xref: /openbmc/linux/arch/sparc/net/bpf_jit_comp_64.c (revision bc05aa6e)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/moduleloader.h>
3 #include <linux/workqueue.h>
4 #include <linux/netdevice.h>
5 #include <linux/filter.h>
6 #include <linux/bpf.h>
7 #include <linux/cache.h>
8 #include <linux/if_vlan.h>
9 
10 #include <asm/cacheflush.h>
11 #include <asm/ptrace.h>
12 
13 #include "bpf_jit_64.h"
14 
15 static inline bool is_simm13(unsigned int value)
16 {
17 	return value + 0x1000 < 0x2000;
18 }
19 
20 static inline bool is_simm10(unsigned int value)
21 {
22 	return value + 0x200 < 0x400;
23 }
24 
25 static inline bool is_simm5(unsigned int value)
26 {
27 	return value + 0x10 < 0x20;
28 }
29 
30 static inline bool is_sethi(unsigned int value)
31 {
32 	return (value & ~0x3fffff) == 0;
33 }
34 
35 static void bpf_flush_icache(void *start_, void *end_)
36 {
37 	/* Cheetah's I-cache is fully coherent.  */
38 	if (tlb_type == spitfire) {
39 		unsigned long start = (unsigned long) start_;
40 		unsigned long end = (unsigned long) end_;
41 
42 		start &= ~7UL;
43 		end = (end + 7UL) & ~7UL;
44 		while (start < end) {
45 			flushi(start);
46 			start += 32;
47 		}
48 	}
49 }
50 
51 #define SEEN_DATAREF 1 /* might call external helpers */
52 #define SEEN_XREG    2 /* ebx is used */
53 #define SEEN_MEM     4 /* use mem[] for temporary storage */
54 
55 #define S13(X)		((X) & 0x1fff)
56 #define S5(X)		((X) & 0x1f)
57 #define IMMED		0x00002000
58 #define RD(X)		((X) << 25)
59 #define RS1(X)		((X) << 14)
60 #define RS2(X)		((X))
61 #define OP(X)		((X) << 30)
62 #define OP2(X)		((X) << 22)
63 #define OP3(X)		((X) << 19)
64 #define COND(X)		(((X) & 0xf) << 25)
65 #define CBCOND(X)	(((X) & 0x1f) << 25)
66 #define F1(X)		OP(X)
67 #define F2(X, Y)	(OP(X) | OP2(Y))
68 #define F3(X, Y)	(OP(X) | OP3(Y))
69 #define ASI(X)		(((X) & 0xff) << 5)
70 
71 #define CONDN		COND(0x0)
72 #define CONDE		COND(0x1)
73 #define CONDLE		COND(0x2)
74 #define CONDL		COND(0x3)
75 #define CONDLEU		COND(0x4)
76 #define CONDCS		COND(0x5)
77 #define CONDNEG		COND(0x6)
78 #define CONDVC		COND(0x7)
79 #define CONDA		COND(0x8)
80 #define CONDNE		COND(0x9)
81 #define CONDG		COND(0xa)
82 #define CONDGE		COND(0xb)
83 #define CONDGU		COND(0xc)
84 #define CONDCC		COND(0xd)
85 #define CONDPOS		COND(0xe)
86 #define CONDVS		COND(0xf)
87 
88 #define CONDGEU		CONDCC
89 #define CONDLU		CONDCS
90 
91 #define WDISP22(X)	(((X) >> 2) & 0x3fffff)
92 #define WDISP19(X)	(((X) >> 2) & 0x7ffff)
93 
94 /* The 10-bit branch displacement for CBCOND is split into two fields */
95 static u32 WDISP10(u32 off)
96 {
97 	u32 ret = ((off >> 2) & 0xff) << 5;
98 
99 	ret |= ((off >> (2 + 8)) & 0x03) << 19;
100 
101 	return ret;
102 }
103 
104 #define CBCONDE		CBCOND(0x09)
105 #define CBCONDLE	CBCOND(0x0a)
106 #define CBCONDL		CBCOND(0x0b)
107 #define CBCONDLEU	CBCOND(0x0c)
108 #define CBCONDCS	CBCOND(0x0d)
109 #define CBCONDN		CBCOND(0x0e)
110 #define CBCONDVS	CBCOND(0x0f)
111 #define CBCONDNE	CBCOND(0x19)
112 #define CBCONDG		CBCOND(0x1a)
113 #define CBCONDGE	CBCOND(0x1b)
114 #define CBCONDGU	CBCOND(0x1c)
115 #define CBCONDCC	CBCOND(0x1d)
116 #define CBCONDPOS	CBCOND(0x1e)
117 #define CBCONDVC	CBCOND(0x1f)
118 
119 #define CBCONDGEU	CBCONDCC
120 #define CBCONDLU	CBCONDCS
121 
122 #define ANNUL		(1 << 29)
123 #define XCC		(1 << 21)
124 
125 #define BRANCH		(F2(0, 1) | XCC)
126 #define CBCOND_OP	(F2(0, 3) | XCC)
127 
128 #define BA		(BRANCH | CONDA)
129 #define BG		(BRANCH | CONDG)
130 #define BL		(BRANCH | CONDL)
131 #define BLE		(BRANCH | CONDLE)
132 #define BGU		(BRANCH | CONDGU)
133 #define BLEU		(BRANCH | CONDLEU)
134 #define BGE		(BRANCH | CONDGE)
135 #define BGEU		(BRANCH | CONDGEU)
136 #define BLU		(BRANCH | CONDLU)
137 #define BE		(BRANCH | CONDE)
138 #define BNE		(BRANCH | CONDNE)
139 
140 #define SETHI(K, REG)	\
141 	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
142 #define OR_LO(K, REG)	\
143 	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
144 
145 #define ADD		F3(2, 0x00)
146 #define AND		F3(2, 0x01)
147 #define ANDCC		F3(2, 0x11)
148 #define OR		F3(2, 0x02)
149 #define XOR		F3(2, 0x03)
150 #define SUB		F3(2, 0x04)
151 #define SUBCC		F3(2, 0x14)
152 #define MUL		F3(2, 0x0a)
153 #define MULX		F3(2, 0x09)
154 #define UDIVX		F3(2, 0x0d)
155 #define DIV		F3(2, 0x0e)
156 #define SLL		F3(2, 0x25)
157 #define SLLX		(F3(2, 0x25)|(1<<12))
158 #define SRA		F3(2, 0x27)
159 #define SRAX		(F3(2, 0x27)|(1<<12))
160 #define SRL		F3(2, 0x26)
161 #define SRLX		(F3(2, 0x26)|(1<<12))
162 #define JMPL		F3(2, 0x38)
163 #define SAVE		F3(2, 0x3c)
164 #define RESTORE		F3(2, 0x3d)
165 #define CALL		F1(1)
166 #define BR		F2(0, 0x01)
167 #define RD_Y		F3(2, 0x28)
168 #define WR_Y		F3(2, 0x30)
169 
170 #define LD32		F3(3, 0x00)
171 #define LD8		F3(3, 0x01)
172 #define LD16		F3(3, 0x02)
173 #define LD64		F3(3, 0x0b)
174 #define LD64A		F3(3, 0x1b)
175 #define ST8		F3(3, 0x05)
176 #define ST16		F3(3, 0x06)
177 #define ST32		F3(3, 0x04)
178 #define ST64		F3(3, 0x0e)
179 
180 #define CAS		F3(3, 0x3c)
181 #define CASX		F3(3, 0x3e)
182 
183 #define LDPTR		LD64
184 #define BASE_STACKFRAME	176
185 
186 #define LD32I		(LD32 | IMMED)
187 #define LD8I		(LD8 | IMMED)
188 #define LD16I		(LD16 | IMMED)
189 #define LD64I		(LD64 | IMMED)
190 #define LDPTRI		(LDPTR | IMMED)
191 #define ST32I		(ST32 | IMMED)
192 
193 struct jit_ctx {
194 	struct bpf_prog		*prog;
195 	unsigned int		*offset;
196 	int			idx;
197 	int			epilogue_offset;
198 	bool 			tmp_1_used;
199 	bool 			tmp_2_used;
200 	bool 			tmp_3_used;
201 	bool			saw_ld_abs_ind;
202 	bool			saw_frame_pointer;
203 	bool			saw_call;
204 	bool			saw_tail_call;
205 	u32			*image;
206 };
207 
208 #define TMP_REG_1	(MAX_BPF_JIT_REG + 0)
209 #define TMP_REG_2	(MAX_BPF_JIT_REG + 1)
210 #define SKB_HLEN_REG	(MAX_BPF_JIT_REG + 2)
211 #define SKB_DATA_REG	(MAX_BPF_JIT_REG + 3)
212 #define TMP_REG_3	(MAX_BPF_JIT_REG + 4)
213 
214 /* Map BPF registers to SPARC registers */
215 static const int bpf2sparc[] = {
216 	/* return value from in-kernel function, and exit value from eBPF */
217 	[BPF_REG_0] = O5,
218 
219 	/* arguments from eBPF program to in-kernel function */
220 	[BPF_REG_1] = O0,
221 	[BPF_REG_2] = O1,
222 	[BPF_REG_3] = O2,
223 	[BPF_REG_4] = O3,
224 	[BPF_REG_5] = O4,
225 
226 	/* callee saved registers that in-kernel function will preserve */
227 	[BPF_REG_6] = L0,
228 	[BPF_REG_7] = L1,
229 	[BPF_REG_8] = L2,
230 	[BPF_REG_9] = L3,
231 
232 	/* read-only frame pointer to access stack */
233 	[BPF_REG_FP] = L6,
234 
235 	[BPF_REG_AX] = G7,
236 
237 	/* temporary register for internal BPF JIT */
238 	[TMP_REG_1] = G1,
239 	[TMP_REG_2] = G2,
240 	[TMP_REG_3] = G3,
241 
242 	[SKB_HLEN_REG] = L4,
243 	[SKB_DATA_REG] = L5,
244 };
245 
246 static void emit(const u32 insn, struct jit_ctx *ctx)
247 {
248 	if (ctx->image != NULL)
249 		ctx->image[ctx->idx] = insn;
250 
251 	ctx->idx++;
252 }
253 
254 static void emit_call(u32 *func, struct jit_ctx *ctx)
255 {
256 	if (ctx->image != NULL) {
257 		void *here = &ctx->image[ctx->idx];
258 		unsigned int off;
259 
260 		off = (void *)func - here;
261 		ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
262 	}
263 	ctx->idx++;
264 }
265 
266 static void emit_nop(struct jit_ctx *ctx)
267 {
268 	emit(SETHI(0, G0), ctx);
269 }
270 
271 static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
272 {
273 	emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
274 }
275 
276 /* Emit 32-bit constant, zero extended. */
277 static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
278 {
279 	emit(SETHI(K, reg), ctx);
280 	emit(OR_LO(K, reg), ctx);
281 }
282 
283 /* Emit 32-bit constant, sign extended. */
284 static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
285 {
286 	if (K >= 0) {
287 		emit(SETHI(K, reg), ctx);
288 		emit(OR_LO(K, reg), ctx);
289 	} else {
290 		u32 hbits = ~(u32) K;
291 		u32 lbits = -0x400 | (u32) K;
292 
293 		emit(SETHI(hbits, reg), ctx);
294 		emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
295 	}
296 }
297 
298 static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
299 {
300 	emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
301 }
302 
303 static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
304 {
305 	emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
306 }
307 
308 static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
309 		       struct jit_ctx *ctx)
310 {
311 	bool small_immed = is_simm13(imm);
312 	unsigned int insn = opcode;
313 
314 	insn |= RS1(dst) | RD(dst);
315 	if (small_immed) {
316 		emit(insn | IMMED | S13(imm), ctx);
317 	} else {
318 		unsigned int tmp = bpf2sparc[TMP_REG_1];
319 
320 		ctx->tmp_1_used = true;
321 
322 		emit_set_const_sext(imm, tmp, ctx);
323 		emit(insn | RS2(tmp), ctx);
324 	}
325 }
326 
327 static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
328 			unsigned int dst, struct jit_ctx *ctx)
329 {
330 	bool small_immed = is_simm13(imm);
331 	unsigned int insn = opcode;
332 
333 	insn |= RS1(src) | RD(dst);
334 	if (small_immed) {
335 		emit(insn | IMMED | S13(imm), ctx);
336 	} else {
337 		unsigned int tmp = bpf2sparc[TMP_REG_1];
338 
339 		ctx->tmp_1_used = true;
340 
341 		emit_set_const_sext(imm, tmp, ctx);
342 		emit(insn | RS2(tmp), ctx);
343 	}
344 }
345 
346 static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
347 {
348 	if (K >= 0 && is_simm13(K)) {
349 		/* or %g0, K, DEST */
350 		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
351 	} else {
352 		emit_set_const(K, dest, ctx);
353 	}
354 }
355 
356 static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
357 {
358 	if (is_simm13(K)) {
359 		/* or %g0, K, DEST */
360 		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
361 	} else {
362 		emit_set_const(K, dest, ctx);
363 	}
364 }
365 
366 static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
367 {
368 	if (is_simm13(K)) {
369 		/* or %g0, K, DEST */
370 		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
371 	} else {
372 		emit_set_const_sext(K, dest, ctx);
373 	}
374 }
375 
376 static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
377 				   int *hbsp, int *lbsp, int *abbasp)
378 {
379 	int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
380 	int i;
381 
382 	lowest_bit_set = highest_bit_set = -1;
383 	i = 0;
384 	do {
385 		if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
386 			lowest_bit_set = i;
387 		if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
388 			highest_bit_set = (64 - i - 1);
389 	}  while (++i < 32 && (highest_bit_set == -1 ||
390 			       lowest_bit_set == -1));
391 	if (i == 32) {
392 		i = 0;
393 		do {
394 			if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
395 				lowest_bit_set = i + 32;
396 			if (highest_bit_set == -1 &&
397 			    ((low_bits >> (32 - i - 1)) & 1))
398 				highest_bit_set = 32 - i - 1;
399 		} while (++i < 32 && (highest_bit_set == -1 ||
400 				      lowest_bit_set == -1));
401 	}
402 
403 	all_bits_between_are_set = 1;
404 	for (i = lowest_bit_set; i <= highest_bit_set; i++) {
405 		if (i < 32) {
406 			if ((low_bits & (1 << i)) != 0)
407 				continue;
408 		} else {
409 			if ((high_bits & (1 << (i - 32))) != 0)
410 				continue;
411 		}
412 		all_bits_between_are_set = 0;
413 		break;
414 	}
415 	*hbsp = highest_bit_set;
416 	*lbsp = lowest_bit_set;
417 	*abbasp = all_bits_between_are_set;
418 }
419 
420 static unsigned long create_simple_focus_bits(unsigned long high_bits,
421 					      unsigned long low_bits,
422 					      int lowest_bit_set, int shift)
423 {
424 	long hi, lo;
425 
426 	if (lowest_bit_set < 32) {
427 		lo = (low_bits >> lowest_bit_set) << shift;
428 		hi = ((high_bits << (32 - lowest_bit_set)) << shift);
429 	} else {
430 		lo = 0;
431 		hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
432 	}
433 	return hi | lo;
434 }
435 
436 static bool const64_is_2insns(unsigned long high_bits,
437 			      unsigned long low_bits)
438 {
439 	int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
440 
441 	if (high_bits == 0 || high_bits == 0xffffffff)
442 		return true;
443 
444 	analyze_64bit_constant(high_bits, low_bits,
445 			       &highest_bit_set, &lowest_bit_set,
446 			       &all_bits_between_are_set);
447 
448 	if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
449 	    all_bits_between_are_set != 0)
450 		return true;
451 
452 	if (highest_bit_set - lowest_bit_set < 21)
453 		return true;
454 
455 	return false;
456 }
457 
458 static void sparc_emit_set_const64_quick2(unsigned long high_bits,
459 					  unsigned long low_imm,
460 					  unsigned int dest,
461 					  int shift_count, struct jit_ctx *ctx)
462 {
463 	emit_loadimm32(high_bits, dest, ctx);
464 
465 	/* Now shift it up into place.  */
466 	emit_alu_K(SLLX, dest, shift_count, ctx);
467 
468 	/* If there is a low immediate part piece, finish up by
469 	 * putting that in as well.
470 	 */
471 	if (low_imm != 0)
472 		emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
473 }
474 
475 static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
476 {
477 	int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
478 	unsigned int tmp = bpf2sparc[TMP_REG_1];
479 	u32 low_bits = (K & 0xffffffff);
480 	u32 high_bits = (K >> 32);
481 
482 	/* These two tests also take care of all of the one
483 	 * instruction cases.
484 	 */
485 	if (high_bits == 0xffffffff && (low_bits & 0x80000000))
486 		return emit_loadimm_sext(K, dest, ctx);
487 	if (high_bits == 0x00000000)
488 		return emit_loadimm32(K, dest, ctx);
489 
490 	analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
491 			       &lowest_bit_set, &all_bits_between_are_set);
492 
493 	/* 1) mov	-1, %reg
494 	 *    sllx	%reg, shift, %reg
495 	 * 2) mov	-1, %reg
496 	 *    srlx	%reg, shift, %reg
497 	 * 3) mov	some_small_const, %reg
498 	 *    sllx	%reg, shift, %reg
499 	 */
500 	if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
501 	     all_bits_between_are_set != 0) ||
502 	    ((highest_bit_set - lowest_bit_set) < 12)) {
503 		int shift = lowest_bit_set;
504 		long the_const = -1;
505 
506 		if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
507 		    all_bits_between_are_set == 0) {
508 			the_const =
509 				create_simple_focus_bits(high_bits, low_bits,
510 							 lowest_bit_set, 0);
511 		} else if (lowest_bit_set == 0)
512 			shift = -(63 - highest_bit_set);
513 
514 		emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
515 		if (shift > 0)
516 			emit_alu_K(SLLX, dest, shift, ctx);
517 		else if (shift < 0)
518 			emit_alu_K(SRLX, dest, -shift, ctx);
519 
520 		return;
521 	}
522 
523 	/* Now a range of 22 or less bits set somewhere.
524 	 * 1) sethi	%hi(focus_bits), %reg
525 	 *    sllx	%reg, shift, %reg
526 	 * 2) sethi	%hi(focus_bits), %reg
527 	 *    srlx	%reg, shift, %reg
528 	 */
529 	if ((highest_bit_set - lowest_bit_set) < 21) {
530 		unsigned long focus_bits =
531 			create_simple_focus_bits(high_bits, low_bits,
532 						 lowest_bit_set, 10);
533 
534 		emit(SETHI(focus_bits, dest), ctx);
535 
536 		/* If lowest_bit_set == 10 then a sethi alone could
537 		 * have done it.
538 		 */
539 		if (lowest_bit_set < 10)
540 			emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
541 		else if (lowest_bit_set > 10)
542 			emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
543 		return;
544 	}
545 
546 	/* Ok, now 3 instruction sequences.  */
547 	if (low_bits == 0) {
548 		emit_loadimm32(high_bits, dest, ctx);
549 		emit_alu_K(SLLX, dest, 32, ctx);
550 		return;
551 	}
552 
553 	/* We may be able to do something quick
554 	 * when the constant is negated, so try that.
555 	 */
556 	if (const64_is_2insns((~high_bits) & 0xffffffff,
557 			      (~low_bits) & 0xfffffc00)) {
558 		/* NOTE: The trailing bits get XOR'd so we need the
559 		 * non-negated bits, not the negated ones.
560 		 */
561 		unsigned long trailing_bits = low_bits & 0x3ff;
562 
563 		if ((((~high_bits) & 0xffffffff) == 0 &&
564 		     ((~low_bits) & 0x80000000) == 0) ||
565 		    (((~high_bits) & 0xffffffff) == 0xffffffff &&
566 		     ((~low_bits) & 0x80000000) != 0)) {
567 			unsigned long fast_int = (~low_bits & 0xffffffff);
568 
569 			if ((is_sethi(fast_int) &&
570 			     (~high_bits & 0xffffffff) == 0)) {
571 				emit(SETHI(fast_int, dest), ctx);
572 			} else if (is_simm13(fast_int)) {
573 				emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
574 			} else {
575 				emit_loadimm64(fast_int, dest, ctx);
576 			}
577 		} else {
578 			u64 n = ((~low_bits) & 0xfffffc00) |
579 				(((unsigned long)((~high_bits) & 0xffffffff))<<32);
580 			emit_loadimm64(n, dest, ctx);
581 		}
582 
583 		low_bits = -0x400 | trailing_bits;
584 
585 		emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
586 		return;
587 	}
588 
589 	/* 1) sethi	%hi(xxx), %reg
590 	 *    or	%reg, %lo(xxx), %reg
591 	 *    sllx	%reg, yyy, %reg
592 	 */
593 	if ((highest_bit_set - lowest_bit_set) < 32) {
594 		unsigned long focus_bits =
595 			create_simple_focus_bits(high_bits, low_bits,
596 						 lowest_bit_set, 0);
597 
598 		/* So what we know is that the set bits straddle the
599 		 * middle of the 64-bit word.
600 		 */
601 		sparc_emit_set_const64_quick2(focus_bits, 0, dest,
602 					      lowest_bit_set, ctx);
603 		return;
604 	}
605 
606 	/* 1) sethi	%hi(high_bits), %reg
607 	 *    or	%reg, %lo(high_bits), %reg
608 	 *    sllx	%reg, 32, %reg
609 	 *    or	%reg, low_bits, %reg
610 	 */
611 	if (is_simm13(low_bits) && ((int)low_bits > 0)) {
612 		sparc_emit_set_const64_quick2(high_bits, low_bits,
613 					      dest, 32, ctx);
614 		return;
615 	}
616 
617 	/* Oh well, we tried... Do a full 64-bit decomposition.  */
618 	ctx->tmp_1_used = true;
619 
620 	emit_loadimm32(high_bits, tmp, ctx);
621 	emit_loadimm32(low_bits, dest, ctx);
622 	emit_alu_K(SLLX, tmp, 32, ctx);
623 	emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
624 }
625 
626 static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
627 			struct jit_ctx *ctx)
628 {
629 	unsigned int off = to_idx - from_idx;
630 
631 	if (br_opc & XCC)
632 		emit(br_opc | WDISP19(off << 2), ctx);
633 	else
634 		emit(br_opc | WDISP22(off << 2), ctx);
635 }
636 
637 static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
638 			const u8 dst, const u8 src, struct jit_ctx *ctx)
639 {
640 	unsigned int off = to_idx - from_idx;
641 
642 	emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
643 }
644 
645 static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
646 			 const u8 dst, s32 imm, struct jit_ctx *ctx)
647 {
648 	unsigned int off = to_idx - from_idx;
649 
650 	emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
651 }
652 
653 #define emit_read_y(REG, CTX)	emit(RD_Y | RD(REG), CTX)
654 #define emit_write_y(REG, CTX)	emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
655 
656 #define emit_cmp(R1, R2, CTX)				\
657 	emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
658 
659 #define emit_cmpi(R1, IMM, CTX)				\
660 	emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
661 
662 #define emit_btst(R1, R2, CTX)				\
663 	emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
664 
665 #define emit_btsti(R1, IMM, CTX)			\
666 	emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
667 
668 static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
669 				   const s32 imm, bool is_imm, int branch_dst,
670 				   struct jit_ctx *ctx)
671 {
672 	bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
673 	const u8 tmp = bpf2sparc[TMP_REG_1];
674 
675 	branch_dst = ctx->offset[branch_dst];
676 
677 	if (!is_simm10(branch_dst - ctx->idx) ||
678 	    BPF_OP(code) == BPF_JSET)
679 		use_cbcond = false;
680 
681 	if (is_imm) {
682 		bool fits = true;
683 
684 		if (use_cbcond) {
685 			if (!is_simm5(imm))
686 				fits = false;
687 		} else if (!is_simm13(imm)) {
688 			fits = false;
689 		}
690 		if (!fits) {
691 			ctx->tmp_1_used = true;
692 			emit_loadimm_sext(imm, tmp, ctx);
693 			src = tmp;
694 			is_imm = false;
695 		}
696 	}
697 
698 	if (!use_cbcond) {
699 		u32 br_opcode;
700 
701 		if (BPF_OP(code) == BPF_JSET) {
702 			if (is_imm)
703 				emit_btsti(dst, imm, ctx);
704 			else
705 				emit_btst(dst, src, ctx);
706 		} else {
707 			if (is_imm)
708 				emit_cmpi(dst, imm, ctx);
709 			else
710 				emit_cmp(dst, src, ctx);
711 		}
712 		switch (BPF_OP(code)) {
713 		case BPF_JEQ:
714 			br_opcode = BE;
715 			break;
716 		case BPF_JGT:
717 			br_opcode = BGU;
718 			break;
719 		case BPF_JLT:
720 			br_opcode = BLU;
721 			break;
722 		case BPF_JGE:
723 			br_opcode = BGEU;
724 			break;
725 		case BPF_JLE:
726 			br_opcode = BLEU;
727 			break;
728 		case BPF_JSET:
729 		case BPF_JNE:
730 			br_opcode = BNE;
731 			break;
732 		case BPF_JSGT:
733 			br_opcode = BG;
734 			break;
735 		case BPF_JSLT:
736 			br_opcode = BL;
737 			break;
738 		case BPF_JSGE:
739 			br_opcode = BGE;
740 			break;
741 		case BPF_JSLE:
742 			br_opcode = BLE;
743 			break;
744 		default:
745 			/* Make sure we dont leak kernel information to the
746 			 * user.
747 			 */
748 			return -EFAULT;
749 		}
750 		emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
751 		emit_nop(ctx);
752 	} else {
753 		u32 cbcond_opcode;
754 
755 		switch (BPF_OP(code)) {
756 		case BPF_JEQ:
757 			cbcond_opcode = CBCONDE;
758 			break;
759 		case BPF_JGT:
760 			cbcond_opcode = CBCONDGU;
761 			break;
762 		case BPF_JLT:
763 			cbcond_opcode = CBCONDLU;
764 			break;
765 		case BPF_JGE:
766 			cbcond_opcode = CBCONDGEU;
767 			break;
768 		case BPF_JLE:
769 			cbcond_opcode = CBCONDLEU;
770 			break;
771 		case BPF_JNE:
772 			cbcond_opcode = CBCONDNE;
773 			break;
774 		case BPF_JSGT:
775 			cbcond_opcode = CBCONDG;
776 			break;
777 		case BPF_JSLT:
778 			cbcond_opcode = CBCONDL;
779 			break;
780 		case BPF_JSGE:
781 			cbcond_opcode = CBCONDGE;
782 			break;
783 		case BPF_JSLE:
784 			cbcond_opcode = CBCONDLE;
785 			break;
786 		default:
787 			/* Make sure we dont leak kernel information to the
788 			 * user.
789 			 */
790 			return -EFAULT;
791 		}
792 		cbcond_opcode |= CBCOND_OP;
793 		if (is_imm)
794 			emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
795 				     dst, imm, ctx);
796 		else
797 			emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
798 				    dst, src, ctx);
799 	}
800 	return 0;
801 }
802 
803 static void load_skb_regs(struct jit_ctx *ctx, u8 r_skb)
804 {
805 	const u8 r_headlen = bpf2sparc[SKB_HLEN_REG];
806 	const u8 r_data = bpf2sparc[SKB_DATA_REG];
807 	const u8 r_tmp = bpf2sparc[TMP_REG_1];
808 	unsigned int off;
809 
810 	off = offsetof(struct sk_buff, len);
811 	emit(LD32I | RS1(r_skb) | S13(off) | RD(r_headlen), ctx);
812 
813 	off = offsetof(struct sk_buff, data_len);
814 	emit(LD32I | RS1(r_skb) | S13(off) | RD(r_tmp), ctx);
815 
816 	emit(SUB | RS1(r_headlen) | RS2(r_tmp) | RD(r_headlen), ctx);
817 
818 	off = offsetof(struct sk_buff, data);
819 	emit(LDPTRI | RS1(r_skb) | S13(off) | RD(r_data), ctx);
820 }
821 
822 /* Just skip the save instruction and the ctx register move.  */
823 #define BPF_TAILCALL_PROLOGUE_SKIP	16
824 #define BPF_TAILCALL_CNT_SP_OFF		(STACK_BIAS + 128)
825 
826 static void build_prologue(struct jit_ctx *ctx)
827 {
828 	s32 stack_needed = BASE_STACKFRAME;
829 
830 	if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
831 		struct bpf_prog *prog = ctx->prog;
832 		u32 stack_depth;
833 
834 		stack_depth = prog->aux->stack_depth;
835 		stack_needed += round_up(stack_depth, 16);
836 	}
837 
838 	if (ctx->saw_tail_call)
839 		stack_needed += 8;
840 
841 	/* save %sp, -176, %sp */
842 	emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
843 
844 	/* tail_call_cnt = 0 */
845 	if (ctx->saw_tail_call) {
846 		u32 off = BPF_TAILCALL_CNT_SP_OFF;
847 
848 		emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
849 	} else {
850 		emit_nop(ctx);
851 	}
852 	if (ctx->saw_frame_pointer) {
853 		const u8 vfp = bpf2sparc[BPF_REG_FP];
854 
855 		emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
856 	}
857 
858 	emit_reg_move(I0, O0, ctx);
859 	/* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
860 
861 	if (ctx->saw_ld_abs_ind)
862 		load_skb_regs(ctx, bpf2sparc[BPF_REG_1]);
863 }
864 
865 static void build_epilogue(struct jit_ctx *ctx)
866 {
867 	ctx->epilogue_offset = ctx->idx;
868 
869 	/* ret (jmpl %i7 + 8, %g0) */
870 	emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
871 
872 	/* restore %i5, %g0, %o0 */
873 	emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
874 }
875 
876 static void emit_tail_call(struct jit_ctx *ctx)
877 {
878 	const u8 bpf_array = bpf2sparc[BPF_REG_2];
879 	const u8 bpf_index = bpf2sparc[BPF_REG_3];
880 	const u8 tmp = bpf2sparc[TMP_REG_1];
881 	u32 off;
882 
883 	ctx->saw_tail_call = true;
884 
885 	off = offsetof(struct bpf_array, map.max_entries);
886 	emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
887 	emit_cmp(bpf_index, tmp, ctx);
888 #define OFFSET1 17
889 	emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
890 	emit_nop(ctx);
891 
892 	off = BPF_TAILCALL_CNT_SP_OFF;
893 	emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
894 	emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
895 #define OFFSET2 13
896 	emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
897 	emit_nop(ctx);
898 
899 	emit_alu_K(ADD, tmp, 1, ctx);
900 	off = BPF_TAILCALL_CNT_SP_OFF;
901 	emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
902 
903 	emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
904 	emit_alu(ADD, bpf_array, tmp, ctx);
905 	off = offsetof(struct bpf_array, ptrs);
906 	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
907 
908 	emit_cmpi(tmp, 0, ctx);
909 #define OFFSET3 5
910 	emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
911 	emit_nop(ctx);
912 
913 	off = offsetof(struct bpf_prog, bpf_func);
914 	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
915 
916 	off = BPF_TAILCALL_PROLOGUE_SKIP;
917 	emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
918 	emit_nop(ctx);
919 }
920 
921 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
922 {
923 	const u8 code = insn->code;
924 	const u8 dst = bpf2sparc[insn->dst_reg];
925 	const u8 src = bpf2sparc[insn->src_reg];
926 	const int i = insn - ctx->prog->insnsi;
927 	const s16 off = insn->off;
928 	const s32 imm = insn->imm;
929 	u32 *func;
930 
931 	if (insn->src_reg == BPF_REG_FP)
932 		ctx->saw_frame_pointer = true;
933 
934 	switch (code) {
935 	/* dst = src */
936 	case BPF_ALU | BPF_MOV | BPF_X:
937 		emit_alu3_K(SRL, src, 0, dst, ctx);
938 		break;
939 	case BPF_ALU64 | BPF_MOV | BPF_X:
940 		emit_reg_move(src, dst, ctx);
941 		break;
942 	/* dst = dst OP src */
943 	case BPF_ALU | BPF_ADD | BPF_X:
944 	case BPF_ALU64 | BPF_ADD | BPF_X:
945 		emit_alu(ADD, src, dst, ctx);
946 		goto do_alu32_trunc;
947 	case BPF_ALU | BPF_SUB | BPF_X:
948 	case BPF_ALU64 | BPF_SUB | BPF_X:
949 		emit_alu(SUB, src, dst, ctx);
950 		goto do_alu32_trunc;
951 	case BPF_ALU | BPF_AND | BPF_X:
952 	case BPF_ALU64 | BPF_AND | BPF_X:
953 		emit_alu(AND, src, dst, ctx);
954 		goto do_alu32_trunc;
955 	case BPF_ALU | BPF_OR | BPF_X:
956 	case BPF_ALU64 | BPF_OR | BPF_X:
957 		emit_alu(OR, src, dst, ctx);
958 		goto do_alu32_trunc;
959 	case BPF_ALU | BPF_XOR | BPF_X:
960 	case BPF_ALU64 | BPF_XOR | BPF_X:
961 		emit_alu(XOR, src, dst, ctx);
962 		goto do_alu32_trunc;
963 	case BPF_ALU | BPF_MUL | BPF_X:
964 		emit_alu(MUL, src, dst, ctx);
965 		goto do_alu32_trunc;
966 	case BPF_ALU64 | BPF_MUL | BPF_X:
967 		emit_alu(MULX, src, dst, ctx);
968 		break;
969 	case BPF_ALU | BPF_DIV | BPF_X:
970 		emit_write_y(G0, ctx);
971 		emit_alu(DIV, src, dst, ctx);
972 		break;
973 	case BPF_ALU64 | BPF_DIV | BPF_X:
974 		emit_alu(UDIVX, src, dst, ctx);
975 		break;
976 	case BPF_ALU | BPF_MOD | BPF_X: {
977 		const u8 tmp = bpf2sparc[TMP_REG_1];
978 
979 		ctx->tmp_1_used = true;
980 
981 		emit_write_y(G0, ctx);
982 		emit_alu3(DIV, dst, src, tmp, ctx);
983 		emit_alu3(MULX, tmp, src, tmp, ctx);
984 		emit_alu3(SUB, dst, tmp, dst, ctx);
985 		goto do_alu32_trunc;
986 	}
987 	case BPF_ALU64 | BPF_MOD | BPF_X: {
988 		const u8 tmp = bpf2sparc[TMP_REG_1];
989 
990 		ctx->tmp_1_used = true;
991 
992 		emit_alu3(UDIVX, dst, src, tmp, ctx);
993 		emit_alu3(MULX, tmp, src, tmp, ctx);
994 		emit_alu3(SUB, dst, tmp, dst, ctx);
995 		break;
996 	}
997 	case BPF_ALU | BPF_LSH | BPF_X:
998 		emit_alu(SLL, src, dst, ctx);
999 		goto do_alu32_trunc;
1000 	case BPF_ALU64 | BPF_LSH | BPF_X:
1001 		emit_alu(SLLX, src, dst, ctx);
1002 		break;
1003 	case BPF_ALU | BPF_RSH | BPF_X:
1004 		emit_alu(SRL, src, dst, ctx);
1005 		break;
1006 	case BPF_ALU64 | BPF_RSH | BPF_X:
1007 		emit_alu(SRLX, src, dst, ctx);
1008 		break;
1009 	case BPF_ALU | BPF_ARSH | BPF_X:
1010 		emit_alu(SRA, src, dst, ctx);
1011 		goto do_alu32_trunc;
1012 	case BPF_ALU64 | BPF_ARSH | BPF_X:
1013 		emit_alu(SRAX, src, dst, ctx);
1014 		break;
1015 
1016 	/* dst = -dst */
1017 	case BPF_ALU | BPF_NEG:
1018 	case BPF_ALU64 | BPF_NEG:
1019 		emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
1020 		goto do_alu32_trunc;
1021 
1022 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1023 		switch (imm) {
1024 		case 16:
1025 			emit_alu_K(SLL, dst, 16, ctx);
1026 			emit_alu_K(SRL, dst, 16, ctx);
1027 			break;
1028 		case 32:
1029 			emit_alu_K(SRL, dst, 0, ctx);
1030 			break;
1031 		case 64:
1032 			/* nop */
1033 			break;
1034 
1035 		}
1036 		break;
1037 
1038 	/* dst = BSWAP##imm(dst) */
1039 	case BPF_ALU | BPF_END | BPF_FROM_LE: {
1040 		const u8 tmp = bpf2sparc[TMP_REG_1];
1041 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1042 
1043 		ctx->tmp_1_used = true;
1044 		switch (imm) {
1045 		case 16:
1046 			emit_alu3_K(AND, dst, 0xff, tmp, ctx);
1047 			emit_alu3_K(SRL, dst, 8, dst, ctx);
1048 			emit_alu3_K(AND, dst, 0xff, dst, ctx);
1049 			emit_alu3_K(SLL, tmp, 8, tmp, ctx);
1050 			emit_alu(OR, tmp, dst, ctx);
1051 			break;
1052 
1053 		case 32:
1054 			ctx->tmp_2_used = true;
1055 			emit_alu3_K(SRL, dst, 24, tmp, ctx);	/* tmp  = dst >> 24 */
1056 			emit_alu3_K(SRL, dst, 16, tmp2, ctx);	/* tmp2 = dst >> 16 */
1057 			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1058 			emit_alu3_K(SLL, tmp2, 8, tmp2, ctx);	/* tmp2 = tmp2 << 8 */
1059 			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
1060 			emit_alu3_K(SRL, dst, 8, tmp2, ctx);	/* tmp2 = dst >> 8 */
1061 			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1062 			emit_alu3_K(SLL, tmp2, 16, tmp2, ctx);	/* tmp2 = tmp2 << 16 */
1063 			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
1064 			emit_alu3_K(AND, dst, 0xff, dst, ctx);	/* dst	= dst & 0xff */
1065 			emit_alu3_K(SLL, dst, 24, dst, ctx);	/* dst  = dst << 24 */
1066 			emit_alu(OR, tmp, dst, ctx);		/* dst  = dst | tmp */
1067 			break;
1068 
1069 		case 64:
1070 			emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
1071 			emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1072 			emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1073 			break;
1074 		}
1075 		break;
1076 	}
1077 	/* dst = imm */
1078 	case BPF_ALU | BPF_MOV | BPF_K:
1079 		emit_loadimm32(imm, dst, ctx);
1080 		break;
1081 	case BPF_ALU64 | BPF_MOV | BPF_K:
1082 		emit_loadimm_sext(imm, dst, ctx);
1083 		break;
1084 	/* dst = dst OP imm */
1085 	case BPF_ALU | BPF_ADD | BPF_K:
1086 	case BPF_ALU64 | BPF_ADD | BPF_K:
1087 		emit_alu_K(ADD, dst, imm, ctx);
1088 		goto do_alu32_trunc;
1089 	case BPF_ALU | BPF_SUB | BPF_K:
1090 	case BPF_ALU64 | BPF_SUB | BPF_K:
1091 		emit_alu_K(SUB, dst, imm, ctx);
1092 		goto do_alu32_trunc;
1093 	case BPF_ALU | BPF_AND | BPF_K:
1094 	case BPF_ALU64 | BPF_AND | BPF_K:
1095 		emit_alu_K(AND, dst, imm, ctx);
1096 		goto do_alu32_trunc;
1097 	case BPF_ALU | BPF_OR | BPF_K:
1098 	case BPF_ALU64 | BPF_OR | BPF_K:
1099 		emit_alu_K(OR, dst, imm, ctx);
1100 		goto do_alu32_trunc;
1101 	case BPF_ALU | BPF_XOR | BPF_K:
1102 	case BPF_ALU64 | BPF_XOR | BPF_K:
1103 		emit_alu_K(XOR, dst, imm, ctx);
1104 		goto do_alu32_trunc;
1105 	case BPF_ALU | BPF_MUL | BPF_K:
1106 		emit_alu_K(MUL, dst, imm, ctx);
1107 		goto do_alu32_trunc;
1108 	case BPF_ALU64 | BPF_MUL | BPF_K:
1109 		emit_alu_K(MULX, dst, imm, ctx);
1110 		break;
1111 	case BPF_ALU | BPF_DIV | BPF_K:
1112 		if (imm == 0)
1113 			return -EINVAL;
1114 
1115 		emit_write_y(G0, ctx);
1116 		emit_alu_K(DIV, dst, imm, ctx);
1117 		goto do_alu32_trunc;
1118 	case BPF_ALU64 | BPF_DIV | BPF_K:
1119 		if (imm == 0)
1120 			return -EINVAL;
1121 
1122 		emit_alu_K(UDIVX, dst, imm, ctx);
1123 		break;
1124 	case BPF_ALU64 | BPF_MOD | BPF_K:
1125 	case BPF_ALU | BPF_MOD | BPF_K: {
1126 		const u8 tmp = bpf2sparc[TMP_REG_2];
1127 		unsigned int div;
1128 
1129 		if (imm == 0)
1130 			return -EINVAL;
1131 
1132 		div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
1133 
1134 		ctx->tmp_2_used = true;
1135 
1136 		if (BPF_CLASS(code) != BPF_ALU64)
1137 			emit_write_y(G0, ctx);
1138 		if (is_simm13(imm)) {
1139 			emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
1140 			emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
1141 			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1142 		} else {
1143 			const u8 tmp1 = bpf2sparc[TMP_REG_1];
1144 
1145 			ctx->tmp_1_used = true;
1146 
1147 			emit_set_const_sext(imm, tmp1, ctx);
1148 			emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
1149 			emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
1150 			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1151 		}
1152 		goto do_alu32_trunc;
1153 	}
1154 	case BPF_ALU | BPF_LSH | BPF_K:
1155 		emit_alu_K(SLL, dst, imm, ctx);
1156 		goto do_alu32_trunc;
1157 	case BPF_ALU64 | BPF_LSH | BPF_K:
1158 		emit_alu_K(SLLX, dst, imm, ctx);
1159 		break;
1160 	case BPF_ALU | BPF_RSH | BPF_K:
1161 		emit_alu_K(SRL, dst, imm, ctx);
1162 		break;
1163 	case BPF_ALU64 | BPF_RSH | BPF_K:
1164 		emit_alu_K(SRLX, dst, imm, ctx);
1165 		break;
1166 	case BPF_ALU | BPF_ARSH | BPF_K:
1167 		emit_alu_K(SRA, dst, imm, ctx);
1168 		goto do_alu32_trunc;
1169 	case BPF_ALU64 | BPF_ARSH | BPF_K:
1170 		emit_alu_K(SRAX, dst, imm, ctx);
1171 		break;
1172 
1173 	do_alu32_trunc:
1174 		if (BPF_CLASS(code) == BPF_ALU)
1175 			emit_alu_K(SRL, dst, 0, ctx);
1176 		break;
1177 
1178 	/* JUMP off */
1179 	case BPF_JMP | BPF_JA:
1180 		emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
1181 		emit_nop(ctx);
1182 		break;
1183 	/* IF (dst COND src) JUMP off */
1184 	case BPF_JMP | BPF_JEQ | BPF_X:
1185 	case BPF_JMP | BPF_JGT | BPF_X:
1186 	case BPF_JMP | BPF_JLT | BPF_X:
1187 	case BPF_JMP | BPF_JGE | BPF_X:
1188 	case BPF_JMP | BPF_JLE | BPF_X:
1189 	case BPF_JMP | BPF_JNE | BPF_X:
1190 	case BPF_JMP | BPF_JSGT | BPF_X:
1191 	case BPF_JMP | BPF_JSLT | BPF_X:
1192 	case BPF_JMP | BPF_JSGE | BPF_X:
1193 	case BPF_JMP | BPF_JSLE | BPF_X:
1194 	case BPF_JMP | BPF_JSET | BPF_X: {
1195 		int err;
1196 
1197 		err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
1198 		if (err)
1199 			return err;
1200 		break;
1201 	}
1202 	/* IF (dst COND imm) JUMP off */
1203 	case BPF_JMP | BPF_JEQ | BPF_K:
1204 	case BPF_JMP | BPF_JGT | BPF_K:
1205 	case BPF_JMP | BPF_JLT | BPF_K:
1206 	case BPF_JMP | BPF_JGE | BPF_K:
1207 	case BPF_JMP | BPF_JLE | BPF_K:
1208 	case BPF_JMP | BPF_JNE | BPF_K:
1209 	case BPF_JMP | BPF_JSGT | BPF_K:
1210 	case BPF_JMP | BPF_JSLT | BPF_K:
1211 	case BPF_JMP | BPF_JSGE | BPF_K:
1212 	case BPF_JMP | BPF_JSLE | BPF_K:
1213 	case BPF_JMP | BPF_JSET | BPF_K: {
1214 		int err;
1215 
1216 		err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
1217 		if (err)
1218 			return err;
1219 		break;
1220 	}
1221 
1222 	/* function call */
1223 	case BPF_JMP | BPF_CALL:
1224 	{
1225 		u8 *func = ((u8 *)__bpf_call_base) + imm;
1226 
1227 		ctx->saw_call = true;
1228 		if (ctx->saw_ld_abs_ind && bpf_helper_changes_pkt_data(func))
1229 			emit_reg_move(bpf2sparc[BPF_REG_1], L7, ctx);
1230 
1231 		emit_call((u32 *)func, ctx);
1232 		emit_nop(ctx);
1233 
1234 		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
1235 
1236 		if (ctx->saw_ld_abs_ind && bpf_helper_changes_pkt_data(func))
1237 			load_skb_regs(ctx, L7);
1238 		break;
1239 	}
1240 
1241 	/* tail call */
1242 	case BPF_JMP | BPF_TAIL_CALL:
1243 		emit_tail_call(ctx);
1244 		break;
1245 
1246 	/* function return */
1247 	case BPF_JMP | BPF_EXIT:
1248 		/* Optimization: when last instruction is EXIT,
1249 		   simply fallthrough to epilogue. */
1250 		if (i == ctx->prog->len - 1)
1251 			break;
1252 		emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
1253 		emit_nop(ctx);
1254 		break;
1255 
1256 	/* dst = imm64 */
1257 	case BPF_LD | BPF_IMM | BPF_DW:
1258 	{
1259 		const struct bpf_insn insn1 = insn[1];
1260 		u64 imm64;
1261 
1262 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
1263 		emit_loadimm64(imm64, dst, ctx);
1264 
1265 		return 1;
1266 	}
1267 
1268 	/* LDX: dst = *(size *)(src + off) */
1269 	case BPF_LDX | BPF_MEM | BPF_W:
1270 	case BPF_LDX | BPF_MEM | BPF_H:
1271 	case BPF_LDX | BPF_MEM | BPF_B:
1272 	case BPF_LDX | BPF_MEM | BPF_DW: {
1273 		const u8 tmp = bpf2sparc[TMP_REG_1];
1274 		u32 opcode = 0, rs2;
1275 
1276 		ctx->tmp_1_used = true;
1277 		switch (BPF_SIZE(code)) {
1278 		case BPF_W:
1279 			opcode = LD32;
1280 			break;
1281 		case BPF_H:
1282 			opcode = LD16;
1283 			break;
1284 		case BPF_B:
1285 			opcode = LD8;
1286 			break;
1287 		case BPF_DW:
1288 			opcode = LD64;
1289 			break;
1290 		}
1291 
1292 		if (is_simm13(off)) {
1293 			opcode |= IMMED;
1294 			rs2 = S13(off);
1295 		} else {
1296 			emit_loadimm(off, tmp, ctx);
1297 			rs2 = RS2(tmp);
1298 		}
1299 		emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
1300 		break;
1301 	}
1302 	/* ST: *(size *)(dst + off) = imm */
1303 	case BPF_ST | BPF_MEM | BPF_W:
1304 	case BPF_ST | BPF_MEM | BPF_H:
1305 	case BPF_ST | BPF_MEM | BPF_B:
1306 	case BPF_ST | BPF_MEM | BPF_DW: {
1307 		const u8 tmp = bpf2sparc[TMP_REG_1];
1308 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1309 		u32 opcode = 0, rs2;
1310 
1311 		ctx->tmp_2_used = true;
1312 		emit_loadimm(imm, tmp2, ctx);
1313 
1314 		switch (BPF_SIZE(code)) {
1315 		case BPF_W:
1316 			opcode = ST32;
1317 			break;
1318 		case BPF_H:
1319 			opcode = ST16;
1320 			break;
1321 		case BPF_B:
1322 			opcode = ST8;
1323 			break;
1324 		case BPF_DW:
1325 			opcode = ST64;
1326 			break;
1327 		}
1328 
1329 		if (is_simm13(off)) {
1330 			opcode |= IMMED;
1331 			rs2 = S13(off);
1332 		} else {
1333 			ctx->tmp_1_used = true;
1334 			emit_loadimm(off, tmp, ctx);
1335 			rs2 = RS2(tmp);
1336 		}
1337 		emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
1338 		break;
1339 	}
1340 
1341 	/* STX: *(size *)(dst + off) = src */
1342 	case BPF_STX | BPF_MEM | BPF_W:
1343 	case BPF_STX | BPF_MEM | BPF_H:
1344 	case BPF_STX | BPF_MEM | BPF_B:
1345 	case BPF_STX | BPF_MEM | BPF_DW: {
1346 		const u8 tmp = bpf2sparc[TMP_REG_1];
1347 		u32 opcode = 0, rs2;
1348 
1349 		switch (BPF_SIZE(code)) {
1350 		case BPF_W:
1351 			opcode = ST32;
1352 			break;
1353 		case BPF_H:
1354 			opcode = ST16;
1355 			break;
1356 		case BPF_B:
1357 			opcode = ST8;
1358 			break;
1359 		case BPF_DW:
1360 			opcode = ST64;
1361 			break;
1362 		}
1363 		if (is_simm13(off)) {
1364 			opcode |= IMMED;
1365 			rs2 = S13(off);
1366 		} else {
1367 			ctx->tmp_1_used = true;
1368 			emit_loadimm(off, tmp, ctx);
1369 			rs2 = RS2(tmp);
1370 		}
1371 		emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
1372 		break;
1373 	}
1374 
1375 	/* STX XADD: lock *(u32 *)(dst + off) += src */
1376 	case BPF_STX | BPF_XADD | BPF_W: {
1377 		const u8 tmp = bpf2sparc[TMP_REG_1];
1378 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1379 		const u8 tmp3 = bpf2sparc[TMP_REG_3];
1380 
1381 		ctx->tmp_1_used = true;
1382 		ctx->tmp_2_used = true;
1383 		ctx->tmp_3_used = true;
1384 		emit_loadimm(off, tmp, ctx);
1385 		emit_alu3(ADD, dst, tmp, tmp, ctx);
1386 
1387 		emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1388 		emit_alu3(ADD, tmp2, src, tmp3, ctx);
1389 		emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1390 		emit_cmp(tmp2, tmp3, ctx);
1391 		emit_branch(BNE, 4, 0, ctx);
1392 		emit_nop(ctx);
1393 		break;
1394 	}
1395 	/* STX XADD: lock *(u64 *)(dst + off) += src */
1396 	case BPF_STX | BPF_XADD | BPF_DW: {
1397 		const u8 tmp = bpf2sparc[TMP_REG_1];
1398 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1399 		const u8 tmp3 = bpf2sparc[TMP_REG_3];
1400 
1401 		ctx->tmp_1_used = true;
1402 		ctx->tmp_2_used = true;
1403 		ctx->tmp_3_used = true;
1404 		emit_loadimm(off, tmp, ctx);
1405 		emit_alu3(ADD, dst, tmp, tmp, ctx);
1406 
1407 		emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1408 		emit_alu3(ADD, tmp2, src, tmp3, ctx);
1409 		emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1410 		emit_cmp(tmp2, tmp3, ctx);
1411 		emit_branch(BNE, 4, 0, ctx);
1412 		emit_nop(ctx);
1413 		break;
1414 	}
1415 #define CHOOSE_LOAD_FUNC(K, func) \
1416 		((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
1417 
1418 	/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
1419 	case BPF_LD | BPF_ABS | BPF_W:
1420 		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_word);
1421 		goto common_load;
1422 	case BPF_LD | BPF_ABS | BPF_H:
1423 		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_half);
1424 		goto common_load;
1425 	case BPF_LD | BPF_ABS | BPF_B:
1426 		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_byte);
1427 		goto common_load;
1428 	/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
1429 	case BPF_LD | BPF_IND | BPF_W:
1430 		func = bpf_jit_load_word;
1431 		goto common_load;
1432 	case BPF_LD | BPF_IND | BPF_H:
1433 		func = bpf_jit_load_half;
1434 		goto common_load;
1435 
1436 	case BPF_LD | BPF_IND | BPF_B:
1437 		func = bpf_jit_load_byte;
1438 	common_load:
1439 		ctx->saw_ld_abs_ind = true;
1440 
1441 		emit_reg_move(bpf2sparc[BPF_REG_6], O0, ctx);
1442 		emit_loadimm(imm, O1, ctx);
1443 
1444 		if (BPF_MODE(code) == BPF_IND)
1445 			emit_alu(ADD, src, O1, ctx);
1446 
1447 		emit_call(func, ctx);
1448 		emit_alu_K(SRA, O1, 0, ctx);
1449 
1450 		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
1451 		break;
1452 
1453 	default:
1454 		pr_err_once("unknown opcode %02x\n", code);
1455 		return -EINVAL;
1456 	}
1457 
1458 	return 0;
1459 }
1460 
1461 static int build_body(struct jit_ctx *ctx)
1462 {
1463 	const struct bpf_prog *prog = ctx->prog;
1464 	int i;
1465 
1466 	for (i = 0; i < prog->len; i++) {
1467 		const struct bpf_insn *insn = &prog->insnsi[i];
1468 		int ret;
1469 
1470 		ret = build_insn(insn, ctx);
1471 
1472 		if (ret > 0) {
1473 			i++;
1474 			ctx->offset[i] = ctx->idx;
1475 			continue;
1476 		}
1477 		ctx->offset[i] = ctx->idx;
1478 		if (ret)
1479 			return ret;
1480 	}
1481 	return 0;
1482 }
1483 
1484 static void jit_fill_hole(void *area, unsigned int size)
1485 {
1486 	u32 *ptr;
1487 	/* We are guaranteed to have aligned memory. */
1488 	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
1489 		*ptr++ = 0x91d02005; /* ta 5 */
1490 }
1491 
1492 struct sparc64_jit_data {
1493 	struct bpf_binary_header *header;
1494 	u8 *image;
1495 	struct jit_ctx ctx;
1496 };
1497 
1498 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1499 {
1500 	struct bpf_prog *tmp, *orig_prog = prog;
1501 	struct sparc64_jit_data *jit_data;
1502 	struct bpf_binary_header *header;
1503 	bool tmp_blinded = false;
1504 	bool extra_pass = false;
1505 	struct jit_ctx ctx;
1506 	u32 image_size;
1507 	u8 *image_ptr;
1508 	int pass;
1509 
1510 	if (!prog->jit_requested)
1511 		return orig_prog;
1512 
1513 	tmp = bpf_jit_blind_constants(prog);
1514 	/* If blinding was requested and we failed during blinding,
1515 	 * we must fall back to the interpreter.
1516 	 */
1517 	if (IS_ERR(tmp))
1518 		return orig_prog;
1519 	if (tmp != prog) {
1520 		tmp_blinded = true;
1521 		prog = tmp;
1522 	}
1523 
1524 	jit_data = prog->aux->jit_data;
1525 	if (!jit_data) {
1526 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1527 		if (!jit_data) {
1528 			prog = orig_prog;
1529 			goto out;
1530 		}
1531 		prog->aux->jit_data = jit_data;
1532 	}
1533 	if (jit_data->ctx.offset) {
1534 		ctx = jit_data->ctx;
1535 		image_ptr = jit_data->image;
1536 		header = jit_data->header;
1537 		extra_pass = true;
1538 		image_size = sizeof(u32) * ctx.idx;
1539 		goto skip_init_ctx;
1540 	}
1541 
1542 	memset(&ctx, 0, sizeof(ctx));
1543 	ctx.prog = prog;
1544 
1545 	ctx.offset = kcalloc(prog->len, sizeof(unsigned int), GFP_KERNEL);
1546 	if (ctx.offset == NULL) {
1547 		prog = orig_prog;
1548 		goto out_off;
1549 	}
1550 
1551 	/* Fake pass to detect features used, and get an accurate assessment
1552 	 * of what the final image size will be.
1553 	 */
1554 	if (build_body(&ctx)) {
1555 		prog = orig_prog;
1556 		goto out_off;
1557 	}
1558 	build_prologue(&ctx);
1559 	build_epilogue(&ctx);
1560 
1561 	/* Now we know the actual image size. */
1562 	image_size = sizeof(u32) * ctx.idx;
1563 	header = bpf_jit_binary_alloc(image_size, &image_ptr,
1564 				      sizeof(u32), jit_fill_hole);
1565 	if (header == NULL) {
1566 		prog = orig_prog;
1567 		goto out_off;
1568 	}
1569 
1570 	ctx.image = (u32 *)image_ptr;
1571 skip_init_ctx:
1572 	for (pass = 1; pass < 3; pass++) {
1573 		ctx.idx = 0;
1574 
1575 		build_prologue(&ctx);
1576 
1577 		if (build_body(&ctx)) {
1578 			bpf_jit_binary_free(header);
1579 			prog = orig_prog;
1580 			goto out_off;
1581 		}
1582 
1583 		build_epilogue(&ctx);
1584 
1585 		if (bpf_jit_enable > 1)
1586 			pr_info("Pass %d: shrink = %d, seen = [%c%c%c%c%c%c%c]\n", pass,
1587 				image_size - (ctx.idx * 4),
1588 				ctx.tmp_1_used ? '1' : ' ',
1589 				ctx.tmp_2_used ? '2' : ' ',
1590 				ctx.tmp_3_used ? '3' : ' ',
1591 				ctx.saw_ld_abs_ind ? 'L' : ' ',
1592 				ctx.saw_frame_pointer ? 'F' : ' ',
1593 				ctx.saw_call ? 'C' : ' ',
1594 				ctx.saw_tail_call ? 'T' : ' ');
1595 	}
1596 
1597 	if (bpf_jit_enable > 1)
1598 		bpf_jit_dump(prog->len, image_size, pass, ctx.image);
1599 
1600 	bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));
1601 
1602 	if (!prog->is_func || extra_pass) {
1603 		bpf_jit_binary_lock_ro(header);
1604 	} else {
1605 		jit_data->ctx = ctx;
1606 		jit_data->image = image_ptr;
1607 		jit_data->header = header;
1608 	}
1609 
1610 	prog->bpf_func = (void *)ctx.image;
1611 	prog->jited = 1;
1612 	prog->jited_len = image_size;
1613 
1614 	if (!prog->is_func || extra_pass) {
1615 out_off:
1616 		kfree(ctx.offset);
1617 		kfree(jit_data);
1618 		prog->aux->jit_data = NULL;
1619 	}
1620 out:
1621 	if (tmp_blinded)
1622 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1623 					   tmp : orig_prog);
1624 	return prog;
1625 }
1626