1 #include <linux/moduleloader.h> 2 #include <linux/workqueue.h> 3 #include <linux/netdevice.h> 4 #include <linux/filter.h> 5 #include <linux/bpf.h> 6 #include <linux/cache.h> 7 #include <linux/if_vlan.h> 8 9 #include <asm/cacheflush.h> 10 #include <asm/ptrace.h> 11 12 #include "bpf_jit_64.h" 13 14 int bpf_jit_enable __read_mostly; 15 16 static inline bool is_simm13(unsigned int value) 17 { 18 return value + 0x1000 < 0x2000; 19 } 20 21 static inline bool is_simm10(unsigned int value) 22 { 23 return value + 0x200 < 0x400; 24 } 25 26 static inline bool is_simm5(unsigned int value) 27 { 28 return value + 0x10 < 0x20; 29 } 30 31 static inline bool is_sethi(unsigned int value) 32 { 33 return (value & ~0x3fffff) == 0; 34 } 35 36 static void bpf_flush_icache(void *start_, void *end_) 37 { 38 /* Cheetah's I-cache is fully coherent. */ 39 if (tlb_type == spitfire) { 40 unsigned long start = (unsigned long) start_; 41 unsigned long end = (unsigned long) end_; 42 43 start &= ~7UL; 44 end = (end + 7UL) & ~7UL; 45 while (start < end) { 46 flushi(start); 47 start += 32; 48 } 49 } 50 } 51 52 #define SEEN_DATAREF 1 /* might call external helpers */ 53 #define SEEN_XREG 2 /* ebx is used */ 54 #define SEEN_MEM 4 /* use mem[] for temporary storage */ 55 56 #define S13(X) ((X) & 0x1fff) 57 #define S5(X) ((X) & 0x1f) 58 #define IMMED 0x00002000 59 #define RD(X) ((X) << 25) 60 #define RS1(X) ((X) << 14) 61 #define RS2(X) ((X)) 62 #define OP(X) ((X) << 30) 63 #define OP2(X) ((X) << 22) 64 #define OP3(X) ((X) << 19) 65 #define COND(X) (((X) & 0xf) << 25) 66 #define CBCOND(X) (((X) & 0x1f) << 25) 67 #define F1(X) OP(X) 68 #define F2(X, Y) (OP(X) | OP2(Y)) 69 #define F3(X, Y) (OP(X) | OP3(Y)) 70 #define ASI(X) (((X) & 0xff) << 5) 71 72 #define CONDN COND(0x0) 73 #define CONDE COND(0x1) 74 #define CONDLE COND(0x2) 75 #define CONDL COND(0x3) 76 #define CONDLEU COND(0x4) 77 #define CONDCS COND(0x5) 78 #define CONDNEG COND(0x6) 79 #define CONDVC COND(0x7) 80 #define CONDA COND(0x8) 81 #define CONDNE COND(0x9) 82 #define CONDG COND(0xa) 83 #define CONDGE COND(0xb) 84 #define CONDGU COND(0xc) 85 #define CONDCC COND(0xd) 86 #define CONDPOS COND(0xe) 87 #define CONDVS COND(0xf) 88 89 #define CONDGEU CONDCC 90 #define CONDLU CONDCS 91 92 #define WDISP22(X) (((X) >> 2) & 0x3fffff) 93 #define WDISP19(X) (((X) >> 2) & 0x7ffff) 94 95 /* The 10-bit branch displacement for CBCOND is split into two fields */ 96 static u32 WDISP10(u32 off) 97 { 98 u32 ret = ((off >> 2) & 0xff) << 5; 99 100 ret |= ((off >> (2 + 8)) & 0x03) << 19; 101 102 return ret; 103 } 104 105 #define CBCONDE CBCOND(0x09) 106 #define CBCONDLE CBCOND(0x0a) 107 #define CBCONDL CBCOND(0x0b) 108 #define CBCONDLEU CBCOND(0x0c) 109 #define CBCONDCS CBCOND(0x0d) 110 #define CBCONDN CBCOND(0x0e) 111 #define CBCONDVS CBCOND(0x0f) 112 #define CBCONDNE CBCOND(0x19) 113 #define CBCONDG CBCOND(0x1a) 114 #define CBCONDGE CBCOND(0x1b) 115 #define CBCONDGU CBCOND(0x1c) 116 #define CBCONDCC CBCOND(0x1d) 117 #define CBCONDPOS CBCOND(0x1e) 118 #define CBCONDVC CBCOND(0x1f) 119 120 #define CBCONDGEU CBCONDCC 121 #define CBCONDLU CBCONDCS 122 123 #define ANNUL (1 << 29) 124 #define XCC (1 << 21) 125 126 #define BRANCH (F2(0, 1) | XCC) 127 #define CBCOND_OP (F2(0, 3) | XCC) 128 129 #define BA (BRANCH | CONDA) 130 #define BG (BRANCH | CONDG) 131 #define BL (BRANCH | CONDL) 132 #define BLE (BRANCH | CONDLE) 133 #define BGU (BRANCH | CONDGU) 134 #define BLEU (BRANCH | CONDLEU) 135 #define BGE (BRANCH | CONDGE) 136 #define BGEU (BRANCH | CONDGEU) 137 #define BLU (BRANCH | CONDLU) 138 #define BE (BRANCH | CONDE) 139 #define BNE (BRANCH | CONDNE) 140 141 #define SETHI(K, REG) \ 142 (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff)) 143 #define OR_LO(K, REG) \ 144 (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG)) 145 146 #define ADD F3(2, 0x00) 147 #define AND F3(2, 0x01) 148 #define ANDCC F3(2, 0x11) 149 #define OR F3(2, 0x02) 150 #define XOR F3(2, 0x03) 151 #define SUB F3(2, 0x04) 152 #define SUBCC F3(2, 0x14) 153 #define MUL F3(2, 0x0a) 154 #define MULX F3(2, 0x09) 155 #define UDIVX F3(2, 0x0d) 156 #define DIV F3(2, 0x0e) 157 #define SLL F3(2, 0x25) 158 #define SLLX (F3(2, 0x25)|(1<<12)) 159 #define SRA F3(2, 0x27) 160 #define SRAX (F3(2, 0x27)|(1<<12)) 161 #define SRL F3(2, 0x26) 162 #define SRLX (F3(2, 0x26)|(1<<12)) 163 #define JMPL F3(2, 0x38) 164 #define SAVE F3(2, 0x3c) 165 #define RESTORE F3(2, 0x3d) 166 #define CALL F1(1) 167 #define BR F2(0, 0x01) 168 #define RD_Y F3(2, 0x28) 169 #define WR_Y F3(2, 0x30) 170 171 #define LD32 F3(3, 0x00) 172 #define LD8 F3(3, 0x01) 173 #define LD16 F3(3, 0x02) 174 #define LD64 F3(3, 0x0b) 175 #define LD64A F3(3, 0x1b) 176 #define ST8 F3(3, 0x05) 177 #define ST16 F3(3, 0x06) 178 #define ST32 F3(3, 0x04) 179 #define ST64 F3(3, 0x0e) 180 181 #define CAS F3(3, 0x3c) 182 #define CASX F3(3, 0x3e) 183 184 #define LDPTR LD64 185 #define BASE_STACKFRAME 176 186 187 #define LD32I (LD32 | IMMED) 188 #define LD8I (LD8 | IMMED) 189 #define LD16I (LD16 | IMMED) 190 #define LD64I (LD64 | IMMED) 191 #define LDPTRI (LDPTR | IMMED) 192 #define ST32I (ST32 | IMMED) 193 194 struct jit_ctx { 195 struct bpf_prog *prog; 196 unsigned int *offset; 197 int idx; 198 int epilogue_offset; 199 bool tmp_1_used; 200 bool tmp_2_used; 201 bool tmp_3_used; 202 bool saw_ld_abs_ind; 203 bool saw_frame_pointer; 204 bool saw_call; 205 bool saw_tail_call; 206 u32 *image; 207 }; 208 209 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) 210 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) 211 #define SKB_HLEN_REG (MAX_BPF_JIT_REG + 2) 212 #define SKB_DATA_REG (MAX_BPF_JIT_REG + 3) 213 #define TMP_REG_3 (MAX_BPF_JIT_REG + 4) 214 215 /* Map BPF registers to SPARC registers */ 216 static const int bpf2sparc[] = { 217 /* return value from in-kernel function, and exit value from eBPF */ 218 [BPF_REG_0] = O5, 219 220 /* arguments from eBPF program to in-kernel function */ 221 [BPF_REG_1] = O0, 222 [BPF_REG_2] = O1, 223 [BPF_REG_3] = O2, 224 [BPF_REG_4] = O3, 225 [BPF_REG_5] = O4, 226 227 /* callee saved registers that in-kernel function will preserve */ 228 [BPF_REG_6] = L0, 229 [BPF_REG_7] = L1, 230 [BPF_REG_8] = L2, 231 [BPF_REG_9] = L3, 232 233 /* read-only frame pointer to access stack */ 234 [BPF_REG_FP] = L6, 235 236 [BPF_REG_AX] = G7, 237 238 /* temporary register for internal BPF JIT */ 239 [TMP_REG_1] = G1, 240 [TMP_REG_2] = G2, 241 [TMP_REG_3] = G3, 242 243 [SKB_HLEN_REG] = L4, 244 [SKB_DATA_REG] = L5, 245 }; 246 247 static void emit(const u32 insn, struct jit_ctx *ctx) 248 { 249 if (ctx->image != NULL) 250 ctx->image[ctx->idx] = insn; 251 252 ctx->idx++; 253 } 254 255 static void emit_call(u32 *func, struct jit_ctx *ctx) 256 { 257 if (ctx->image != NULL) { 258 void *here = &ctx->image[ctx->idx]; 259 unsigned int off; 260 261 off = (void *)func - here; 262 ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff); 263 } 264 ctx->idx++; 265 } 266 267 static void emit_nop(struct jit_ctx *ctx) 268 { 269 emit(SETHI(0, G0), ctx); 270 } 271 272 static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx) 273 { 274 emit(OR | RS1(G0) | RS2(from) | RD(to), ctx); 275 } 276 277 /* Emit 32-bit constant, zero extended. */ 278 static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx) 279 { 280 emit(SETHI(K, reg), ctx); 281 emit(OR_LO(K, reg), ctx); 282 } 283 284 /* Emit 32-bit constant, sign extended. */ 285 static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx) 286 { 287 if (K >= 0) { 288 emit(SETHI(K, reg), ctx); 289 emit(OR_LO(K, reg), ctx); 290 } else { 291 u32 hbits = ~(u32) K; 292 u32 lbits = -0x400 | (u32) K; 293 294 emit(SETHI(hbits, reg), ctx); 295 emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx); 296 } 297 } 298 299 static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx) 300 { 301 emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx); 302 } 303 304 static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx) 305 { 306 emit(opcode | RS1(a) | RS2(b) | RD(c), ctx); 307 } 308 309 static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm, 310 struct jit_ctx *ctx) 311 { 312 bool small_immed = is_simm13(imm); 313 unsigned int insn = opcode; 314 315 insn |= RS1(dst) | RD(dst); 316 if (small_immed) { 317 emit(insn | IMMED | S13(imm), ctx); 318 } else { 319 unsigned int tmp = bpf2sparc[TMP_REG_1]; 320 321 ctx->tmp_1_used = true; 322 323 emit_set_const_sext(imm, tmp, ctx); 324 emit(insn | RS2(tmp), ctx); 325 } 326 } 327 328 static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm, 329 unsigned int dst, struct jit_ctx *ctx) 330 { 331 bool small_immed = is_simm13(imm); 332 unsigned int insn = opcode; 333 334 insn |= RS1(src) | RD(dst); 335 if (small_immed) { 336 emit(insn | IMMED | S13(imm), ctx); 337 } else { 338 unsigned int tmp = bpf2sparc[TMP_REG_1]; 339 340 ctx->tmp_1_used = true; 341 342 emit_set_const_sext(imm, tmp, ctx); 343 emit(insn | RS2(tmp), ctx); 344 } 345 } 346 347 static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx) 348 { 349 if (K >= 0 && is_simm13(K)) { 350 /* or %g0, K, DEST */ 351 emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx); 352 } else { 353 emit_set_const(K, dest, ctx); 354 } 355 } 356 357 static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx) 358 { 359 if (is_simm13(K)) { 360 /* or %g0, K, DEST */ 361 emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx); 362 } else { 363 emit_set_const(K, dest, ctx); 364 } 365 } 366 367 static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx) 368 { 369 if (is_simm13(K)) { 370 /* or %g0, K, DEST */ 371 emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx); 372 } else { 373 emit_set_const_sext(K, dest, ctx); 374 } 375 } 376 377 static void analyze_64bit_constant(u32 high_bits, u32 low_bits, 378 int *hbsp, int *lbsp, int *abbasp) 379 { 380 int lowest_bit_set, highest_bit_set, all_bits_between_are_set; 381 int i; 382 383 lowest_bit_set = highest_bit_set = -1; 384 i = 0; 385 do { 386 if ((lowest_bit_set == -1) && ((low_bits >> i) & 1)) 387 lowest_bit_set = i; 388 if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1)) 389 highest_bit_set = (64 - i - 1); 390 } while (++i < 32 && (highest_bit_set == -1 || 391 lowest_bit_set == -1)); 392 if (i == 32) { 393 i = 0; 394 do { 395 if (lowest_bit_set == -1 && ((high_bits >> i) & 1)) 396 lowest_bit_set = i + 32; 397 if (highest_bit_set == -1 && 398 ((low_bits >> (32 - i - 1)) & 1)) 399 highest_bit_set = 32 - i - 1; 400 } while (++i < 32 && (highest_bit_set == -1 || 401 lowest_bit_set == -1)); 402 } 403 404 all_bits_between_are_set = 1; 405 for (i = lowest_bit_set; i <= highest_bit_set; i++) { 406 if (i < 32) { 407 if ((low_bits & (1 << i)) != 0) 408 continue; 409 } else { 410 if ((high_bits & (1 << (i - 32))) != 0) 411 continue; 412 } 413 all_bits_between_are_set = 0; 414 break; 415 } 416 *hbsp = highest_bit_set; 417 *lbsp = lowest_bit_set; 418 *abbasp = all_bits_between_are_set; 419 } 420 421 static unsigned long create_simple_focus_bits(unsigned long high_bits, 422 unsigned long low_bits, 423 int lowest_bit_set, int shift) 424 { 425 long hi, lo; 426 427 if (lowest_bit_set < 32) { 428 lo = (low_bits >> lowest_bit_set) << shift; 429 hi = ((high_bits << (32 - lowest_bit_set)) << shift); 430 } else { 431 lo = 0; 432 hi = ((high_bits >> (lowest_bit_set - 32)) << shift); 433 } 434 return hi | lo; 435 } 436 437 static bool const64_is_2insns(unsigned long high_bits, 438 unsigned long low_bits) 439 { 440 int highest_bit_set, lowest_bit_set, all_bits_between_are_set; 441 442 if (high_bits == 0 || high_bits == 0xffffffff) 443 return true; 444 445 analyze_64bit_constant(high_bits, low_bits, 446 &highest_bit_set, &lowest_bit_set, 447 &all_bits_between_are_set); 448 449 if ((highest_bit_set == 63 || lowest_bit_set == 0) && 450 all_bits_between_are_set != 0) 451 return true; 452 453 if (highest_bit_set - lowest_bit_set < 21) 454 return true; 455 456 return false; 457 } 458 459 static void sparc_emit_set_const64_quick2(unsigned long high_bits, 460 unsigned long low_imm, 461 unsigned int dest, 462 int shift_count, struct jit_ctx *ctx) 463 { 464 emit_loadimm32(high_bits, dest, ctx); 465 466 /* Now shift it up into place. */ 467 emit_alu_K(SLLX, dest, shift_count, ctx); 468 469 /* If there is a low immediate part piece, finish up by 470 * putting that in as well. 471 */ 472 if (low_imm != 0) 473 emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx); 474 } 475 476 static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx) 477 { 478 int all_bits_between_are_set, lowest_bit_set, highest_bit_set; 479 unsigned int tmp = bpf2sparc[TMP_REG_1]; 480 u32 low_bits = (K & 0xffffffff); 481 u32 high_bits = (K >> 32); 482 483 /* These two tests also take care of all of the one 484 * instruction cases. 485 */ 486 if (high_bits == 0xffffffff && (low_bits & 0x80000000)) 487 return emit_loadimm_sext(K, dest, ctx); 488 if (high_bits == 0x00000000) 489 return emit_loadimm32(K, dest, ctx); 490 491 analyze_64bit_constant(high_bits, low_bits, &highest_bit_set, 492 &lowest_bit_set, &all_bits_between_are_set); 493 494 /* 1) mov -1, %reg 495 * sllx %reg, shift, %reg 496 * 2) mov -1, %reg 497 * srlx %reg, shift, %reg 498 * 3) mov some_small_const, %reg 499 * sllx %reg, shift, %reg 500 */ 501 if (((highest_bit_set == 63 || lowest_bit_set == 0) && 502 all_bits_between_are_set != 0) || 503 ((highest_bit_set - lowest_bit_set) < 12)) { 504 int shift = lowest_bit_set; 505 long the_const = -1; 506 507 if ((highest_bit_set != 63 && lowest_bit_set != 0) || 508 all_bits_between_are_set == 0) { 509 the_const = 510 create_simple_focus_bits(high_bits, low_bits, 511 lowest_bit_set, 0); 512 } else if (lowest_bit_set == 0) 513 shift = -(63 - highest_bit_set); 514 515 emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx); 516 if (shift > 0) 517 emit_alu_K(SLLX, dest, shift, ctx); 518 else if (shift < 0) 519 emit_alu_K(SRLX, dest, -shift, ctx); 520 521 return; 522 } 523 524 /* Now a range of 22 or less bits set somewhere. 525 * 1) sethi %hi(focus_bits), %reg 526 * sllx %reg, shift, %reg 527 * 2) sethi %hi(focus_bits), %reg 528 * srlx %reg, shift, %reg 529 */ 530 if ((highest_bit_set - lowest_bit_set) < 21) { 531 unsigned long focus_bits = 532 create_simple_focus_bits(high_bits, low_bits, 533 lowest_bit_set, 10); 534 535 emit(SETHI(focus_bits, dest), ctx); 536 537 /* If lowest_bit_set == 10 then a sethi alone could 538 * have done it. 539 */ 540 if (lowest_bit_set < 10) 541 emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx); 542 else if (lowest_bit_set > 10) 543 emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx); 544 return; 545 } 546 547 /* Ok, now 3 instruction sequences. */ 548 if (low_bits == 0) { 549 emit_loadimm32(high_bits, dest, ctx); 550 emit_alu_K(SLLX, dest, 32, ctx); 551 return; 552 } 553 554 /* We may be able to do something quick 555 * when the constant is negated, so try that. 556 */ 557 if (const64_is_2insns((~high_bits) & 0xffffffff, 558 (~low_bits) & 0xfffffc00)) { 559 /* NOTE: The trailing bits get XOR'd so we need the 560 * non-negated bits, not the negated ones. 561 */ 562 unsigned long trailing_bits = low_bits & 0x3ff; 563 564 if ((((~high_bits) & 0xffffffff) == 0 && 565 ((~low_bits) & 0x80000000) == 0) || 566 (((~high_bits) & 0xffffffff) == 0xffffffff && 567 ((~low_bits) & 0x80000000) != 0)) { 568 unsigned long fast_int = (~low_bits & 0xffffffff); 569 570 if ((is_sethi(fast_int) && 571 (~high_bits & 0xffffffff) == 0)) { 572 emit(SETHI(fast_int, dest), ctx); 573 } else if (is_simm13(fast_int)) { 574 emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx); 575 } else { 576 emit_loadimm64(fast_int, dest, ctx); 577 } 578 } else { 579 u64 n = ((~low_bits) & 0xfffffc00) | 580 (((unsigned long)((~high_bits) & 0xffffffff))<<32); 581 emit_loadimm64(n, dest, ctx); 582 } 583 584 low_bits = -0x400 | trailing_bits; 585 586 emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx); 587 return; 588 } 589 590 /* 1) sethi %hi(xxx), %reg 591 * or %reg, %lo(xxx), %reg 592 * sllx %reg, yyy, %reg 593 */ 594 if ((highest_bit_set - lowest_bit_set) < 32) { 595 unsigned long focus_bits = 596 create_simple_focus_bits(high_bits, low_bits, 597 lowest_bit_set, 0); 598 599 /* So what we know is that the set bits straddle the 600 * middle of the 64-bit word. 601 */ 602 sparc_emit_set_const64_quick2(focus_bits, 0, dest, 603 lowest_bit_set, ctx); 604 return; 605 } 606 607 /* 1) sethi %hi(high_bits), %reg 608 * or %reg, %lo(high_bits), %reg 609 * sllx %reg, 32, %reg 610 * or %reg, low_bits, %reg 611 */ 612 if (is_simm13(low_bits) && ((int)low_bits > 0)) { 613 sparc_emit_set_const64_quick2(high_bits, low_bits, 614 dest, 32, ctx); 615 return; 616 } 617 618 /* Oh well, we tried... Do a full 64-bit decomposition. */ 619 ctx->tmp_1_used = true; 620 621 emit_loadimm32(high_bits, tmp, ctx); 622 emit_loadimm32(low_bits, dest, ctx); 623 emit_alu_K(SLLX, tmp, 32, ctx); 624 emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx); 625 } 626 627 static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx, 628 struct jit_ctx *ctx) 629 { 630 unsigned int off = to_idx - from_idx; 631 632 if (br_opc & XCC) 633 emit(br_opc | WDISP19(off << 2), ctx); 634 else 635 emit(br_opc | WDISP22(off << 2), ctx); 636 } 637 638 static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx, 639 const u8 dst, const u8 src, struct jit_ctx *ctx) 640 { 641 unsigned int off = to_idx - from_idx; 642 643 emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx); 644 } 645 646 static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx, 647 const u8 dst, s32 imm, struct jit_ctx *ctx) 648 { 649 unsigned int off = to_idx - from_idx; 650 651 emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx); 652 } 653 654 #define emit_read_y(REG, CTX) emit(RD_Y | RD(REG), CTX) 655 #define emit_write_y(REG, CTX) emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX) 656 657 #define emit_cmp(R1, R2, CTX) \ 658 emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX) 659 660 #define emit_cmpi(R1, IMM, CTX) \ 661 emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX) 662 663 #define emit_btst(R1, R2, CTX) \ 664 emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX) 665 666 #define emit_btsti(R1, IMM, CTX) \ 667 emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX) 668 669 static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src, 670 const s32 imm, bool is_imm, int branch_dst, 671 struct jit_ctx *ctx) 672 { 673 bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0; 674 const u8 tmp = bpf2sparc[TMP_REG_1]; 675 676 branch_dst = ctx->offset[branch_dst]; 677 678 if (!is_simm10(branch_dst - ctx->idx) || 679 BPF_OP(code) == BPF_JSET) 680 use_cbcond = false; 681 682 if (is_imm) { 683 bool fits = true; 684 685 if (use_cbcond) { 686 if (!is_simm5(imm)) 687 fits = false; 688 } else if (!is_simm13(imm)) { 689 fits = false; 690 } 691 if (!fits) { 692 ctx->tmp_1_used = true; 693 emit_loadimm_sext(imm, tmp, ctx); 694 src = tmp; 695 is_imm = false; 696 } 697 } 698 699 if (!use_cbcond) { 700 u32 br_opcode; 701 702 if (BPF_OP(code) == BPF_JSET) { 703 if (is_imm) 704 emit_btsti(dst, imm, ctx); 705 else 706 emit_btst(dst, src, ctx); 707 } else { 708 if (is_imm) 709 emit_cmpi(dst, imm, ctx); 710 else 711 emit_cmp(dst, src, ctx); 712 } 713 switch (BPF_OP(code)) { 714 case BPF_JEQ: 715 br_opcode = BE; 716 break; 717 case BPF_JGT: 718 br_opcode = BGU; 719 break; 720 case BPF_JLT: 721 br_opcode = BLU; 722 break; 723 case BPF_JGE: 724 br_opcode = BGEU; 725 break; 726 case BPF_JLE: 727 br_opcode = BLEU; 728 break; 729 case BPF_JSET: 730 case BPF_JNE: 731 br_opcode = BNE; 732 break; 733 case BPF_JSGT: 734 br_opcode = BG; 735 break; 736 case BPF_JSLT: 737 br_opcode = BL; 738 break; 739 case BPF_JSGE: 740 br_opcode = BGE; 741 break; 742 case BPF_JSLE: 743 br_opcode = BLE; 744 break; 745 default: 746 /* Make sure we dont leak kernel information to the 747 * user. 748 */ 749 return -EFAULT; 750 } 751 emit_branch(br_opcode, ctx->idx, branch_dst, ctx); 752 emit_nop(ctx); 753 } else { 754 u32 cbcond_opcode; 755 756 switch (BPF_OP(code)) { 757 case BPF_JEQ: 758 cbcond_opcode = CBCONDE; 759 break; 760 case BPF_JGT: 761 cbcond_opcode = CBCONDGU; 762 break; 763 case BPF_JLT: 764 cbcond_opcode = CBCONDLU; 765 break; 766 case BPF_JGE: 767 cbcond_opcode = CBCONDGEU; 768 break; 769 case BPF_JLE: 770 cbcond_opcode = CBCONDLEU; 771 break; 772 case BPF_JNE: 773 cbcond_opcode = CBCONDNE; 774 break; 775 case BPF_JSGT: 776 cbcond_opcode = CBCONDG; 777 break; 778 case BPF_JSLT: 779 cbcond_opcode = CBCONDL; 780 break; 781 case BPF_JSGE: 782 cbcond_opcode = CBCONDGE; 783 break; 784 case BPF_JSLE: 785 cbcond_opcode = CBCONDLE; 786 break; 787 default: 788 /* Make sure we dont leak kernel information to the 789 * user. 790 */ 791 return -EFAULT; 792 } 793 cbcond_opcode |= CBCOND_OP; 794 if (is_imm) 795 emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst, 796 dst, imm, ctx); 797 else 798 emit_cbcond(cbcond_opcode, ctx->idx, branch_dst, 799 dst, src, ctx); 800 } 801 return 0; 802 } 803 804 static void load_skb_regs(struct jit_ctx *ctx, u8 r_skb) 805 { 806 const u8 r_headlen = bpf2sparc[SKB_HLEN_REG]; 807 const u8 r_data = bpf2sparc[SKB_DATA_REG]; 808 const u8 r_tmp = bpf2sparc[TMP_REG_1]; 809 unsigned int off; 810 811 off = offsetof(struct sk_buff, len); 812 emit(LD32I | RS1(r_skb) | S13(off) | RD(r_headlen), ctx); 813 814 off = offsetof(struct sk_buff, data_len); 815 emit(LD32I | RS1(r_skb) | S13(off) | RD(r_tmp), ctx); 816 817 emit(SUB | RS1(r_headlen) | RS2(r_tmp) | RD(r_headlen), ctx); 818 819 off = offsetof(struct sk_buff, data); 820 emit(LDPTRI | RS1(r_skb) | S13(off) | RD(r_data), ctx); 821 } 822 823 /* Just skip the save instruction and the ctx register move. */ 824 #define BPF_TAILCALL_PROLOGUE_SKIP 16 825 #define BPF_TAILCALL_CNT_SP_OFF (STACK_BIAS + 128) 826 827 static void build_prologue(struct jit_ctx *ctx) 828 { 829 s32 stack_needed = BASE_STACKFRAME; 830 831 if (ctx->saw_frame_pointer || ctx->saw_tail_call) { 832 struct bpf_prog *prog = ctx->prog; 833 u32 stack_depth; 834 835 stack_depth = prog->aux->stack_depth; 836 stack_needed += round_up(stack_depth, 16); 837 } 838 839 if (ctx->saw_tail_call) 840 stack_needed += 8; 841 842 /* save %sp, -176, %sp */ 843 emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx); 844 845 /* tail_call_cnt = 0 */ 846 if (ctx->saw_tail_call) { 847 u32 off = BPF_TAILCALL_CNT_SP_OFF; 848 849 emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx); 850 } else { 851 emit_nop(ctx); 852 } 853 if (ctx->saw_frame_pointer) { 854 const u8 vfp = bpf2sparc[BPF_REG_FP]; 855 856 emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx); 857 } 858 859 emit_reg_move(I0, O0, ctx); 860 /* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */ 861 862 if (ctx->saw_ld_abs_ind) 863 load_skb_regs(ctx, bpf2sparc[BPF_REG_1]); 864 } 865 866 static void build_epilogue(struct jit_ctx *ctx) 867 { 868 ctx->epilogue_offset = ctx->idx; 869 870 /* ret (jmpl %i7 + 8, %g0) */ 871 emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx); 872 873 /* restore %i5, %g0, %o0 */ 874 emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx); 875 } 876 877 static void emit_tail_call(struct jit_ctx *ctx) 878 { 879 const u8 bpf_array = bpf2sparc[BPF_REG_2]; 880 const u8 bpf_index = bpf2sparc[BPF_REG_3]; 881 const u8 tmp = bpf2sparc[TMP_REG_1]; 882 u32 off; 883 884 ctx->saw_tail_call = true; 885 886 off = offsetof(struct bpf_array, map.max_entries); 887 emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx); 888 emit_cmp(bpf_index, tmp, ctx); 889 #define OFFSET1 17 890 emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx); 891 emit_nop(ctx); 892 893 off = BPF_TAILCALL_CNT_SP_OFF; 894 emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx); 895 emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx); 896 #define OFFSET2 13 897 emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx); 898 emit_nop(ctx); 899 900 emit_alu_K(ADD, tmp, 1, ctx); 901 off = BPF_TAILCALL_CNT_SP_OFF; 902 emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx); 903 904 emit_alu3_K(SLL, bpf_index, 3, tmp, ctx); 905 emit_alu(ADD, bpf_array, tmp, ctx); 906 off = offsetof(struct bpf_array, ptrs); 907 emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx); 908 909 emit_cmpi(tmp, 0, ctx); 910 #define OFFSET3 5 911 emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx); 912 emit_nop(ctx); 913 914 off = offsetof(struct bpf_prog, bpf_func); 915 emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx); 916 917 off = BPF_TAILCALL_PROLOGUE_SKIP; 918 emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx); 919 emit_nop(ctx); 920 } 921 922 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) 923 { 924 const u8 code = insn->code; 925 const u8 dst = bpf2sparc[insn->dst_reg]; 926 const u8 src = bpf2sparc[insn->src_reg]; 927 const int i = insn - ctx->prog->insnsi; 928 const s16 off = insn->off; 929 const s32 imm = insn->imm; 930 u32 *func; 931 932 if (insn->src_reg == BPF_REG_FP) 933 ctx->saw_frame_pointer = true; 934 935 switch (code) { 936 /* dst = src */ 937 case BPF_ALU | BPF_MOV | BPF_X: 938 emit_alu3_K(SRL, src, 0, dst, ctx); 939 break; 940 case BPF_ALU64 | BPF_MOV | BPF_X: 941 emit_reg_move(src, dst, ctx); 942 break; 943 /* dst = dst OP src */ 944 case BPF_ALU | BPF_ADD | BPF_X: 945 case BPF_ALU64 | BPF_ADD | BPF_X: 946 emit_alu(ADD, src, dst, ctx); 947 goto do_alu32_trunc; 948 case BPF_ALU | BPF_SUB | BPF_X: 949 case BPF_ALU64 | BPF_SUB | BPF_X: 950 emit_alu(SUB, src, dst, ctx); 951 goto do_alu32_trunc; 952 case BPF_ALU | BPF_AND | BPF_X: 953 case BPF_ALU64 | BPF_AND | BPF_X: 954 emit_alu(AND, src, dst, ctx); 955 goto do_alu32_trunc; 956 case BPF_ALU | BPF_OR | BPF_X: 957 case BPF_ALU64 | BPF_OR | BPF_X: 958 emit_alu(OR, src, dst, ctx); 959 goto do_alu32_trunc; 960 case BPF_ALU | BPF_XOR | BPF_X: 961 case BPF_ALU64 | BPF_XOR | BPF_X: 962 emit_alu(XOR, src, dst, ctx); 963 goto do_alu32_trunc; 964 case BPF_ALU | BPF_MUL | BPF_X: 965 emit_alu(MUL, src, dst, ctx); 966 goto do_alu32_trunc; 967 case BPF_ALU64 | BPF_MUL | BPF_X: 968 emit_alu(MULX, src, dst, ctx); 969 break; 970 case BPF_ALU | BPF_DIV | BPF_X: 971 emit_cmp(src, G0, ctx); 972 emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx); 973 emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx); 974 975 emit_write_y(G0, ctx); 976 emit_alu(DIV, src, dst, ctx); 977 break; 978 979 case BPF_ALU64 | BPF_DIV | BPF_X: 980 emit_cmp(src, G0, ctx); 981 emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx); 982 emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx); 983 984 emit_alu(UDIVX, src, dst, ctx); 985 break; 986 987 case BPF_ALU | BPF_MOD | BPF_X: { 988 const u8 tmp = bpf2sparc[TMP_REG_1]; 989 990 ctx->tmp_1_used = true; 991 992 emit_cmp(src, G0, ctx); 993 emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx); 994 emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx); 995 996 emit_write_y(G0, ctx); 997 emit_alu3(DIV, dst, src, tmp, ctx); 998 emit_alu3(MULX, tmp, src, tmp, ctx); 999 emit_alu3(SUB, dst, tmp, dst, ctx); 1000 goto do_alu32_trunc; 1001 } 1002 case BPF_ALU64 | BPF_MOD | BPF_X: { 1003 const u8 tmp = bpf2sparc[TMP_REG_1]; 1004 1005 ctx->tmp_1_used = true; 1006 1007 emit_cmp(src, G0, ctx); 1008 emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx); 1009 emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx); 1010 1011 emit_alu3(UDIVX, dst, src, tmp, ctx); 1012 emit_alu3(MULX, tmp, src, tmp, ctx); 1013 emit_alu3(SUB, dst, tmp, dst, ctx); 1014 break; 1015 } 1016 case BPF_ALU | BPF_LSH | BPF_X: 1017 emit_alu(SLL, src, dst, ctx); 1018 goto do_alu32_trunc; 1019 case BPF_ALU64 | BPF_LSH | BPF_X: 1020 emit_alu(SLLX, src, dst, ctx); 1021 break; 1022 case BPF_ALU | BPF_RSH | BPF_X: 1023 emit_alu(SRL, src, dst, ctx); 1024 break; 1025 case BPF_ALU64 | BPF_RSH | BPF_X: 1026 emit_alu(SRLX, src, dst, ctx); 1027 break; 1028 case BPF_ALU | BPF_ARSH | BPF_X: 1029 emit_alu(SRA, src, dst, ctx); 1030 goto do_alu32_trunc; 1031 case BPF_ALU64 | BPF_ARSH | BPF_X: 1032 emit_alu(SRAX, src, dst, ctx); 1033 break; 1034 1035 /* dst = -dst */ 1036 case BPF_ALU | BPF_NEG: 1037 case BPF_ALU64 | BPF_NEG: 1038 emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx); 1039 goto do_alu32_trunc; 1040 1041 case BPF_ALU | BPF_END | BPF_FROM_BE: 1042 switch (imm) { 1043 case 16: 1044 emit_alu_K(SLL, dst, 16, ctx); 1045 emit_alu_K(SRL, dst, 16, ctx); 1046 break; 1047 case 32: 1048 emit_alu_K(SRL, dst, 0, ctx); 1049 break; 1050 case 64: 1051 /* nop */ 1052 break; 1053 1054 } 1055 break; 1056 1057 /* dst = BSWAP##imm(dst) */ 1058 case BPF_ALU | BPF_END | BPF_FROM_LE: { 1059 const u8 tmp = bpf2sparc[TMP_REG_1]; 1060 const u8 tmp2 = bpf2sparc[TMP_REG_2]; 1061 1062 ctx->tmp_1_used = true; 1063 switch (imm) { 1064 case 16: 1065 emit_alu3_K(AND, dst, 0xff, tmp, ctx); 1066 emit_alu3_K(SRL, dst, 8, dst, ctx); 1067 emit_alu3_K(AND, dst, 0xff, dst, ctx); 1068 emit_alu3_K(SLL, tmp, 8, tmp, ctx); 1069 emit_alu(OR, tmp, dst, ctx); 1070 break; 1071 1072 case 32: 1073 ctx->tmp_2_used = true; 1074 emit_alu3_K(SRL, dst, 24, tmp, ctx); /* tmp = dst >> 24 */ 1075 emit_alu3_K(SRL, dst, 16, tmp2, ctx); /* tmp2 = dst >> 16 */ 1076 emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */ 1077 emit_alu3_K(SLL, tmp2, 8, tmp2, ctx); /* tmp2 = tmp2 << 8 */ 1078 emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */ 1079 emit_alu3_K(SRL, dst, 8, tmp2, ctx); /* tmp2 = dst >> 8 */ 1080 emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */ 1081 emit_alu3_K(SLL, tmp2, 16, tmp2, ctx); /* tmp2 = tmp2 << 16 */ 1082 emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */ 1083 emit_alu3_K(AND, dst, 0xff, dst, ctx); /* dst = dst & 0xff */ 1084 emit_alu3_K(SLL, dst, 24, dst, ctx); /* dst = dst << 24 */ 1085 emit_alu(OR, tmp, dst, ctx); /* dst = dst | tmp */ 1086 break; 1087 1088 case 64: 1089 emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx); 1090 emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx); 1091 emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx); 1092 break; 1093 } 1094 break; 1095 } 1096 /* dst = imm */ 1097 case BPF_ALU | BPF_MOV | BPF_K: 1098 emit_loadimm32(imm, dst, ctx); 1099 break; 1100 case BPF_ALU64 | BPF_MOV | BPF_K: 1101 emit_loadimm_sext(imm, dst, ctx); 1102 break; 1103 /* dst = dst OP imm */ 1104 case BPF_ALU | BPF_ADD | BPF_K: 1105 case BPF_ALU64 | BPF_ADD | BPF_K: 1106 emit_alu_K(ADD, dst, imm, ctx); 1107 goto do_alu32_trunc; 1108 case BPF_ALU | BPF_SUB | BPF_K: 1109 case BPF_ALU64 | BPF_SUB | BPF_K: 1110 emit_alu_K(SUB, dst, imm, ctx); 1111 goto do_alu32_trunc; 1112 case BPF_ALU | BPF_AND | BPF_K: 1113 case BPF_ALU64 | BPF_AND | BPF_K: 1114 emit_alu_K(AND, dst, imm, ctx); 1115 goto do_alu32_trunc; 1116 case BPF_ALU | BPF_OR | BPF_K: 1117 case BPF_ALU64 | BPF_OR | BPF_K: 1118 emit_alu_K(OR, dst, imm, ctx); 1119 goto do_alu32_trunc; 1120 case BPF_ALU | BPF_XOR | BPF_K: 1121 case BPF_ALU64 | BPF_XOR | BPF_K: 1122 emit_alu_K(XOR, dst, imm, ctx); 1123 goto do_alu32_trunc; 1124 case BPF_ALU | BPF_MUL | BPF_K: 1125 emit_alu_K(MUL, dst, imm, ctx); 1126 goto do_alu32_trunc; 1127 case BPF_ALU64 | BPF_MUL | BPF_K: 1128 emit_alu_K(MULX, dst, imm, ctx); 1129 break; 1130 case BPF_ALU | BPF_DIV | BPF_K: 1131 if (imm == 0) 1132 return -EINVAL; 1133 1134 emit_write_y(G0, ctx); 1135 emit_alu_K(DIV, dst, imm, ctx); 1136 goto do_alu32_trunc; 1137 case BPF_ALU64 | BPF_DIV | BPF_K: 1138 if (imm == 0) 1139 return -EINVAL; 1140 1141 emit_alu_K(UDIVX, dst, imm, ctx); 1142 break; 1143 case BPF_ALU64 | BPF_MOD | BPF_K: 1144 case BPF_ALU | BPF_MOD | BPF_K: { 1145 const u8 tmp = bpf2sparc[TMP_REG_2]; 1146 unsigned int div; 1147 1148 if (imm == 0) 1149 return -EINVAL; 1150 1151 div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV; 1152 1153 ctx->tmp_2_used = true; 1154 1155 if (BPF_CLASS(code) != BPF_ALU64) 1156 emit_write_y(G0, ctx); 1157 if (is_simm13(imm)) { 1158 emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx); 1159 emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx); 1160 emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx); 1161 } else { 1162 const u8 tmp1 = bpf2sparc[TMP_REG_1]; 1163 1164 ctx->tmp_1_used = true; 1165 1166 emit_set_const_sext(imm, tmp1, ctx); 1167 emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx); 1168 emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx); 1169 emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx); 1170 } 1171 goto do_alu32_trunc; 1172 } 1173 case BPF_ALU | BPF_LSH | BPF_K: 1174 emit_alu_K(SLL, dst, imm, ctx); 1175 goto do_alu32_trunc; 1176 case BPF_ALU64 | BPF_LSH | BPF_K: 1177 emit_alu_K(SLLX, dst, imm, ctx); 1178 break; 1179 case BPF_ALU | BPF_RSH | BPF_K: 1180 emit_alu_K(SRL, dst, imm, ctx); 1181 break; 1182 case BPF_ALU64 | BPF_RSH | BPF_K: 1183 emit_alu_K(SRLX, dst, imm, ctx); 1184 break; 1185 case BPF_ALU | BPF_ARSH | BPF_K: 1186 emit_alu_K(SRA, dst, imm, ctx); 1187 goto do_alu32_trunc; 1188 case BPF_ALU64 | BPF_ARSH | BPF_K: 1189 emit_alu_K(SRAX, dst, imm, ctx); 1190 break; 1191 1192 do_alu32_trunc: 1193 if (BPF_CLASS(code) == BPF_ALU) 1194 emit_alu_K(SRL, dst, 0, ctx); 1195 break; 1196 1197 /* JUMP off */ 1198 case BPF_JMP | BPF_JA: 1199 emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx); 1200 emit_nop(ctx); 1201 break; 1202 /* IF (dst COND src) JUMP off */ 1203 case BPF_JMP | BPF_JEQ | BPF_X: 1204 case BPF_JMP | BPF_JGT | BPF_X: 1205 case BPF_JMP | BPF_JLT | BPF_X: 1206 case BPF_JMP | BPF_JGE | BPF_X: 1207 case BPF_JMP | BPF_JLE | BPF_X: 1208 case BPF_JMP | BPF_JNE | BPF_X: 1209 case BPF_JMP | BPF_JSGT | BPF_X: 1210 case BPF_JMP | BPF_JSLT | BPF_X: 1211 case BPF_JMP | BPF_JSGE | BPF_X: 1212 case BPF_JMP | BPF_JSLE | BPF_X: 1213 case BPF_JMP | BPF_JSET | BPF_X: { 1214 int err; 1215 1216 err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx); 1217 if (err) 1218 return err; 1219 break; 1220 } 1221 /* IF (dst COND imm) JUMP off */ 1222 case BPF_JMP | BPF_JEQ | BPF_K: 1223 case BPF_JMP | BPF_JGT | BPF_K: 1224 case BPF_JMP | BPF_JLT | BPF_K: 1225 case BPF_JMP | BPF_JGE | BPF_K: 1226 case BPF_JMP | BPF_JLE | BPF_K: 1227 case BPF_JMP | BPF_JNE | BPF_K: 1228 case BPF_JMP | BPF_JSGT | BPF_K: 1229 case BPF_JMP | BPF_JSLT | BPF_K: 1230 case BPF_JMP | BPF_JSGE | BPF_K: 1231 case BPF_JMP | BPF_JSLE | BPF_K: 1232 case BPF_JMP | BPF_JSET | BPF_K: { 1233 int err; 1234 1235 err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx); 1236 if (err) 1237 return err; 1238 break; 1239 } 1240 1241 /* function call */ 1242 case BPF_JMP | BPF_CALL: 1243 { 1244 u8 *func = ((u8 *)__bpf_call_base) + imm; 1245 1246 ctx->saw_call = true; 1247 1248 emit_call((u32 *)func, ctx); 1249 emit_nop(ctx); 1250 1251 emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx); 1252 1253 if (bpf_helper_changes_pkt_data(func) && ctx->saw_ld_abs_ind) 1254 load_skb_regs(ctx, bpf2sparc[BPF_REG_6]); 1255 break; 1256 } 1257 1258 /* tail call */ 1259 case BPF_JMP | BPF_TAIL_CALL: 1260 emit_tail_call(ctx); 1261 break; 1262 1263 /* function return */ 1264 case BPF_JMP | BPF_EXIT: 1265 /* Optimization: when last instruction is EXIT, 1266 simply fallthrough to epilogue. */ 1267 if (i == ctx->prog->len - 1) 1268 break; 1269 emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx); 1270 emit_nop(ctx); 1271 break; 1272 1273 /* dst = imm64 */ 1274 case BPF_LD | BPF_IMM | BPF_DW: 1275 { 1276 const struct bpf_insn insn1 = insn[1]; 1277 u64 imm64; 1278 1279 imm64 = (u64)insn1.imm << 32 | (u32)imm; 1280 emit_loadimm64(imm64, dst, ctx); 1281 1282 return 1; 1283 } 1284 1285 /* LDX: dst = *(size *)(src + off) */ 1286 case BPF_LDX | BPF_MEM | BPF_W: 1287 case BPF_LDX | BPF_MEM | BPF_H: 1288 case BPF_LDX | BPF_MEM | BPF_B: 1289 case BPF_LDX | BPF_MEM | BPF_DW: { 1290 const u8 tmp = bpf2sparc[TMP_REG_1]; 1291 u32 opcode = 0, rs2; 1292 1293 ctx->tmp_1_used = true; 1294 switch (BPF_SIZE(code)) { 1295 case BPF_W: 1296 opcode = LD32; 1297 break; 1298 case BPF_H: 1299 opcode = LD16; 1300 break; 1301 case BPF_B: 1302 opcode = LD8; 1303 break; 1304 case BPF_DW: 1305 opcode = LD64; 1306 break; 1307 } 1308 1309 if (is_simm13(off)) { 1310 opcode |= IMMED; 1311 rs2 = S13(off); 1312 } else { 1313 emit_loadimm(off, tmp, ctx); 1314 rs2 = RS2(tmp); 1315 } 1316 emit(opcode | RS1(src) | rs2 | RD(dst), ctx); 1317 break; 1318 } 1319 /* ST: *(size *)(dst + off) = imm */ 1320 case BPF_ST | BPF_MEM | BPF_W: 1321 case BPF_ST | BPF_MEM | BPF_H: 1322 case BPF_ST | BPF_MEM | BPF_B: 1323 case BPF_ST | BPF_MEM | BPF_DW: { 1324 const u8 tmp = bpf2sparc[TMP_REG_1]; 1325 const u8 tmp2 = bpf2sparc[TMP_REG_2]; 1326 u32 opcode = 0, rs2; 1327 1328 ctx->tmp_2_used = true; 1329 emit_loadimm(imm, tmp2, ctx); 1330 1331 switch (BPF_SIZE(code)) { 1332 case BPF_W: 1333 opcode = ST32; 1334 break; 1335 case BPF_H: 1336 opcode = ST16; 1337 break; 1338 case BPF_B: 1339 opcode = ST8; 1340 break; 1341 case BPF_DW: 1342 opcode = ST64; 1343 break; 1344 } 1345 1346 if (is_simm13(off)) { 1347 opcode |= IMMED; 1348 rs2 = S13(off); 1349 } else { 1350 ctx->tmp_1_used = true; 1351 emit_loadimm(off, tmp, ctx); 1352 rs2 = RS2(tmp); 1353 } 1354 emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx); 1355 break; 1356 } 1357 1358 /* STX: *(size *)(dst + off) = src */ 1359 case BPF_STX | BPF_MEM | BPF_W: 1360 case BPF_STX | BPF_MEM | BPF_H: 1361 case BPF_STX | BPF_MEM | BPF_B: 1362 case BPF_STX | BPF_MEM | BPF_DW: { 1363 const u8 tmp = bpf2sparc[TMP_REG_1]; 1364 u32 opcode = 0, rs2; 1365 1366 switch (BPF_SIZE(code)) { 1367 case BPF_W: 1368 opcode = ST32; 1369 break; 1370 case BPF_H: 1371 opcode = ST16; 1372 break; 1373 case BPF_B: 1374 opcode = ST8; 1375 break; 1376 case BPF_DW: 1377 opcode = ST64; 1378 break; 1379 } 1380 if (is_simm13(off)) { 1381 opcode |= IMMED; 1382 rs2 = S13(off); 1383 } else { 1384 ctx->tmp_1_used = true; 1385 emit_loadimm(off, tmp, ctx); 1386 rs2 = RS2(tmp); 1387 } 1388 emit(opcode | RS1(dst) | rs2 | RD(src), ctx); 1389 break; 1390 } 1391 1392 /* STX XADD: lock *(u32 *)(dst + off) += src */ 1393 case BPF_STX | BPF_XADD | BPF_W: { 1394 const u8 tmp = bpf2sparc[TMP_REG_1]; 1395 const u8 tmp2 = bpf2sparc[TMP_REG_2]; 1396 const u8 tmp3 = bpf2sparc[TMP_REG_3]; 1397 1398 ctx->tmp_1_used = true; 1399 ctx->tmp_2_used = true; 1400 ctx->tmp_3_used = true; 1401 emit_loadimm(off, tmp, ctx); 1402 emit_alu3(ADD, dst, tmp, tmp, ctx); 1403 1404 emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx); 1405 emit_alu3(ADD, tmp2, src, tmp3, ctx); 1406 emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx); 1407 emit_cmp(tmp2, tmp3, ctx); 1408 emit_branch(BNE, 4, 0, ctx); 1409 emit_nop(ctx); 1410 break; 1411 } 1412 /* STX XADD: lock *(u64 *)(dst + off) += src */ 1413 case BPF_STX | BPF_XADD | BPF_DW: { 1414 const u8 tmp = bpf2sparc[TMP_REG_1]; 1415 const u8 tmp2 = bpf2sparc[TMP_REG_2]; 1416 const u8 tmp3 = bpf2sparc[TMP_REG_3]; 1417 1418 ctx->tmp_1_used = true; 1419 ctx->tmp_2_used = true; 1420 ctx->tmp_3_used = true; 1421 emit_loadimm(off, tmp, ctx); 1422 emit_alu3(ADD, dst, tmp, tmp, ctx); 1423 1424 emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx); 1425 emit_alu3(ADD, tmp2, src, tmp3, ctx); 1426 emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx); 1427 emit_cmp(tmp2, tmp3, ctx); 1428 emit_branch(BNE, 4, 0, ctx); 1429 emit_nop(ctx); 1430 break; 1431 } 1432 #define CHOOSE_LOAD_FUNC(K, func) \ 1433 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset) 1434 1435 /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */ 1436 case BPF_LD | BPF_ABS | BPF_W: 1437 func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_word); 1438 goto common_load; 1439 case BPF_LD | BPF_ABS | BPF_H: 1440 func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_half); 1441 goto common_load; 1442 case BPF_LD | BPF_ABS | BPF_B: 1443 func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_byte); 1444 goto common_load; 1445 /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */ 1446 case BPF_LD | BPF_IND | BPF_W: 1447 func = bpf_jit_load_word; 1448 goto common_load; 1449 case BPF_LD | BPF_IND | BPF_H: 1450 func = bpf_jit_load_half; 1451 goto common_load; 1452 1453 case BPF_LD | BPF_IND | BPF_B: 1454 func = bpf_jit_load_byte; 1455 common_load: 1456 ctx->saw_ld_abs_ind = true; 1457 1458 emit_reg_move(bpf2sparc[BPF_REG_6], O0, ctx); 1459 emit_loadimm(imm, O1, ctx); 1460 1461 if (BPF_MODE(code) == BPF_IND) 1462 emit_alu(ADD, src, O1, ctx); 1463 1464 emit_call(func, ctx); 1465 emit_alu_K(SRA, O1, 0, ctx); 1466 1467 emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx); 1468 break; 1469 1470 default: 1471 pr_err_once("unknown opcode %02x\n", code); 1472 return -EINVAL; 1473 } 1474 1475 return 0; 1476 } 1477 1478 static int build_body(struct jit_ctx *ctx) 1479 { 1480 const struct bpf_prog *prog = ctx->prog; 1481 int i; 1482 1483 for (i = 0; i < prog->len; i++) { 1484 const struct bpf_insn *insn = &prog->insnsi[i]; 1485 int ret; 1486 1487 ret = build_insn(insn, ctx); 1488 1489 if (ret > 0) { 1490 i++; 1491 ctx->offset[i] = ctx->idx; 1492 continue; 1493 } 1494 ctx->offset[i] = ctx->idx; 1495 if (ret) 1496 return ret; 1497 } 1498 return 0; 1499 } 1500 1501 static void jit_fill_hole(void *area, unsigned int size) 1502 { 1503 u32 *ptr; 1504 /* We are guaranteed to have aligned memory. */ 1505 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32)) 1506 *ptr++ = 0x91d02005; /* ta 5 */ 1507 } 1508 1509 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) 1510 { 1511 struct bpf_prog *tmp, *orig_prog = prog; 1512 struct bpf_binary_header *header; 1513 bool tmp_blinded = false; 1514 struct jit_ctx ctx; 1515 u32 image_size; 1516 u8 *image_ptr; 1517 int pass; 1518 1519 if (!bpf_jit_enable) 1520 return orig_prog; 1521 1522 tmp = bpf_jit_blind_constants(prog); 1523 /* If blinding was requested and we failed during blinding, 1524 * we must fall back to the interpreter. 1525 */ 1526 if (IS_ERR(tmp)) 1527 return orig_prog; 1528 if (tmp != prog) { 1529 tmp_blinded = true; 1530 prog = tmp; 1531 } 1532 1533 memset(&ctx, 0, sizeof(ctx)); 1534 ctx.prog = prog; 1535 1536 ctx.offset = kcalloc(prog->len, sizeof(unsigned int), GFP_KERNEL); 1537 if (ctx.offset == NULL) { 1538 prog = orig_prog; 1539 goto out; 1540 } 1541 1542 /* Fake pass to detect features used, and get an accurate assessment 1543 * of what the final image size will be. 1544 */ 1545 if (build_body(&ctx)) { 1546 prog = orig_prog; 1547 goto out_off; 1548 } 1549 build_prologue(&ctx); 1550 build_epilogue(&ctx); 1551 1552 /* Now we know the actual image size. */ 1553 image_size = sizeof(u32) * ctx.idx; 1554 header = bpf_jit_binary_alloc(image_size, &image_ptr, 1555 sizeof(u32), jit_fill_hole); 1556 if (header == NULL) { 1557 prog = orig_prog; 1558 goto out_off; 1559 } 1560 1561 ctx.image = (u32 *)image_ptr; 1562 1563 for (pass = 1; pass < 3; pass++) { 1564 ctx.idx = 0; 1565 1566 build_prologue(&ctx); 1567 1568 if (build_body(&ctx)) { 1569 bpf_jit_binary_free(header); 1570 prog = orig_prog; 1571 goto out_off; 1572 } 1573 1574 build_epilogue(&ctx); 1575 1576 if (bpf_jit_enable > 1) 1577 pr_info("Pass %d: shrink = %d, seen = [%c%c%c%c%c%c%c]\n", pass, 1578 image_size - (ctx.idx * 4), 1579 ctx.tmp_1_used ? '1' : ' ', 1580 ctx.tmp_2_used ? '2' : ' ', 1581 ctx.tmp_3_used ? '3' : ' ', 1582 ctx.saw_ld_abs_ind ? 'L' : ' ', 1583 ctx.saw_frame_pointer ? 'F' : ' ', 1584 ctx.saw_call ? 'C' : ' ', 1585 ctx.saw_tail_call ? 'T' : ' '); 1586 } 1587 1588 if (bpf_jit_enable > 1) 1589 bpf_jit_dump(prog->len, image_size, pass, ctx.image); 1590 1591 bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE)); 1592 1593 bpf_jit_binary_lock_ro(header); 1594 1595 prog->bpf_func = (void *)ctx.image; 1596 prog->jited = 1; 1597 prog->jited_len = image_size; 1598 1599 out_off: 1600 kfree(ctx.offset); 1601 out: 1602 if (tmp_blinded) 1603 bpf_jit_prog_release_other(prog, prog == orig_prog ? 1604 tmp : orig_prog); 1605 return prog; 1606 } 1607