1516 	build_epilogue(&ctx);
1517 
1518 	/* Now we know the actual image size. */
1519 	image_size = sizeof(u32) * ctx.idx;
1520 	header = bpf_jit_binary_alloc(image_size, &image_ptr,
1521 				      sizeof(u32), jit_fill_hole);
1522 	if (header == NULL) {
1523 		prog = orig_prog;
1524 		goto out_off;
1525 	}
1526 
1527 	ctx.image = (u32 *)image_ptr;
1528 
1529 	for (pass = 1; pass < 3; pass++) {
1530 		ctx.idx = 0;
1531 
1532 		build_prologue(&ctx);
1533 
1534 		if (build_body(&ctx)) {
1535 			bpf_jit_binary_free(header);
1536 			prog = orig_prog;
1537 			goto out_off;
1538 		}
1539 
1540 		build_epilogue(&ctx);
1541 
1542 		if (bpf_jit_enable > 1)
1543 			pr_info("Pass %d: shrink = %d, seen = [%c%c%c%c%c%c%c]\n", pass,
1544 				image_size - (ctx.idx * 4),
1545 				ctx.tmp_1_used ? '1' : ' ',
1546 				ctx.tmp_2_used ? '2' : ' ',
1547 				ctx.tmp_3_used ? '3' : ' ',
1548 				ctx.saw_ld_abs_ind ? 'L' : ' ',
1549 				ctx.saw_frame_pointer ? 'F' : ' ',
1550 				ctx.saw_call ? 'C' : ' ',
1551 				ctx.saw_tail_call ? 'T' : ' ');
1552 	}
1553 
1554 	if (bpf_jit_enable > 1)
1555 		bpf_jit_dump(prog->len, image_size, pass, ctx.image);
1556 
1557 	bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));
1558 
1559 	bpf_jit_binary_lock_ro(header);
1560 
1561 	prog->bpf_func = (void *)ctx.image;
1562 	prog->jited = 1;
1563 	prog->jited_len = image_size;
1564 
1565 out_off:
1566 	kfree(ctx.offset);
1567 out:
1568 	if (tmp_blinded)
1569 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1570 					   tmp : orig_prog);
1571 	return prog;
1572 }
1573