xref: /openbmc/linux/arch/sparc/net/bpf_jit_comp_64.c (revision 8cb5d748)
1 #include <linux/moduleloader.h>
2 #include <linux/workqueue.h>
3 #include <linux/netdevice.h>
4 #include <linux/filter.h>
5 #include <linux/bpf.h>
6 #include <linux/cache.h>
7 #include <linux/if_vlan.h>
8 
9 #include <asm/cacheflush.h>
10 #include <asm/ptrace.h>
11 
12 #include "bpf_jit_64.h"
13 
14 int bpf_jit_enable __read_mostly;
15 
16 static inline bool is_simm13(unsigned int value)
17 {
18 	return value + 0x1000 < 0x2000;
19 }
20 
21 static inline bool is_simm10(unsigned int value)
22 {
23 	return value + 0x200 < 0x400;
24 }
25 
26 static inline bool is_simm5(unsigned int value)
27 {
28 	return value + 0x10 < 0x20;
29 }
30 
31 static inline bool is_sethi(unsigned int value)
32 {
33 	return (value & ~0x3fffff) == 0;
34 }
35 
36 static void bpf_flush_icache(void *start_, void *end_)
37 {
38 	/* Cheetah's I-cache is fully coherent.  */
39 	if (tlb_type == spitfire) {
40 		unsigned long start = (unsigned long) start_;
41 		unsigned long end = (unsigned long) end_;
42 
43 		start &= ~7UL;
44 		end = (end + 7UL) & ~7UL;
45 		while (start < end) {
46 			flushi(start);
47 			start += 32;
48 		}
49 	}
50 }
51 
52 #define SEEN_DATAREF 1 /* might call external helpers */
53 #define SEEN_XREG    2 /* ebx is used */
54 #define SEEN_MEM     4 /* use mem[] for temporary storage */
55 
56 #define S13(X)		((X) & 0x1fff)
57 #define S5(X)		((X) & 0x1f)
58 #define IMMED		0x00002000
59 #define RD(X)		((X) << 25)
60 #define RS1(X)		((X) << 14)
61 #define RS2(X)		((X))
62 #define OP(X)		((X) << 30)
63 #define OP2(X)		((X) << 22)
64 #define OP3(X)		((X) << 19)
65 #define COND(X)		(((X) & 0xf) << 25)
66 #define CBCOND(X)	(((X) & 0x1f) << 25)
67 #define F1(X)		OP(X)
68 #define F2(X, Y)	(OP(X) | OP2(Y))
69 #define F3(X, Y)	(OP(X) | OP3(Y))
70 #define ASI(X)		(((X) & 0xff) << 5)
71 
72 #define CONDN		COND(0x0)
73 #define CONDE		COND(0x1)
74 #define CONDLE		COND(0x2)
75 #define CONDL		COND(0x3)
76 #define CONDLEU		COND(0x4)
77 #define CONDCS		COND(0x5)
78 #define CONDNEG		COND(0x6)
79 #define CONDVC		COND(0x7)
80 #define CONDA		COND(0x8)
81 #define CONDNE		COND(0x9)
82 #define CONDG		COND(0xa)
83 #define CONDGE		COND(0xb)
84 #define CONDGU		COND(0xc)
85 #define CONDCC		COND(0xd)
86 #define CONDPOS		COND(0xe)
87 #define CONDVS		COND(0xf)
88 
89 #define CONDGEU		CONDCC
90 #define CONDLU		CONDCS
91 
92 #define WDISP22(X)	(((X) >> 2) & 0x3fffff)
93 #define WDISP19(X)	(((X) >> 2) & 0x7ffff)
94 
95 /* The 10-bit branch displacement for CBCOND is split into two fields */
96 static u32 WDISP10(u32 off)
97 {
98 	u32 ret = ((off >> 2) & 0xff) << 5;
99 
100 	ret |= ((off >> (2 + 8)) & 0x03) << 19;
101 
102 	return ret;
103 }
104 
105 #define CBCONDE		CBCOND(0x09)
106 #define CBCONDLE	CBCOND(0x0a)
107 #define CBCONDL		CBCOND(0x0b)
108 #define CBCONDLEU	CBCOND(0x0c)
109 #define CBCONDCS	CBCOND(0x0d)
110 #define CBCONDN		CBCOND(0x0e)
111 #define CBCONDVS	CBCOND(0x0f)
112 #define CBCONDNE	CBCOND(0x19)
113 #define CBCONDG		CBCOND(0x1a)
114 #define CBCONDGE	CBCOND(0x1b)
115 #define CBCONDGU	CBCOND(0x1c)
116 #define CBCONDCC	CBCOND(0x1d)
117 #define CBCONDPOS	CBCOND(0x1e)
118 #define CBCONDVC	CBCOND(0x1f)
119 
120 #define CBCONDGEU	CBCONDCC
121 #define CBCONDLU	CBCONDCS
122 
123 #define ANNUL		(1 << 29)
124 #define XCC		(1 << 21)
125 
126 #define BRANCH		(F2(0, 1) | XCC)
127 #define CBCOND_OP	(F2(0, 3) | XCC)
128 
129 #define BA		(BRANCH | CONDA)
130 #define BG		(BRANCH | CONDG)
131 #define BL		(BRANCH | CONDL)
132 #define BLE		(BRANCH | CONDLE)
133 #define BGU		(BRANCH | CONDGU)
134 #define BLEU		(BRANCH | CONDLEU)
135 #define BGE		(BRANCH | CONDGE)
136 #define BGEU		(BRANCH | CONDGEU)
137 #define BLU		(BRANCH | CONDLU)
138 #define BE		(BRANCH | CONDE)
139 #define BNE		(BRANCH | CONDNE)
140 
141 #define SETHI(K, REG)	\
142 	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
143 #define OR_LO(K, REG)	\
144 	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
145 
146 #define ADD		F3(2, 0x00)
147 #define AND		F3(2, 0x01)
148 #define ANDCC		F3(2, 0x11)
149 #define OR		F3(2, 0x02)
150 #define XOR		F3(2, 0x03)
151 #define SUB		F3(2, 0x04)
152 #define SUBCC		F3(2, 0x14)
153 #define MUL		F3(2, 0x0a)
154 #define MULX		F3(2, 0x09)
155 #define UDIVX		F3(2, 0x0d)
156 #define DIV		F3(2, 0x0e)
157 #define SLL		F3(2, 0x25)
158 #define SLLX		(F3(2, 0x25)|(1<<12))
159 #define SRA		F3(2, 0x27)
160 #define SRAX		(F3(2, 0x27)|(1<<12))
161 #define SRL		F3(2, 0x26)
162 #define SRLX		(F3(2, 0x26)|(1<<12))
163 #define JMPL		F3(2, 0x38)
164 #define SAVE		F3(2, 0x3c)
165 #define RESTORE		F3(2, 0x3d)
166 #define CALL		F1(1)
167 #define BR		F2(0, 0x01)
168 #define RD_Y		F3(2, 0x28)
169 #define WR_Y		F3(2, 0x30)
170 
171 #define LD32		F3(3, 0x00)
172 #define LD8		F3(3, 0x01)
173 #define LD16		F3(3, 0x02)
174 #define LD64		F3(3, 0x0b)
175 #define LD64A		F3(3, 0x1b)
176 #define ST8		F3(3, 0x05)
177 #define ST16		F3(3, 0x06)
178 #define ST32		F3(3, 0x04)
179 #define ST64		F3(3, 0x0e)
180 
181 #define CAS		F3(3, 0x3c)
182 #define CASX		F3(3, 0x3e)
183 
184 #define LDPTR		LD64
185 #define BASE_STACKFRAME	176
186 
187 #define LD32I		(LD32 | IMMED)
188 #define LD8I		(LD8 | IMMED)
189 #define LD16I		(LD16 | IMMED)
190 #define LD64I		(LD64 | IMMED)
191 #define LDPTRI		(LDPTR | IMMED)
192 #define ST32I		(ST32 | IMMED)
193 
194 struct jit_ctx {
195 	struct bpf_prog		*prog;
196 	unsigned int		*offset;
197 	int			idx;
198 	int			epilogue_offset;
199 	bool 			tmp_1_used;
200 	bool 			tmp_2_used;
201 	bool 			tmp_3_used;
202 	bool			saw_ld_abs_ind;
203 	bool			saw_frame_pointer;
204 	bool			saw_call;
205 	bool			saw_tail_call;
206 	u32			*image;
207 };
208 
209 #define TMP_REG_1	(MAX_BPF_JIT_REG + 0)
210 #define TMP_REG_2	(MAX_BPF_JIT_REG + 1)
211 #define SKB_HLEN_REG	(MAX_BPF_JIT_REG + 2)
212 #define SKB_DATA_REG	(MAX_BPF_JIT_REG + 3)
213 #define TMP_REG_3	(MAX_BPF_JIT_REG + 4)
214 
215 /* Map BPF registers to SPARC registers */
216 static const int bpf2sparc[] = {
217 	/* return value from in-kernel function, and exit value from eBPF */
218 	[BPF_REG_0] = O5,
219 
220 	/* arguments from eBPF program to in-kernel function */
221 	[BPF_REG_1] = O0,
222 	[BPF_REG_2] = O1,
223 	[BPF_REG_3] = O2,
224 	[BPF_REG_4] = O3,
225 	[BPF_REG_5] = O4,
226 
227 	/* callee saved registers that in-kernel function will preserve */
228 	[BPF_REG_6] = L0,
229 	[BPF_REG_7] = L1,
230 	[BPF_REG_8] = L2,
231 	[BPF_REG_9] = L3,
232 
233 	/* read-only frame pointer to access stack */
234 	[BPF_REG_FP] = L6,
235 
236 	[BPF_REG_AX] = G7,
237 
238 	/* temporary register for internal BPF JIT */
239 	[TMP_REG_1] = G1,
240 	[TMP_REG_2] = G2,
241 	[TMP_REG_3] = G3,
242 
243 	[SKB_HLEN_REG] = L4,
244 	[SKB_DATA_REG] = L5,
245 };
246 
247 static void emit(const u32 insn, struct jit_ctx *ctx)
248 {
249 	if (ctx->image != NULL)
250 		ctx->image[ctx->idx] = insn;
251 
252 	ctx->idx++;
253 }
254 
255 static void emit_call(u32 *func, struct jit_ctx *ctx)
256 {
257 	if (ctx->image != NULL) {
258 		void *here = &ctx->image[ctx->idx];
259 		unsigned int off;
260 
261 		off = (void *)func - here;
262 		ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
263 	}
264 	ctx->idx++;
265 }
266 
267 static void emit_nop(struct jit_ctx *ctx)
268 {
269 	emit(SETHI(0, G0), ctx);
270 }
271 
272 static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
273 {
274 	emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
275 }
276 
277 /* Emit 32-bit constant, zero extended. */
278 static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
279 {
280 	emit(SETHI(K, reg), ctx);
281 	emit(OR_LO(K, reg), ctx);
282 }
283 
284 /* Emit 32-bit constant, sign extended. */
285 static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
286 {
287 	if (K >= 0) {
288 		emit(SETHI(K, reg), ctx);
289 		emit(OR_LO(K, reg), ctx);
290 	} else {
291 		u32 hbits = ~(u32) K;
292 		u32 lbits = -0x400 | (u32) K;
293 
294 		emit(SETHI(hbits, reg), ctx);
295 		emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
296 	}
297 }
298 
299 static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
300 {
301 	emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
302 }
303 
304 static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
305 {
306 	emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
307 }
308 
309 static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
310 		       struct jit_ctx *ctx)
311 {
312 	bool small_immed = is_simm13(imm);
313 	unsigned int insn = opcode;
314 
315 	insn |= RS1(dst) | RD(dst);
316 	if (small_immed) {
317 		emit(insn | IMMED | S13(imm), ctx);
318 	} else {
319 		unsigned int tmp = bpf2sparc[TMP_REG_1];
320 
321 		ctx->tmp_1_used = true;
322 
323 		emit_set_const_sext(imm, tmp, ctx);
324 		emit(insn | RS2(tmp), ctx);
325 	}
326 }
327 
328 static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
329 			unsigned int dst, struct jit_ctx *ctx)
330 {
331 	bool small_immed = is_simm13(imm);
332 	unsigned int insn = opcode;
333 
334 	insn |= RS1(src) | RD(dst);
335 	if (small_immed) {
336 		emit(insn | IMMED | S13(imm), ctx);
337 	} else {
338 		unsigned int tmp = bpf2sparc[TMP_REG_1];
339 
340 		ctx->tmp_1_used = true;
341 
342 		emit_set_const_sext(imm, tmp, ctx);
343 		emit(insn | RS2(tmp), ctx);
344 	}
345 }
346 
347 static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
348 {
349 	if (K >= 0 && is_simm13(K)) {
350 		/* or %g0, K, DEST */
351 		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
352 	} else {
353 		emit_set_const(K, dest, ctx);
354 	}
355 }
356 
357 static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
358 {
359 	if (is_simm13(K)) {
360 		/* or %g0, K, DEST */
361 		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
362 	} else {
363 		emit_set_const(K, dest, ctx);
364 	}
365 }
366 
367 static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
368 {
369 	if (is_simm13(K)) {
370 		/* or %g0, K, DEST */
371 		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
372 	} else {
373 		emit_set_const_sext(K, dest, ctx);
374 	}
375 }
376 
377 static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
378 				   int *hbsp, int *lbsp, int *abbasp)
379 {
380 	int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
381 	int i;
382 
383 	lowest_bit_set = highest_bit_set = -1;
384 	i = 0;
385 	do {
386 		if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
387 			lowest_bit_set = i;
388 		if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
389 			highest_bit_set = (64 - i - 1);
390 	}  while (++i < 32 && (highest_bit_set == -1 ||
391 			       lowest_bit_set == -1));
392 	if (i == 32) {
393 		i = 0;
394 		do {
395 			if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
396 				lowest_bit_set = i + 32;
397 			if (highest_bit_set == -1 &&
398 			    ((low_bits >> (32 - i - 1)) & 1))
399 				highest_bit_set = 32 - i - 1;
400 		} while (++i < 32 && (highest_bit_set == -1 ||
401 				      lowest_bit_set == -1));
402 	}
403 
404 	all_bits_between_are_set = 1;
405 	for (i = lowest_bit_set; i <= highest_bit_set; i++) {
406 		if (i < 32) {
407 			if ((low_bits & (1 << i)) != 0)
408 				continue;
409 		} else {
410 			if ((high_bits & (1 << (i - 32))) != 0)
411 				continue;
412 		}
413 		all_bits_between_are_set = 0;
414 		break;
415 	}
416 	*hbsp = highest_bit_set;
417 	*lbsp = lowest_bit_set;
418 	*abbasp = all_bits_between_are_set;
419 }
420 
421 static unsigned long create_simple_focus_bits(unsigned long high_bits,
422 					      unsigned long low_bits,
423 					      int lowest_bit_set, int shift)
424 {
425 	long hi, lo;
426 
427 	if (lowest_bit_set < 32) {
428 		lo = (low_bits >> lowest_bit_set) << shift;
429 		hi = ((high_bits << (32 - lowest_bit_set)) << shift);
430 	} else {
431 		lo = 0;
432 		hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
433 	}
434 	return hi | lo;
435 }
436 
437 static bool const64_is_2insns(unsigned long high_bits,
438 			      unsigned long low_bits)
439 {
440 	int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
441 
442 	if (high_bits == 0 || high_bits == 0xffffffff)
443 		return true;
444 
445 	analyze_64bit_constant(high_bits, low_bits,
446 			       &highest_bit_set, &lowest_bit_set,
447 			       &all_bits_between_are_set);
448 
449 	if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
450 	    all_bits_between_are_set != 0)
451 		return true;
452 
453 	if (highest_bit_set - lowest_bit_set < 21)
454 		return true;
455 
456 	return false;
457 }
458 
459 static void sparc_emit_set_const64_quick2(unsigned long high_bits,
460 					  unsigned long low_imm,
461 					  unsigned int dest,
462 					  int shift_count, struct jit_ctx *ctx)
463 {
464 	emit_loadimm32(high_bits, dest, ctx);
465 
466 	/* Now shift it up into place.  */
467 	emit_alu_K(SLLX, dest, shift_count, ctx);
468 
469 	/* If there is a low immediate part piece, finish up by
470 	 * putting that in as well.
471 	 */
472 	if (low_imm != 0)
473 		emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
474 }
475 
476 static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
477 {
478 	int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
479 	unsigned int tmp = bpf2sparc[TMP_REG_1];
480 	u32 low_bits = (K & 0xffffffff);
481 	u32 high_bits = (K >> 32);
482 
483 	/* These two tests also take care of all of the one
484 	 * instruction cases.
485 	 */
486 	if (high_bits == 0xffffffff && (low_bits & 0x80000000))
487 		return emit_loadimm_sext(K, dest, ctx);
488 	if (high_bits == 0x00000000)
489 		return emit_loadimm32(K, dest, ctx);
490 
491 	analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
492 			       &lowest_bit_set, &all_bits_between_are_set);
493 
494 	/* 1) mov	-1, %reg
495 	 *    sllx	%reg, shift, %reg
496 	 * 2) mov	-1, %reg
497 	 *    srlx	%reg, shift, %reg
498 	 * 3) mov	some_small_const, %reg
499 	 *    sllx	%reg, shift, %reg
500 	 */
501 	if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
502 	     all_bits_between_are_set != 0) ||
503 	    ((highest_bit_set - lowest_bit_set) < 12)) {
504 		int shift = lowest_bit_set;
505 		long the_const = -1;
506 
507 		if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
508 		    all_bits_between_are_set == 0) {
509 			the_const =
510 				create_simple_focus_bits(high_bits, low_bits,
511 							 lowest_bit_set, 0);
512 		} else if (lowest_bit_set == 0)
513 			shift = -(63 - highest_bit_set);
514 
515 		emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
516 		if (shift > 0)
517 			emit_alu_K(SLLX, dest, shift, ctx);
518 		else if (shift < 0)
519 			emit_alu_K(SRLX, dest, -shift, ctx);
520 
521 		return;
522 	}
523 
524 	/* Now a range of 22 or less bits set somewhere.
525 	 * 1) sethi	%hi(focus_bits), %reg
526 	 *    sllx	%reg, shift, %reg
527 	 * 2) sethi	%hi(focus_bits), %reg
528 	 *    srlx	%reg, shift, %reg
529 	 */
530 	if ((highest_bit_set - lowest_bit_set) < 21) {
531 		unsigned long focus_bits =
532 			create_simple_focus_bits(high_bits, low_bits,
533 						 lowest_bit_set, 10);
534 
535 		emit(SETHI(focus_bits, dest), ctx);
536 
537 		/* If lowest_bit_set == 10 then a sethi alone could
538 		 * have done it.
539 		 */
540 		if (lowest_bit_set < 10)
541 			emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
542 		else if (lowest_bit_set > 10)
543 			emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
544 		return;
545 	}
546 
547 	/* Ok, now 3 instruction sequences.  */
548 	if (low_bits == 0) {
549 		emit_loadimm32(high_bits, dest, ctx);
550 		emit_alu_K(SLLX, dest, 32, ctx);
551 		return;
552 	}
553 
554 	/* We may be able to do something quick
555 	 * when the constant is negated, so try that.
556 	 */
557 	if (const64_is_2insns((~high_bits) & 0xffffffff,
558 			      (~low_bits) & 0xfffffc00)) {
559 		/* NOTE: The trailing bits get XOR'd so we need the
560 		 * non-negated bits, not the negated ones.
561 		 */
562 		unsigned long trailing_bits = low_bits & 0x3ff;
563 
564 		if ((((~high_bits) & 0xffffffff) == 0 &&
565 		     ((~low_bits) & 0x80000000) == 0) ||
566 		    (((~high_bits) & 0xffffffff) == 0xffffffff &&
567 		     ((~low_bits) & 0x80000000) != 0)) {
568 			unsigned long fast_int = (~low_bits & 0xffffffff);
569 
570 			if ((is_sethi(fast_int) &&
571 			     (~high_bits & 0xffffffff) == 0)) {
572 				emit(SETHI(fast_int, dest), ctx);
573 			} else if (is_simm13(fast_int)) {
574 				emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
575 			} else {
576 				emit_loadimm64(fast_int, dest, ctx);
577 			}
578 		} else {
579 			u64 n = ((~low_bits) & 0xfffffc00) |
580 				(((unsigned long)((~high_bits) & 0xffffffff))<<32);
581 			emit_loadimm64(n, dest, ctx);
582 		}
583 
584 		low_bits = -0x400 | trailing_bits;
585 
586 		emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
587 		return;
588 	}
589 
590 	/* 1) sethi	%hi(xxx), %reg
591 	 *    or	%reg, %lo(xxx), %reg
592 	 *    sllx	%reg, yyy, %reg
593 	 */
594 	if ((highest_bit_set - lowest_bit_set) < 32) {
595 		unsigned long focus_bits =
596 			create_simple_focus_bits(high_bits, low_bits,
597 						 lowest_bit_set, 0);
598 
599 		/* So what we know is that the set bits straddle the
600 		 * middle of the 64-bit word.
601 		 */
602 		sparc_emit_set_const64_quick2(focus_bits, 0, dest,
603 					      lowest_bit_set, ctx);
604 		return;
605 	}
606 
607 	/* 1) sethi	%hi(high_bits), %reg
608 	 *    or	%reg, %lo(high_bits), %reg
609 	 *    sllx	%reg, 32, %reg
610 	 *    or	%reg, low_bits, %reg
611 	 */
612 	if (is_simm13(low_bits) && ((int)low_bits > 0)) {
613 		sparc_emit_set_const64_quick2(high_bits, low_bits,
614 					      dest, 32, ctx);
615 		return;
616 	}
617 
618 	/* Oh well, we tried... Do a full 64-bit decomposition.  */
619 	ctx->tmp_1_used = true;
620 
621 	emit_loadimm32(high_bits, tmp, ctx);
622 	emit_loadimm32(low_bits, dest, ctx);
623 	emit_alu_K(SLLX, tmp, 32, ctx);
624 	emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
625 }
626 
627 static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
628 			struct jit_ctx *ctx)
629 {
630 	unsigned int off = to_idx - from_idx;
631 
632 	if (br_opc & XCC)
633 		emit(br_opc | WDISP19(off << 2), ctx);
634 	else
635 		emit(br_opc | WDISP22(off << 2), ctx);
636 }
637 
638 static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
639 			const u8 dst, const u8 src, struct jit_ctx *ctx)
640 {
641 	unsigned int off = to_idx - from_idx;
642 
643 	emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
644 }
645 
646 static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
647 			 const u8 dst, s32 imm, struct jit_ctx *ctx)
648 {
649 	unsigned int off = to_idx - from_idx;
650 
651 	emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
652 }
653 
654 #define emit_read_y(REG, CTX)	emit(RD_Y | RD(REG), CTX)
655 #define emit_write_y(REG, CTX)	emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
656 
657 #define emit_cmp(R1, R2, CTX)				\
658 	emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
659 
660 #define emit_cmpi(R1, IMM, CTX)				\
661 	emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
662 
663 #define emit_btst(R1, R2, CTX)				\
664 	emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
665 
666 #define emit_btsti(R1, IMM, CTX)			\
667 	emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
668 
669 static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
670 				   const s32 imm, bool is_imm, int branch_dst,
671 				   struct jit_ctx *ctx)
672 {
673 	bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
674 	const u8 tmp = bpf2sparc[TMP_REG_1];
675 
676 	branch_dst = ctx->offset[branch_dst];
677 
678 	if (!is_simm10(branch_dst - ctx->idx) ||
679 	    BPF_OP(code) == BPF_JSET)
680 		use_cbcond = false;
681 
682 	if (is_imm) {
683 		bool fits = true;
684 
685 		if (use_cbcond) {
686 			if (!is_simm5(imm))
687 				fits = false;
688 		} else if (!is_simm13(imm)) {
689 			fits = false;
690 		}
691 		if (!fits) {
692 			ctx->tmp_1_used = true;
693 			emit_loadimm_sext(imm, tmp, ctx);
694 			src = tmp;
695 			is_imm = false;
696 		}
697 	}
698 
699 	if (!use_cbcond) {
700 		u32 br_opcode;
701 
702 		if (BPF_OP(code) == BPF_JSET) {
703 			if (is_imm)
704 				emit_btsti(dst, imm, ctx);
705 			else
706 				emit_btst(dst, src, ctx);
707 		} else {
708 			if (is_imm)
709 				emit_cmpi(dst, imm, ctx);
710 			else
711 				emit_cmp(dst, src, ctx);
712 		}
713 		switch (BPF_OP(code)) {
714 		case BPF_JEQ:
715 			br_opcode = BE;
716 			break;
717 		case BPF_JGT:
718 			br_opcode = BGU;
719 			break;
720 		case BPF_JLT:
721 			br_opcode = BLU;
722 			break;
723 		case BPF_JGE:
724 			br_opcode = BGEU;
725 			break;
726 		case BPF_JLE:
727 			br_opcode = BLEU;
728 			break;
729 		case BPF_JSET:
730 		case BPF_JNE:
731 			br_opcode = BNE;
732 			break;
733 		case BPF_JSGT:
734 			br_opcode = BG;
735 			break;
736 		case BPF_JSLT:
737 			br_opcode = BL;
738 			break;
739 		case BPF_JSGE:
740 			br_opcode = BGE;
741 			break;
742 		case BPF_JSLE:
743 			br_opcode = BLE;
744 			break;
745 		default:
746 			/* Make sure we dont leak kernel information to the
747 			 * user.
748 			 */
749 			return -EFAULT;
750 		}
751 		emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
752 		emit_nop(ctx);
753 	} else {
754 		u32 cbcond_opcode;
755 
756 		switch (BPF_OP(code)) {
757 		case BPF_JEQ:
758 			cbcond_opcode = CBCONDE;
759 			break;
760 		case BPF_JGT:
761 			cbcond_opcode = CBCONDGU;
762 			break;
763 		case BPF_JLT:
764 			cbcond_opcode = CBCONDLU;
765 			break;
766 		case BPF_JGE:
767 			cbcond_opcode = CBCONDGEU;
768 			break;
769 		case BPF_JLE:
770 			cbcond_opcode = CBCONDLEU;
771 			break;
772 		case BPF_JNE:
773 			cbcond_opcode = CBCONDNE;
774 			break;
775 		case BPF_JSGT:
776 			cbcond_opcode = CBCONDG;
777 			break;
778 		case BPF_JSLT:
779 			cbcond_opcode = CBCONDL;
780 			break;
781 		case BPF_JSGE:
782 			cbcond_opcode = CBCONDGE;
783 			break;
784 		case BPF_JSLE:
785 			cbcond_opcode = CBCONDLE;
786 			break;
787 		default:
788 			/* Make sure we dont leak kernel information to the
789 			 * user.
790 			 */
791 			return -EFAULT;
792 		}
793 		cbcond_opcode |= CBCOND_OP;
794 		if (is_imm)
795 			emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
796 				     dst, imm, ctx);
797 		else
798 			emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
799 				    dst, src, ctx);
800 	}
801 	return 0;
802 }
803 
804 static void load_skb_regs(struct jit_ctx *ctx, u8 r_skb)
805 {
806 	const u8 r_headlen = bpf2sparc[SKB_HLEN_REG];
807 	const u8 r_data = bpf2sparc[SKB_DATA_REG];
808 	const u8 r_tmp = bpf2sparc[TMP_REG_1];
809 	unsigned int off;
810 
811 	off = offsetof(struct sk_buff, len);
812 	emit(LD32I | RS1(r_skb) | S13(off) | RD(r_headlen), ctx);
813 
814 	off = offsetof(struct sk_buff, data_len);
815 	emit(LD32I | RS1(r_skb) | S13(off) | RD(r_tmp), ctx);
816 
817 	emit(SUB | RS1(r_headlen) | RS2(r_tmp) | RD(r_headlen), ctx);
818 
819 	off = offsetof(struct sk_buff, data);
820 	emit(LDPTRI | RS1(r_skb) | S13(off) | RD(r_data), ctx);
821 }
822 
823 /* Just skip the save instruction and the ctx register move.  */
824 #define BPF_TAILCALL_PROLOGUE_SKIP	16
825 #define BPF_TAILCALL_CNT_SP_OFF		(STACK_BIAS + 128)
826 
827 static void build_prologue(struct jit_ctx *ctx)
828 {
829 	s32 stack_needed = BASE_STACKFRAME;
830 
831 	if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
832 		struct bpf_prog *prog = ctx->prog;
833 		u32 stack_depth;
834 
835 		stack_depth = prog->aux->stack_depth;
836 		stack_needed += round_up(stack_depth, 16);
837 	}
838 
839 	if (ctx->saw_tail_call)
840 		stack_needed += 8;
841 
842 	/* save %sp, -176, %sp */
843 	emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
844 
845 	/* tail_call_cnt = 0 */
846 	if (ctx->saw_tail_call) {
847 		u32 off = BPF_TAILCALL_CNT_SP_OFF;
848 
849 		emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
850 	} else {
851 		emit_nop(ctx);
852 	}
853 	if (ctx->saw_frame_pointer) {
854 		const u8 vfp = bpf2sparc[BPF_REG_FP];
855 
856 		emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
857 	}
858 
859 	emit_reg_move(I0, O0, ctx);
860 	/* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
861 
862 	if (ctx->saw_ld_abs_ind)
863 		load_skb_regs(ctx, bpf2sparc[BPF_REG_1]);
864 }
865 
866 static void build_epilogue(struct jit_ctx *ctx)
867 {
868 	ctx->epilogue_offset = ctx->idx;
869 
870 	/* ret (jmpl %i7 + 8, %g0) */
871 	emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
872 
873 	/* restore %i5, %g0, %o0 */
874 	emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
875 }
876 
877 static void emit_tail_call(struct jit_ctx *ctx)
878 {
879 	const u8 bpf_array = bpf2sparc[BPF_REG_2];
880 	const u8 bpf_index = bpf2sparc[BPF_REG_3];
881 	const u8 tmp = bpf2sparc[TMP_REG_1];
882 	u32 off;
883 
884 	ctx->saw_tail_call = true;
885 
886 	off = offsetof(struct bpf_array, map.max_entries);
887 	emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
888 	emit_cmp(bpf_index, tmp, ctx);
889 #define OFFSET1 17
890 	emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
891 	emit_nop(ctx);
892 
893 	off = BPF_TAILCALL_CNT_SP_OFF;
894 	emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
895 	emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
896 #define OFFSET2 13
897 	emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
898 	emit_nop(ctx);
899 
900 	emit_alu_K(ADD, tmp, 1, ctx);
901 	off = BPF_TAILCALL_CNT_SP_OFF;
902 	emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
903 
904 	emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
905 	emit_alu(ADD, bpf_array, tmp, ctx);
906 	off = offsetof(struct bpf_array, ptrs);
907 	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
908 
909 	emit_cmpi(tmp, 0, ctx);
910 #define OFFSET3 5
911 	emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
912 	emit_nop(ctx);
913 
914 	off = offsetof(struct bpf_prog, bpf_func);
915 	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
916 
917 	off = BPF_TAILCALL_PROLOGUE_SKIP;
918 	emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
919 	emit_nop(ctx);
920 }
921 
922 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
923 {
924 	const u8 code = insn->code;
925 	const u8 dst = bpf2sparc[insn->dst_reg];
926 	const u8 src = bpf2sparc[insn->src_reg];
927 	const int i = insn - ctx->prog->insnsi;
928 	const s16 off = insn->off;
929 	const s32 imm = insn->imm;
930 	u32 *func;
931 
932 	if (insn->src_reg == BPF_REG_FP)
933 		ctx->saw_frame_pointer = true;
934 
935 	switch (code) {
936 	/* dst = src */
937 	case BPF_ALU | BPF_MOV | BPF_X:
938 		emit_alu3_K(SRL, src, 0, dst, ctx);
939 		break;
940 	case BPF_ALU64 | BPF_MOV | BPF_X:
941 		emit_reg_move(src, dst, ctx);
942 		break;
943 	/* dst = dst OP src */
944 	case BPF_ALU | BPF_ADD | BPF_X:
945 	case BPF_ALU64 | BPF_ADD | BPF_X:
946 		emit_alu(ADD, src, dst, ctx);
947 		goto do_alu32_trunc;
948 	case BPF_ALU | BPF_SUB | BPF_X:
949 	case BPF_ALU64 | BPF_SUB | BPF_X:
950 		emit_alu(SUB, src, dst, ctx);
951 		goto do_alu32_trunc;
952 	case BPF_ALU | BPF_AND | BPF_X:
953 	case BPF_ALU64 | BPF_AND | BPF_X:
954 		emit_alu(AND, src, dst, ctx);
955 		goto do_alu32_trunc;
956 	case BPF_ALU | BPF_OR | BPF_X:
957 	case BPF_ALU64 | BPF_OR | BPF_X:
958 		emit_alu(OR, src, dst, ctx);
959 		goto do_alu32_trunc;
960 	case BPF_ALU | BPF_XOR | BPF_X:
961 	case BPF_ALU64 | BPF_XOR | BPF_X:
962 		emit_alu(XOR, src, dst, ctx);
963 		goto do_alu32_trunc;
964 	case BPF_ALU | BPF_MUL | BPF_X:
965 		emit_alu(MUL, src, dst, ctx);
966 		goto do_alu32_trunc;
967 	case BPF_ALU64 | BPF_MUL | BPF_X:
968 		emit_alu(MULX, src, dst, ctx);
969 		break;
970 	case BPF_ALU | BPF_DIV | BPF_X:
971 		emit_cmp(src, G0, ctx);
972 		emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
973 		emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
974 
975 		emit_write_y(G0, ctx);
976 		emit_alu(DIV, src, dst, ctx);
977 		break;
978 
979 	case BPF_ALU64 | BPF_DIV | BPF_X:
980 		emit_cmp(src, G0, ctx);
981 		emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
982 		emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
983 
984 		emit_alu(UDIVX, src, dst, ctx);
985 		break;
986 
987 	case BPF_ALU | BPF_MOD | BPF_X: {
988 		const u8 tmp = bpf2sparc[TMP_REG_1];
989 
990 		ctx->tmp_1_used = true;
991 
992 		emit_cmp(src, G0, ctx);
993 		emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
994 		emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
995 
996 		emit_write_y(G0, ctx);
997 		emit_alu3(DIV, dst, src, tmp, ctx);
998 		emit_alu3(MULX, tmp, src, tmp, ctx);
999 		emit_alu3(SUB, dst, tmp, dst, ctx);
1000 		goto do_alu32_trunc;
1001 	}
1002 	case BPF_ALU64 | BPF_MOD | BPF_X: {
1003 		const u8 tmp = bpf2sparc[TMP_REG_1];
1004 
1005 		ctx->tmp_1_used = true;
1006 
1007 		emit_cmp(src, G0, ctx);
1008 		emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
1009 		emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
1010 
1011 		emit_alu3(UDIVX, dst, src, tmp, ctx);
1012 		emit_alu3(MULX, tmp, src, tmp, ctx);
1013 		emit_alu3(SUB, dst, tmp, dst, ctx);
1014 		break;
1015 	}
1016 	case BPF_ALU | BPF_LSH | BPF_X:
1017 		emit_alu(SLL, src, dst, ctx);
1018 		goto do_alu32_trunc;
1019 	case BPF_ALU64 | BPF_LSH | BPF_X:
1020 		emit_alu(SLLX, src, dst, ctx);
1021 		break;
1022 	case BPF_ALU | BPF_RSH | BPF_X:
1023 		emit_alu(SRL, src, dst, ctx);
1024 		break;
1025 	case BPF_ALU64 | BPF_RSH | BPF_X:
1026 		emit_alu(SRLX, src, dst, ctx);
1027 		break;
1028 	case BPF_ALU | BPF_ARSH | BPF_X:
1029 		emit_alu(SRA, src, dst, ctx);
1030 		goto do_alu32_trunc;
1031 	case BPF_ALU64 | BPF_ARSH | BPF_X:
1032 		emit_alu(SRAX, src, dst, ctx);
1033 		break;
1034 
1035 	/* dst = -dst */
1036 	case BPF_ALU | BPF_NEG:
1037 	case BPF_ALU64 | BPF_NEG:
1038 		emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
1039 		goto do_alu32_trunc;
1040 
1041 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1042 		switch (imm) {
1043 		case 16:
1044 			emit_alu_K(SLL, dst, 16, ctx);
1045 			emit_alu_K(SRL, dst, 16, ctx);
1046 			break;
1047 		case 32:
1048 			emit_alu_K(SRL, dst, 0, ctx);
1049 			break;
1050 		case 64:
1051 			/* nop */
1052 			break;
1053 
1054 		}
1055 		break;
1056 
1057 	/* dst = BSWAP##imm(dst) */
1058 	case BPF_ALU | BPF_END | BPF_FROM_LE: {
1059 		const u8 tmp = bpf2sparc[TMP_REG_1];
1060 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1061 
1062 		ctx->tmp_1_used = true;
1063 		switch (imm) {
1064 		case 16:
1065 			emit_alu3_K(AND, dst, 0xff, tmp, ctx);
1066 			emit_alu3_K(SRL, dst, 8, dst, ctx);
1067 			emit_alu3_K(AND, dst, 0xff, dst, ctx);
1068 			emit_alu3_K(SLL, tmp, 8, tmp, ctx);
1069 			emit_alu(OR, tmp, dst, ctx);
1070 			break;
1071 
1072 		case 32:
1073 			ctx->tmp_2_used = true;
1074 			emit_alu3_K(SRL, dst, 24, tmp, ctx);	/* tmp  = dst >> 24 */
1075 			emit_alu3_K(SRL, dst, 16, tmp2, ctx);	/* tmp2 = dst >> 16 */
1076 			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1077 			emit_alu3_K(SLL, tmp2, 8, tmp2, ctx);	/* tmp2 = tmp2 << 8 */
1078 			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
1079 			emit_alu3_K(SRL, dst, 8, tmp2, ctx);	/* tmp2 = dst >> 8 */
1080 			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1081 			emit_alu3_K(SLL, tmp2, 16, tmp2, ctx);	/* tmp2 = tmp2 << 16 */
1082 			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
1083 			emit_alu3_K(AND, dst, 0xff, dst, ctx);	/* dst	= dst & 0xff */
1084 			emit_alu3_K(SLL, dst, 24, dst, ctx);	/* dst  = dst << 24 */
1085 			emit_alu(OR, tmp, dst, ctx);		/* dst  = dst | tmp */
1086 			break;
1087 
1088 		case 64:
1089 			emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
1090 			emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1091 			emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1092 			break;
1093 		}
1094 		break;
1095 	}
1096 	/* dst = imm */
1097 	case BPF_ALU | BPF_MOV | BPF_K:
1098 		emit_loadimm32(imm, dst, ctx);
1099 		break;
1100 	case BPF_ALU64 | BPF_MOV | BPF_K:
1101 		emit_loadimm_sext(imm, dst, ctx);
1102 		break;
1103 	/* dst = dst OP imm */
1104 	case BPF_ALU | BPF_ADD | BPF_K:
1105 	case BPF_ALU64 | BPF_ADD | BPF_K:
1106 		emit_alu_K(ADD, dst, imm, ctx);
1107 		goto do_alu32_trunc;
1108 	case BPF_ALU | BPF_SUB | BPF_K:
1109 	case BPF_ALU64 | BPF_SUB | BPF_K:
1110 		emit_alu_K(SUB, dst, imm, ctx);
1111 		goto do_alu32_trunc;
1112 	case BPF_ALU | BPF_AND | BPF_K:
1113 	case BPF_ALU64 | BPF_AND | BPF_K:
1114 		emit_alu_K(AND, dst, imm, ctx);
1115 		goto do_alu32_trunc;
1116 	case BPF_ALU | BPF_OR | BPF_K:
1117 	case BPF_ALU64 | BPF_OR | BPF_K:
1118 		emit_alu_K(OR, dst, imm, ctx);
1119 		goto do_alu32_trunc;
1120 	case BPF_ALU | BPF_XOR | BPF_K:
1121 	case BPF_ALU64 | BPF_XOR | BPF_K:
1122 		emit_alu_K(XOR, dst, imm, ctx);
1123 		goto do_alu32_trunc;
1124 	case BPF_ALU | BPF_MUL | BPF_K:
1125 		emit_alu_K(MUL, dst, imm, ctx);
1126 		goto do_alu32_trunc;
1127 	case BPF_ALU64 | BPF_MUL | BPF_K:
1128 		emit_alu_K(MULX, dst, imm, ctx);
1129 		break;
1130 	case BPF_ALU | BPF_DIV | BPF_K:
1131 		if (imm == 0)
1132 			return -EINVAL;
1133 
1134 		emit_write_y(G0, ctx);
1135 		emit_alu_K(DIV, dst, imm, ctx);
1136 		goto do_alu32_trunc;
1137 	case BPF_ALU64 | BPF_DIV | BPF_K:
1138 		if (imm == 0)
1139 			return -EINVAL;
1140 
1141 		emit_alu_K(UDIVX, dst, imm, ctx);
1142 		break;
1143 	case BPF_ALU64 | BPF_MOD | BPF_K:
1144 	case BPF_ALU | BPF_MOD | BPF_K: {
1145 		const u8 tmp = bpf2sparc[TMP_REG_2];
1146 		unsigned int div;
1147 
1148 		if (imm == 0)
1149 			return -EINVAL;
1150 
1151 		div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
1152 
1153 		ctx->tmp_2_used = true;
1154 
1155 		if (BPF_CLASS(code) != BPF_ALU64)
1156 			emit_write_y(G0, ctx);
1157 		if (is_simm13(imm)) {
1158 			emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
1159 			emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
1160 			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1161 		} else {
1162 			const u8 tmp1 = bpf2sparc[TMP_REG_1];
1163 
1164 			ctx->tmp_1_used = true;
1165 
1166 			emit_set_const_sext(imm, tmp1, ctx);
1167 			emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
1168 			emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
1169 			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1170 		}
1171 		goto do_alu32_trunc;
1172 	}
1173 	case BPF_ALU | BPF_LSH | BPF_K:
1174 		emit_alu_K(SLL, dst, imm, ctx);
1175 		goto do_alu32_trunc;
1176 	case BPF_ALU64 | BPF_LSH | BPF_K:
1177 		emit_alu_K(SLLX, dst, imm, ctx);
1178 		break;
1179 	case BPF_ALU | BPF_RSH | BPF_K:
1180 		emit_alu_K(SRL, dst, imm, ctx);
1181 		break;
1182 	case BPF_ALU64 | BPF_RSH | BPF_K:
1183 		emit_alu_K(SRLX, dst, imm, ctx);
1184 		break;
1185 	case BPF_ALU | BPF_ARSH | BPF_K:
1186 		emit_alu_K(SRA, dst, imm, ctx);
1187 		goto do_alu32_trunc;
1188 	case BPF_ALU64 | BPF_ARSH | BPF_K:
1189 		emit_alu_K(SRAX, dst, imm, ctx);
1190 		break;
1191 
1192 	do_alu32_trunc:
1193 		if (BPF_CLASS(code) == BPF_ALU)
1194 			emit_alu_K(SRL, dst, 0, ctx);
1195 		break;
1196 
1197 	/* JUMP off */
1198 	case BPF_JMP | BPF_JA:
1199 		emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
1200 		emit_nop(ctx);
1201 		break;
1202 	/* IF (dst COND src) JUMP off */
1203 	case BPF_JMP | BPF_JEQ | BPF_X:
1204 	case BPF_JMP | BPF_JGT | BPF_X:
1205 	case BPF_JMP | BPF_JLT | BPF_X:
1206 	case BPF_JMP | BPF_JGE | BPF_X:
1207 	case BPF_JMP | BPF_JLE | BPF_X:
1208 	case BPF_JMP | BPF_JNE | BPF_X:
1209 	case BPF_JMP | BPF_JSGT | BPF_X:
1210 	case BPF_JMP | BPF_JSLT | BPF_X:
1211 	case BPF_JMP | BPF_JSGE | BPF_X:
1212 	case BPF_JMP | BPF_JSLE | BPF_X:
1213 	case BPF_JMP | BPF_JSET | BPF_X: {
1214 		int err;
1215 
1216 		err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
1217 		if (err)
1218 			return err;
1219 		break;
1220 	}
1221 	/* IF (dst COND imm) JUMP off */
1222 	case BPF_JMP | BPF_JEQ | BPF_K:
1223 	case BPF_JMP | BPF_JGT | BPF_K:
1224 	case BPF_JMP | BPF_JLT | BPF_K:
1225 	case BPF_JMP | BPF_JGE | BPF_K:
1226 	case BPF_JMP | BPF_JLE | BPF_K:
1227 	case BPF_JMP | BPF_JNE | BPF_K:
1228 	case BPF_JMP | BPF_JSGT | BPF_K:
1229 	case BPF_JMP | BPF_JSLT | BPF_K:
1230 	case BPF_JMP | BPF_JSGE | BPF_K:
1231 	case BPF_JMP | BPF_JSLE | BPF_K:
1232 	case BPF_JMP | BPF_JSET | BPF_K: {
1233 		int err;
1234 
1235 		err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
1236 		if (err)
1237 			return err;
1238 		break;
1239 	}
1240 
1241 	/* function call */
1242 	case BPF_JMP | BPF_CALL:
1243 	{
1244 		u8 *func = ((u8 *)__bpf_call_base) + imm;
1245 
1246 		ctx->saw_call = true;
1247 
1248 		emit_call((u32 *)func, ctx);
1249 		emit_nop(ctx);
1250 
1251 		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
1252 
1253 		if (bpf_helper_changes_pkt_data(func) && ctx->saw_ld_abs_ind)
1254 			load_skb_regs(ctx, bpf2sparc[BPF_REG_6]);
1255 		break;
1256 	}
1257 
1258 	/* tail call */
1259 	case BPF_JMP | BPF_TAIL_CALL:
1260 		emit_tail_call(ctx);
1261 		break;
1262 
1263 	/* function return */
1264 	case BPF_JMP | BPF_EXIT:
1265 		/* Optimization: when last instruction is EXIT,
1266 		   simply fallthrough to epilogue. */
1267 		if (i == ctx->prog->len - 1)
1268 			break;
1269 		emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
1270 		emit_nop(ctx);
1271 		break;
1272 
1273 	/* dst = imm64 */
1274 	case BPF_LD | BPF_IMM | BPF_DW:
1275 	{
1276 		const struct bpf_insn insn1 = insn[1];
1277 		u64 imm64;
1278 
1279 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
1280 		emit_loadimm64(imm64, dst, ctx);
1281 
1282 		return 1;
1283 	}
1284 
1285 	/* LDX: dst = *(size *)(src + off) */
1286 	case BPF_LDX | BPF_MEM | BPF_W:
1287 	case BPF_LDX | BPF_MEM | BPF_H:
1288 	case BPF_LDX | BPF_MEM | BPF_B:
1289 	case BPF_LDX | BPF_MEM | BPF_DW: {
1290 		const u8 tmp = bpf2sparc[TMP_REG_1];
1291 		u32 opcode = 0, rs2;
1292 
1293 		ctx->tmp_1_used = true;
1294 		switch (BPF_SIZE(code)) {
1295 		case BPF_W:
1296 			opcode = LD32;
1297 			break;
1298 		case BPF_H:
1299 			opcode = LD16;
1300 			break;
1301 		case BPF_B:
1302 			opcode = LD8;
1303 			break;
1304 		case BPF_DW:
1305 			opcode = LD64;
1306 			break;
1307 		}
1308 
1309 		if (is_simm13(off)) {
1310 			opcode |= IMMED;
1311 			rs2 = S13(off);
1312 		} else {
1313 			emit_loadimm(off, tmp, ctx);
1314 			rs2 = RS2(tmp);
1315 		}
1316 		emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
1317 		break;
1318 	}
1319 	/* ST: *(size *)(dst + off) = imm */
1320 	case BPF_ST | BPF_MEM | BPF_W:
1321 	case BPF_ST | BPF_MEM | BPF_H:
1322 	case BPF_ST | BPF_MEM | BPF_B:
1323 	case BPF_ST | BPF_MEM | BPF_DW: {
1324 		const u8 tmp = bpf2sparc[TMP_REG_1];
1325 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1326 		u32 opcode = 0, rs2;
1327 
1328 		ctx->tmp_2_used = true;
1329 		emit_loadimm(imm, tmp2, ctx);
1330 
1331 		switch (BPF_SIZE(code)) {
1332 		case BPF_W:
1333 			opcode = ST32;
1334 			break;
1335 		case BPF_H:
1336 			opcode = ST16;
1337 			break;
1338 		case BPF_B:
1339 			opcode = ST8;
1340 			break;
1341 		case BPF_DW:
1342 			opcode = ST64;
1343 			break;
1344 		}
1345 
1346 		if (is_simm13(off)) {
1347 			opcode |= IMMED;
1348 			rs2 = S13(off);
1349 		} else {
1350 			ctx->tmp_1_used = true;
1351 			emit_loadimm(off, tmp, ctx);
1352 			rs2 = RS2(tmp);
1353 		}
1354 		emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
1355 		break;
1356 	}
1357 
1358 	/* STX: *(size *)(dst + off) = src */
1359 	case BPF_STX | BPF_MEM | BPF_W:
1360 	case BPF_STX | BPF_MEM | BPF_H:
1361 	case BPF_STX | BPF_MEM | BPF_B:
1362 	case BPF_STX | BPF_MEM | BPF_DW: {
1363 		const u8 tmp = bpf2sparc[TMP_REG_1];
1364 		u32 opcode = 0, rs2;
1365 
1366 		switch (BPF_SIZE(code)) {
1367 		case BPF_W:
1368 			opcode = ST32;
1369 			break;
1370 		case BPF_H:
1371 			opcode = ST16;
1372 			break;
1373 		case BPF_B:
1374 			opcode = ST8;
1375 			break;
1376 		case BPF_DW:
1377 			opcode = ST64;
1378 			break;
1379 		}
1380 		if (is_simm13(off)) {
1381 			opcode |= IMMED;
1382 			rs2 = S13(off);
1383 		} else {
1384 			ctx->tmp_1_used = true;
1385 			emit_loadimm(off, tmp, ctx);
1386 			rs2 = RS2(tmp);
1387 		}
1388 		emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
1389 		break;
1390 	}
1391 
1392 	/* STX XADD: lock *(u32 *)(dst + off) += src */
1393 	case BPF_STX | BPF_XADD | BPF_W: {
1394 		const u8 tmp = bpf2sparc[TMP_REG_1];
1395 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1396 		const u8 tmp3 = bpf2sparc[TMP_REG_3];
1397 
1398 		ctx->tmp_1_used = true;
1399 		ctx->tmp_2_used = true;
1400 		ctx->tmp_3_used = true;
1401 		emit_loadimm(off, tmp, ctx);
1402 		emit_alu3(ADD, dst, tmp, tmp, ctx);
1403 
1404 		emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1405 		emit_alu3(ADD, tmp2, src, tmp3, ctx);
1406 		emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1407 		emit_cmp(tmp2, tmp3, ctx);
1408 		emit_branch(BNE, 4, 0, ctx);
1409 		emit_nop(ctx);
1410 		break;
1411 	}
1412 	/* STX XADD: lock *(u64 *)(dst + off) += src */
1413 	case BPF_STX | BPF_XADD | BPF_DW: {
1414 		const u8 tmp = bpf2sparc[TMP_REG_1];
1415 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1416 		const u8 tmp3 = bpf2sparc[TMP_REG_3];
1417 
1418 		ctx->tmp_1_used = true;
1419 		ctx->tmp_2_used = true;
1420 		ctx->tmp_3_used = true;
1421 		emit_loadimm(off, tmp, ctx);
1422 		emit_alu3(ADD, dst, tmp, tmp, ctx);
1423 
1424 		emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1425 		emit_alu3(ADD, tmp2, src, tmp3, ctx);
1426 		emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1427 		emit_cmp(tmp2, tmp3, ctx);
1428 		emit_branch(BNE, 4, 0, ctx);
1429 		emit_nop(ctx);
1430 		break;
1431 	}
1432 #define CHOOSE_LOAD_FUNC(K, func) \
1433 		((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
1434 
1435 	/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
1436 	case BPF_LD | BPF_ABS | BPF_W:
1437 		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_word);
1438 		goto common_load;
1439 	case BPF_LD | BPF_ABS | BPF_H:
1440 		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_half);
1441 		goto common_load;
1442 	case BPF_LD | BPF_ABS | BPF_B:
1443 		func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_byte);
1444 		goto common_load;
1445 	/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
1446 	case BPF_LD | BPF_IND | BPF_W:
1447 		func = bpf_jit_load_word;
1448 		goto common_load;
1449 	case BPF_LD | BPF_IND | BPF_H:
1450 		func = bpf_jit_load_half;
1451 		goto common_load;
1452 
1453 	case BPF_LD | BPF_IND | BPF_B:
1454 		func = bpf_jit_load_byte;
1455 	common_load:
1456 		ctx->saw_ld_abs_ind = true;
1457 
1458 		emit_reg_move(bpf2sparc[BPF_REG_6], O0, ctx);
1459 		emit_loadimm(imm, O1, ctx);
1460 
1461 		if (BPF_MODE(code) == BPF_IND)
1462 			emit_alu(ADD, src, O1, ctx);
1463 
1464 		emit_call(func, ctx);
1465 		emit_alu_K(SRA, O1, 0, ctx);
1466 
1467 		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
1468 		break;
1469 
1470 	default:
1471 		pr_err_once("unknown opcode %02x\n", code);
1472 		return -EINVAL;
1473 	}
1474 
1475 	return 0;
1476 }
1477 
1478 static int build_body(struct jit_ctx *ctx)
1479 {
1480 	const struct bpf_prog *prog = ctx->prog;
1481 	int i;
1482 
1483 	for (i = 0; i < prog->len; i++) {
1484 		const struct bpf_insn *insn = &prog->insnsi[i];
1485 		int ret;
1486 
1487 		ret = build_insn(insn, ctx);
1488 
1489 		if (ret > 0) {
1490 			i++;
1491 			ctx->offset[i] = ctx->idx;
1492 			continue;
1493 		}
1494 		ctx->offset[i] = ctx->idx;
1495 		if (ret)
1496 			return ret;
1497 	}
1498 	return 0;
1499 }
1500 
1501 static void jit_fill_hole(void *area, unsigned int size)
1502 {
1503 	u32 *ptr;
1504 	/* We are guaranteed to have aligned memory. */
1505 	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
1506 		*ptr++ = 0x91d02005; /* ta 5 */
1507 }
1508 
1509 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1510 {
1511 	struct bpf_prog *tmp, *orig_prog = prog;
1512 	struct bpf_binary_header *header;
1513 	bool tmp_blinded = false;
1514 	struct jit_ctx ctx;
1515 	u32 image_size;
1516 	u8 *image_ptr;
1517 	int pass;
1518 
1519 	if (!bpf_jit_enable)
1520 		return orig_prog;
1521 
1522 	tmp = bpf_jit_blind_constants(prog);
1523 	/* If blinding was requested and we failed during blinding,
1524 	 * we must fall back to the interpreter.
1525 	 */
1526 	if (IS_ERR(tmp))
1527 		return orig_prog;
1528 	if (tmp != prog) {
1529 		tmp_blinded = true;
1530 		prog = tmp;
1531 	}
1532 
1533 	memset(&ctx, 0, sizeof(ctx));
1534 	ctx.prog = prog;
1535 
1536 	ctx.offset = kcalloc(prog->len, sizeof(unsigned int), GFP_KERNEL);
1537 	if (ctx.offset == NULL) {
1538 		prog = orig_prog;
1539 		goto out;
1540 	}
1541 
1542 	/* Fake pass to detect features used, and get an accurate assessment
1543 	 * of what the final image size will be.
1544 	 */
1545 	if (build_body(&ctx)) {
1546 		prog = orig_prog;
1547 		goto out_off;
1548 	}
1549 	build_prologue(&ctx);
1550 	build_epilogue(&ctx);
1551 
1552 	/* Now we know the actual image size. */
1553 	image_size = sizeof(u32) * ctx.idx;
1554 	header = bpf_jit_binary_alloc(image_size, &image_ptr,
1555 				      sizeof(u32), jit_fill_hole);
1556 	if (header == NULL) {
1557 		prog = orig_prog;
1558 		goto out_off;
1559 	}
1560 
1561 	ctx.image = (u32 *)image_ptr;
1562 
1563 	for (pass = 1; pass < 3; pass++) {
1564 		ctx.idx = 0;
1565 
1566 		build_prologue(&ctx);
1567 
1568 		if (build_body(&ctx)) {
1569 			bpf_jit_binary_free(header);
1570 			prog = orig_prog;
1571 			goto out_off;
1572 		}
1573 
1574 		build_epilogue(&ctx);
1575 
1576 		if (bpf_jit_enable > 1)
1577 			pr_info("Pass %d: shrink = %d, seen = [%c%c%c%c%c%c%c]\n", pass,
1578 				image_size - (ctx.idx * 4),
1579 				ctx.tmp_1_used ? '1' : ' ',
1580 				ctx.tmp_2_used ? '2' : ' ',
1581 				ctx.tmp_3_used ? '3' : ' ',
1582 				ctx.saw_ld_abs_ind ? 'L' : ' ',
1583 				ctx.saw_frame_pointer ? 'F' : ' ',
1584 				ctx.saw_call ? 'C' : ' ',
1585 				ctx.saw_tail_call ? 'T' : ' ');
1586 	}
1587 
1588 	if (bpf_jit_enable > 1)
1589 		bpf_jit_dump(prog->len, image_size, pass, ctx.image);
1590 
1591 	bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));
1592 
1593 	bpf_jit_binary_lock_ro(header);
1594 
1595 	prog->bpf_func = (void *)ctx.image;
1596 	prog->jited = 1;
1597 	prog->jited_len = image_size;
1598 
1599 out_off:
1600 	kfree(ctx.offset);
1601 out:
1602 	if (tmp_blinded)
1603 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1604 					   tmp : orig_prog);
1605 	return prog;
1606 }
1607