xref: /openbmc/linux/arch/sparc/net/bpf_jit_comp_64.c (revision 09bae3b6)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/moduleloader.h>
3 #include <linux/workqueue.h>
4 #include <linux/netdevice.h>
5 #include <linux/filter.h>
6 #include <linux/bpf.h>
7 #include <linux/cache.h>
8 #include <linux/if_vlan.h>
9 
10 #include <asm/cacheflush.h>
11 #include <asm/ptrace.h>
12 
13 #include "bpf_jit_64.h"
14 
15 static inline bool is_simm13(unsigned int value)
16 {
17 	return value + 0x1000 < 0x2000;
18 }
19 
20 static inline bool is_simm10(unsigned int value)
21 {
22 	return value + 0x200 < 0x400;
23 }
24 
25 static inline bool is_simm5(unsigned int value)
26 {
27 	return value + 0x10 < 0x20;
28 }
29 
30 static inline bool is_sethi(unsigned int value)
31 {
32 	return (value & ~0x3fffff) == 0;
33 }
34 
35 static void bpf_flush_icache(void *start_, void *end_)
36 {
37 	/* Cheetah's I-cache is fully coherent.  */
38 	if (tlb_type == spitfire) {
39 		unsigned long start = (unsigned long) start_;
40 		unsigned long end = (unsigned long) end_;
41 
42 		start &= ~7UL;
43 		end = (end + 7UL) & ~7UL;
44 		while (start < end) {
45 			flushi(start);
46 			start += 32;
47 		}
48 	}
49 }
50 
51 #define S13(X)		((X) & 0x1fff)
52 #define S5(X)		((X) & 0x1f)
53 #define IMMED		0x00002000
54 #define RD(X)		((X) << 25)
55 #define RS1(X)		((X) << 14)
56 #define RS2(X)		((X))
57 #define OP(X)		((X) << 30)
58 #define OP2(X)		((X) << 22)
59 #define OP3(X)		((X) << 19)
60 #define COND(X)		(((X) & 0xf) << 25)
61 #define CBCOND(X)	(((X) & 0x1f) << 25)
62 #define F1(X)		OP(X)
63 #define F2(X, Y)	(OP(X) | OP2(Y))
64 #define F3(X, Y)	(OP(X) | OP3(Y))
65 #define ASI(X)		(((X) & 0xff) << 5)
66 
67 #define CONDN		COND(0x0)
68 #define CONDE		COND(0x1)
69 #define CONDLE		COND(0x2)
70 #define CONDL		COND(0x3)
71 #define CONDLEU		COND(0x4)
72 #define CONDCS		COND(0x5)
73 #define CONDNEG		COND(0x6)
74 #define CONDVC		COND(0x7)
75 #define CONDA		COND(0x8)
76 #define CONDNE		COND(0x9)
77 #define CONDG		COND(0xa)
78 #define CONDGE		COND(0xb)
79 #define CONDGU		COND(0xc)
80 #define CONDCC		COND(0xd)
81 #define CONDPOS		COND(0xe)
82 #define CONDVS		COND(0xf)
83 
84 #define CONDGEU		CONDCC
85 #define CONDLU		CONDCS
86 
87 #define WDISP22(X)	(((X) >> 2) & 0x3fffff)
88 #define WDISP19(X)	(((X) >> 2) & 0x7ffff)
89 
90 /* The 10-bit branch displacement for CBCOND is split into two fields */
91 static u32 WDISP10(u32 off)
92 {
93 	u32 ret = ((off >> 2) & 0xff) << 5;
94 
95 	ret |= ((off >> (2 + 8)) & 0x03) << 19;
96 
97 	return ret;
98 }
99 
100 #define CBCONDE		CBCOND(0x09)
101 #define CBCONDLE	CBCOND(0x0a)
102 #define CBCONDL		CBCOND(0x0b)
103 #define CBCONDLEU	CBCOND(0x0c)
104 #define CBCONDCS	CBCOND(0x0d)
105 #define CBCONDN		CBCOND(0x0e)
106 #define CBCONDVS	CBCOND(0x0f)
107 #define CBCONDNE	CBCOND(0x19)
108 #define CBCONDG		CBCOND(0x1a)
109 #define CBCONDGE	CBCOND(0x1b)
110 #define CBCONDGU	CBCOND(0x1c)
111 #define CBCONDCC	CBCOND(0x1d)
112 #define CBCONDPOS	CBCOND(0x1e)
113 #define CBCONDVC	CBCOND(0x1f)
114 
115 #define CBCONDGEU	CBCONDCC
116 #define CBCONDLU	CBCONDCS
117 
118 #define ANNUL		(1 << 29)
119 #define XCC		(1 << 21)
120 
121 #define BRANCH		(F2(0, 1) | XCC)
122 #define CBCOND_OP	(F2(0, 3) | XCC)
123 
124 #define BA		(BRANCH | CONDA)
125 #define BG		(BRANCH | CONDG)
126 #define BL		(BRANCH | CONDL)
127 #define BLE		(BRANCH | CONDLE)
128 #define BGU		(BRANCH | CONDGU)
129 #define BLEU		(BRANCH | CONDLEU)
130 #define BGE		(BRANCH | CONDGE)
131 #define BGEU		(BRANCH | CONDGEU)
132 #define BLU		(BRANCH | CONDLU)
133 #define BE		(BRANCH | CONDE)
134 #define BNE		(BRANCH | CONDNE)
135 
136 #define SETHI(K, REG)	\
137 	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
138 #define OR_LO(K, REG)	\
139 	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
140 
141 #define ADD		F3(2, 0x00)
142 #define AND		F3(2, 0x01)
143 #define ANDCC		F3(2, 0x11)
144 #define OR		F3(2, 0x02)
145 #define XOR		F3(2, 0x03)
146 #define SUB		F3(2, 0x04)
147 #define SUBCC		F3(2, 0x14)
148 #define MUL		F3(2, 0x0a)
149 #define MULX		F3(2, 0x09)
150 #define UDIVX		F3(2, 0x0d)
151 #define DIV		F3(2, 0x0e)
152 #define SLL		F3(2, 0x25)
153 #define SLLX		(F3(2, 0x25)|(1<<12))
154 #define SRA		F3(2, 0x27)
155 #define SRAX		(F3(2, 0x27)|(1<<12))
156 #define SRL		F3(2, 0x26)
157 #define SRLX		(F3(2, 0x26)|(1<<12))
158 #define JMPL		F3(2, 0x38)
159 #define SAVE		F3(2, 0x3c)
160 #define RESTORE		F3(2, 0x3d)
161 #define CALL		F1(1)
162 #define BR		F2(0, 0x01)
163 #define RD_Y		F3(2, 0x28)
164 #define WR_Y		F3(2, 0x30)
165 
166 #define LD32		F3(3, 0x00)
167 #define LD8		F3(3, 0x01)
168 #define LD16		F3(3, 0x02)
169 #define LD64		F3(3, 0x0b)
170 #define LD64A		F3(3, 0x1b)
171 #define ST8		F3(3, 0x05)
172 #define ST16		F3(3, 0x06)
173 #define ST32		F3(3, 0x04)
174 #define ST64		F3(3, 0x0e)
175 
176 #define CAS		F3(3, 0x3c)
177 #define CASX		F3(3, 0x3e)
178 
179 #define LDPTR		LD64
180 #define BASE_STACKFRAME	176
181 
182 #define LD32I		(LD32 | IMMED)
183 #define LD8I		(LD8 | IMMED)
184 #define LD16I		(LD16 | IMMED)
185 #define LD64I		(LD64 | IMMED)
186 #define LDPTRI		(LDPTR | IMMED)
187 #define ST32I		(ST32 | IMMED)
188 
189 struct jit_ctx {
190 	struct bpf_prog		*prog;
191 	unsigned int		*offset;
192 	int			idx;
193 	int			epilogue_offset;
194 	bool 			tmp_1_used;
195 	bool 			tmp_2_used;
196 	bool 			tmp_3_used;
197 	bool			saw_frame_pointer;
198 	bool			saw_call;
199 	bool			saw_tail_call;
200 	u32			*image;
201 };
202 
203 #define TMP_REG_1	(MAX_BPF_JIT_REG + 0)
204 #define TMP_REG_2	(MAX_BPF_JIT_REG + 1)
205 #define TMP_REG_3	(MAX_BPF_JIT_REG + 2)
206 
207 /* Map BPF registers to SPARC registers */
208 static const int bpf2sparc[] = {
209 	/* return value from in-kernel function, and exit value from eBPF */
210 	[BPF_REG_0] = O5,
211 
212 	/* arguments from eBPF program to in-kernel function */
213 	[BPF_REG_1] = O0,
214 	[BPF_REG_2] = O1,
215 	[BPF_REG_3] = O2,
216 	[BPF_REG_4] = O3,
217 	[BPF_REG_5] = O4,
218 
219 	/* callee saved registers that in-kernel function will preserve */
220 	[BPF_REG_6] = L0,
221 	[BPF_REG_7] = L1,
222 	[BPF_REG_8] = L2,
223 	[BPF_REG_9] = L3,
224 
225 	/* read-only frame pointer to access stack */
226 	[BPF_REG_FP] = L6,
227 
228 	[BPF_REG_AX] = G7,
229 
230 	/* temporary register for internal BPF JIT */
231 	[TMP_REG_1] = G1,
232 	[TMP_REG_2] = G2,
233 	[TMP_REG_3] = G3,
234 };
235 
236 static void emit(const u32 insn, struct jit_ctx *ctx)
237 {
238 	if (ctx->image != NULL)
239 		ctx->image[ctx->idx] = insn;
240 
241 	ctx->idx++;
242 }
243 
244 static void emit_call(u32 *func, struct jit_ctx *ctx)
245 {
246 	if (ctx->image != NULL) {
247 		void *here = &ctx->image[ctx->idx];
248 		unsigned int off;
249 
250 		off = (void *)func - here;
251 		ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
252 	}
253 	ctx->idx++;
254 }
255 
256 static void emit_nop(struct jit_ctx *ctx)
257 {
258 	emit(SETHI(0, G0), ctx);
259 }
260 
261 static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
262 {
263 	emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
264 }
265 
266 /* Emit 32-bit constant, zero extended. */
267 static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
268 {
269 	emit(SETHI(K, reg), ctx);
270 	emit(OR_LO(K, reg), ctx);
271 }
272 
273 /* Emit 32-bit constant, sign extended. */
274 static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
275 {
276 	if (K >= 0) {
277 		emit(SETHI(K, reg), ctx);
278 		emit(OR_LO(K, reg), ctx);
279 	} else {
280 		u32 hbits = ~(u32) K;
281 		u32 lbits = -0x400 | (u32) K;
282 
283 		emit(SETHI(hbits, reg), ctx);
284 		emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
285 	}
286 }
287 
288 static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
289 {
290 	emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
291 }
292 
293 static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
294 {
295 	emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
296 }
297 
298 static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
299 		       struct jit_ctx *ctx)
300 {
301 	bool small_immed = is_simm13(imm);
302 	unsigned int insn = opcode;
303 
304 	insn |= RS1(dst) | RD(dst);
305 	if (small_immed) {
306 		emit(insn | IMMED | S13(imm), ctx);
307 	} else {
308 		unsigned int tmp = bpf2sparc[TMP_REG_1];
309 
310 		ctx->tmp_1_used = true;
311 
312 		emit_set_const_sext(imm, tmp, ctx);
313 		emit(insn | RS2(tmp), ctx);
314 	}
315 }
316 
317 static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
318 			unsigned int dst, struct jit_ctx *ctx)
319 {
320 	bool small_immed = is_simm13(imm);
321 	unsigned int insn = opcode;
322 
323 	insn |= RS1(src) | RD(dst);
324 	if (small_immed) {
325 		emit(insn | IMMED | S13(imm), ctx);
326 	} else {
327 		unsigned int tmp = bpf2sparc[TMP_REG_1];
328 
329 		ctx->tmp_1_used = true;
330 
331 		emit_set_const_sext(imm, tmp, ctx);
332 		emit(insn | RS2(tmp), ctx);
333 	}
334 }
335 
336 static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
337 {
338 	if (K >= 0 && is_simm13(K)) {
339 		/* or %g0, K, DEST */
340 		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
341 	} else {
342 		emit_set_const(K, dest, ctx);
343 	}
344 }
345 
346 static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
347 {
348 	if (is_simm13(K)) {
349 		/* or %g0, K, DEST */
350 		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
351 	} else {
352 		emit_set_const(K, dest, ctx);
353 	}
354 }
355 
356 static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
357 {
358 	if (is_simm13(K)) {
359 		/* or %g0, K, DEST */
360 		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
361 	} else {
362 		emit_set_const_sext(K, dest, ctx);
363 	}
364 }
365 
366 static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
367 				   int *hbsp, int *lbsp, int *abbasp)
368 {
369 	int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
370 	int i;
371 
372 	lowest_bit_set = highest_bit_set = -1;
373 	i = 0;
374 	do {
375 		if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
376 			lowest_bit_set = i;
377 		if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
378 			highest_bit_set = (64 - i - 1);
379 	}  while (++i < 32 && (highest_bit_set == -1 ||
380 			       lowest_bit_set == -1));
381 	if (i == 32) {
382 		i = 0;
383 		do {
384 			if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
385 				lowest_bit_set = i + 32;
386 			if (highest_bit_set == -1 &&
387 			    ((low_bits >> (32 - i - 1)) & 1))
388 				highest_bit_set = 32 - i - 1;
389 		} while (++i < 32 && (highest_bit_set == -1 ||
390 				      lowest_bit_set == -1));
391 	}
392 
393 	all_bits_between_are_set = 1;
394 	for (i = lowest_bit_set; i <= highest_bit_set; i++) {
395 		if (i < 32) {
396 			if ((low_bits & (1 << i)) != 0)
397 				continue;
398 		} else {
399 			if ((high_bits & (1 << (i - 32))) != 0)
400 				continue;
401 		}
402 		all_bits_between_are_set = 0;
403 		break;
404 	}
405 	*hbsp = highest_bit_set;
406 	*lbsp = lowest_bit_set;
407 	*abbasp = all_bits_between_are_set;
408 }
409 
410 static unsigned long create_simple_focus_bits(unsigned long high_bits,
411 					      unsigned long low_bits,
412 					      int lowest_bit_set, int shift)
413 {
414 	long hi, lo;
415 
416 	if (lowest_bit_set < 32) {
417 		lo = (low_bits >> lowest_bit_set) << shift;
418 		hi = ((high_bits << (32 - lowest_bit_set)) << shift);
419 	} else {
420 		lo = 0;
421 		hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
422 	}
423 	return hi | lo;
424 }
425 
426 static bool const64_is_2insns(unsigned long high_bits,
427 			      unsigned long low_bits)
428 {
429 	int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
430 
431 	if (high_bits == 0 || high_bits == 0xffffffff)
432 		return true;
433 
434 	analyze_64bit_constant(high_bits, low_bits,
435 			       &highest_bit_set, &lowest_bit_set,
436 			       &all_bits_between_are_set);
437 
438 	if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
439 	    all_bits_between_are_set != 0)
440 		return true;
441 
442 	if (highest_bit_set - lowest_bit_set < 21)
443 		return true;
444 
445 	return false;
446 }
447 
448 static void sparc_emit_set_const64_quick2(unsigned long high_bits,
449 					  unsigned long low_imm,
450 					  unsigned int dest,
451 					  int shift_count, struct jit_ctx *ctx)
452 {
453 	emit_loadimm32(high_bits, dest, ctx);
454 
455 	/* Now shift it up into place.  */
456 	emit_alu_K(SLLX, dest, shift_count, ctx);
457 
458 	/* If there is a low immediate part piece, finish up by
459 	 * putting that in as well.
460 	 */
461 	if (low_imm != 0)
462 		emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
463 }
464 
465 static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
466 {
467 	int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
468 	unsigned int tmp = bpf2sparc[TMP_REG_1];
469 	u32 low_bits = (K & 0xffffffff);
470 	u32 high_bits = (K >> 32);
471 
472 	/* These two tests also take care of all of the one
473 	 * instruction cases.
474 	 */
475 	if (high_bits == 0xffffffff && (low_bits & 0x80000000))
476 		return emit_loadimm_sext(K, dest, ctx);
477 	if (high_bits == 0x00000000)
478 		return emit_loadimm32(K, dest, ctx);
479 
480 	analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
481 			       &lowest_bit_set, &all_bits_between_are_set);
482 
483 	/* 1) mov	-1, %reg
484 	 *    sllx	%reg, shift, %reg
485 	 * 2) mov	-1, %reg
486 	 *    srlx	%reg, shift, %reg
487 	 * 3) mov	some_small_const, %reg
488 	 *    sllx	%reg, shift, %reg
489 	 */
490 	if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
491 	     all_bits_between_are_set != 0) ||
492 	    ((highest_bit_set - lowest_bit_set) < 12)) {
493 		int shift = lowest_bit_set;
494 		long the_const = -1;
495 
496 		if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
497 		    all_bits_between_are_set == 0) {
498 			the_const =
499 				create_simple_focus_bits(high_bits, low_bits,
500 							 lowest_bit_set, 0);
501 		} else if (lowest_bit_set == 0)
502 			shift = -(63 - highest_bit_set);
503 
504 		emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
505 		if (shift > 0)
506 			emit_alu_K(SLLX, dest, shift, ctx);
507 		else if (shift < 0)
508 			emit_alu_K(SRLX, dest, -shift, ctx);
509 
510 		return;
511 	}
512 
513 	/* Now a range of 22 or less bits set somewhere.
514 	 * 1) sethi	%hi(focus_bits), %reg
515 	 *    sllx	%reg, shift, %reg
516 	 * 2) sethi	%hi(focus_bits), %reg
517 	 *    srlx	%reg, shift, %reg
518 	 */
519 	if ((highest_bit_set - lowest_bit_set) < 21) {
520 		unsigned long focus_bits =
521 			create_simple_focus_bits(high_bits, low_bits,
522 						 lowest_bit_set, 10);
523 
524 		emit(SETHI(focus_bits, dest), ctx);
525 
526 		/* If lowest_bit_set == 10 then a sethi alone could
527 		 * have done it.
528 		 */
529 		if (lowest_bit_set < 10)
530 			emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
531 		else if (lowest_bit_set > 10)
532 			emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
533 		return;
534 	}
535 
536 	/* Ok, now 3 instruction sequences.  */
537 	if (low_bits == 0) {
538 		emit_loadimm32(high_bits, dest, ctx);
539 		emit_alu_K(SLLX, dest, 32, ctx);
540 		return;
541 	}
542 
543 	/* We may be able to do something quick
544 	 * when the constant is negated, so try that.
545 	 */
546 	if (const64_is_2insns((~high_bits) & 0xffffffff,
547 			      (~low_bits) & 0xfffffc00)) {
548 		/* NOTE: The trailing bits get XOR'd so we need the
549 		 * non-negated bits, not the negated ones.
550 		 */
551 		unsigned long trailing_bits = low_bits & 0x3ff;
552 
553 		if ((((~high_bits) & 0xffffffff) == 0 &&
554 		     ((~low_bits) & 0x80000000) == 0) ||
555 		    (((~high_bits) & 0xffffffff) == 0xffffffff &&
556 		     ((~low_bits) & 0x80000000) != 0)) {
557 			unsigned long fast_int = (~low_bits & 0xffffffff);
558 
559 			if ((is_sethi(fast_int) &&
560 			     (~high_bits & 0xffffffff) == 0)) {
561 				emit(SETHI(fast_int, dest), ctx);
562 			} else if (is_simm13(fast_int)) {
563 				emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
564 			} else {
565 				emit_loadimm64(fast_int, dest, ctx);
566 			}
567 		} else {
568 			u64 n = ((~low_bits) & 0xfffffc00) |
569 				(((unsigned long)((~high_bits) & 0xffffffff))<<32);
570 			emit_loadimm64(n, dest, ctx);
571 		}
572 
573 		low_bits = -0x400 | trailing_bits;
574 
575 		emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
576 		return;
577 	}
578 
579 	/* 1) sethi	%hi(xxx), %reg
580 	 *    or	%reg, %lo(xxx), %reg
581 	 *    sllx	%reg, yyy, %reg
582 	 */
583 	if ((highest_bit_set - lowest_bit_set) < 32) {
584 		unsigned long focus_bits =
585 			create_simple_focus_bits(high_bits, low_bits,
586 						 lowest_bit_set, 0);
587 
588 		/* So what we know is that the set bits straddle the
589 		 * middle of the 64-bit word.
590 		 */
591 		sparc_emit_set_const64_quick2(focus_bits, 0, dest,
592 					      lowest_bit_set, ctx);
593 		return;
594 	}
595 
596 	/* 1) sethi	%hi(high_bits), %reg
597 	 *    or	%reg, %lo(high_bits), %reg
598 	 *    sllx	%reg, 32, %reg
599 	 *    or	%reg, low_bits, %reg
600 	 */
601 	if (is_simm13(low_bits) && ((int)low_bits > 0)) {
602 		sparc_emit_set_const64_quick2(high_bits, low_bits,
603 					      dest, 32, ctx);
604 		return;
605 	}
606 
607 	/* Oh well, we tried... Do a full 64-bit decomposition.  */
608 	ctx->tmp_1_used = true;
609 
610 	emit_loadimm32(high_bits, tmp, ctx);
611 	emit_loadimm32(low_bits, dest, ctx);
612 	emit_alu_K(SLLX, tmp, 32, ctx);
613 	emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
614 }
615 
616 static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
617 			struct jit_ctx *ctx)
618 {
619 	unsigned int off = to_idx - from_idx;
620 
621 	if (br_opc & XCC)
622 		emit(br_opc | WDISP19(off << 2), ctx);
623 	else
624 		emit(br_opc | WDISP22(off << 2), ctx);
625 }
626 
627 static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
628 			const u8 dst, const u8 src, struct jit_ctx *ctx)
629 {
630 	unsigned int off = to_idx - from_idx;
631 
632 	emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
633 }
634 
635 static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
636 			 const u8 dst, s32 imm, struct jit_ctx *ctx)
637 {
638 	unsigned int off = to_idx - from_idx;
639 
640 	emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
641 }
642 
643 #define emit_read_y(REG, CTX)	emit(RD_Y | RD(REG), CTX)
644 #define emit_write_y(REG, CTX)	emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
645 
646 #define emit_cmp(R1, R2, CTX)				\
647 	emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
648 
649 #define emit_cmpi(R1, IMM, CTX)				\
650 	emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
651 
652 #define emit_btst(R1, R2, CTX)				\
653 	emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
654 
655 #define emit_btsti(R1, IMM, CTX)			\
656 	emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
657 
658 static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
659 				   const s32 imm, bool is_imm, int branch_dst,
660 				   struct jit_ctx *ctx)
661 {
662 	bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
663 	const u8 tmp = bpf2sparc[TMP_REG_1];
664 
665 	branch_dst = ctx->offset[branch_dst];
666 
667 	if (!is_simm10(branch_dst - ctx->idx) ||
668 	    BPF_OP(code) == BPF_JSET)
669 		use_cbcond = false;
670 
671 	if (is_imm) {
672 		bool fits = true;
673 
674 		if (use_cbcond) {
675 			if (!is_simm5(imm))
676 				fits = false;
677 		} else if (!is_simm13(imm)) {
678 			fits = false;
679 		}
680 		if (!fits) {
681 			ctx->tmp_1_used = true;
682 			emit_loadimm_sext(imm, tmp, ctx);
683 			src = tmp;
684 			is_imm = false;
685 		}
686 	}
687 
688 	if (!use_cbcond) {
689 		u32 br_opcode;
690 
691 		if (BPF_OP(code) == BPF_JSET) {
692 			if (is_imm)
693 				emit_btsti(dst, imm, ctx);
694 			else
695 				emit_btst(dst, src, ctx);
696 		} else {
697 			if (is_imm)
698 				emit_cmpi(dst, imm, ctx);
699 			else
700 				emit_cmp(dst, src, ctx);
701 		}
702 		switch (BPF_OP(code)) {
703 		case BPF_JEQ:
704 			br_opcode = BE;
705 			break;
706 		case BPF_JGT:
707 			br_opcode = BGU;
708 			break;
709 		case BPF_JLT:
710 			br_opcode = BLU;
711 			break;
712 		case BPF_JGE:
713 			br_opcode = BGEU;
714 			break;
715 		case BPF_JLE:
716 			br_opcode = BLEU;
717 			break;
718 		case BPF_JSET:
719 		case BPF_JNE:
720 			br_opcode = BNE;
721 			break;
722 		case BPF_JSGT:
723 			br_opcode = BG;
724 			break;
725 		case BPF_JSLT:
726 			br_opcode = BL;
727 			break;
728 		case BPF_JSGE:
729 			br_opcode = BGE;
730 			break;
731 		case BPF_JSLE:
732 			br_opcode = BLE;
733 			break;
734 		default:
735 			/* Make sure we dont leak kernel information to the
736 			 * user.
737 			 */
738 			return -EFAULT;
739 		}
740 		emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
741 		emit_nop(ctx);
742 	} else {
743 		u32 cbcond_opcode;
744 
745 		switch (BPF_OP(code)) {
746 		case BPF_JEQ:
747 			cbcond_opcode = CBCONDE;
748 			break;
749 		case BPF_JGT:
750 			cbcond_opcode = CBCONDGU;
751 			break;
752 		case BPF_JLT:
753 			cbcond_opcode = CBCONDLU;
754 			break;
755 		case BPF_JGE:
756 			cbcond_opcode = CBCONDGEU;
757 			break;
758 		case BPF_JLE:
759 			cbcond_opcode = CBCONDLEU;
760 			break;
761 		case BPF_JNE:
762 			cbcond_opcode = CBCONDNE;
763 			break;
764 		case BPF_JSGT:
765 			cbcond_opcode = CBCONDG;
766 			break;
767 		case BPF_JSLT:
768 			cbcond_opcode = CBCONDL;
769 			break;
770 		case BPF_JSGE:
771 			cbcond_opcode = CBCONDGE;
772 			break;
773 		case BPF_JSLE:
774 			cbcond_opcode = CBCONDLE;
775 			break;
776 		default:
777 			/* Make sure we dont leak kernel information to the
778 			 * user.
779 			 */
780 			return -EFAULT;
781 		}
782 		cbcond_opcode |= CBCOND_OP;
783 		if (is_imm)
784 			emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
785 				     dst, imm, ctx);
786 		else
787 			emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
788 				    dst, src, ctx);
789 	}
790 	return 0;
791 }
792 
793 /* Just skip the save instruction and the ctx register move.  */
794 #define BPF_TAILCALL_PROLOGUE_SKIP	16
795 #define BPF_TAILCALL_CNT_SP_OFF		(STACK_BIAS + 128)
796 
797 static void build_prologue(struct jit_ctx *ctx)
798 {
799 	s32 stack_needed = BASE_STACKFRAME;
800 
801 	if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
802 		struct bpf_prog *prog = ctx->prog;
803 		u32 stack_depth;
804 
805 		stack_depth = prog->aux->stack_depth;
806 		stack_needed += round_up(stack_depth, 16);
807 	}
808 
809 	if (ctx->saw_tail_call)
810 		stack_needed += 8;
811 
812 	/* save %sp, -176, %sp */
813 	emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
814 
815 	/* tail_call_cnt = 0 */
816 	if (ctx->saw_tail_call) {
817 		u32 off = BPF_TAILCALL_CNT_SP_OFF;
818 
819 		emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
820 	} else {
821 		emit_nop(ctx);
822 	}
823 	if (ctx->saw_frame_pointer) {
824 		const u8 vfp = bpf2sparc[BPF_REG_FP];
825 
826 		emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
827 	}
828 
829 	emit_reg_move(I0, O0, ctx);
830 	/* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
831 }
832 
833 static void build_epilogue(struct jit_ctx *ctx)
834 {
835 	ctx->epilogue_offset = ctx->idx;
836 
837 	/* ret (jmpl %i7 + 8, %g0) */
838 	emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
839 
840 	/* restore %i5, %g0, %o0 */
841 	emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
842 }
843 
844 static void emit_tail_call(struct jit_ctx *ctx)
845 {
846 	const u8 bpf_array = bpf2sparc[BPF_REG_2];
847 	const u8 bpf_index = bpf2sparc[BPF_REG_3];
848 	const u8 tmp = bpf2sparc[TMP_REG_1];
849 	u32 off;
850 
851 	ctx->saw_tail_call = true;
852 
853 	off = offsetof(struct bpf_array, map.max_entries);
854 	emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
855 	emit_cmp(bpf_index, tmp, ctx);
856 #define OFFSET1 17
857 	emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
858 	emit_nop(ctx);
859 
860 	off = BPF_TAILCALL_CNT_SP_OFF;
861 	emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
862 	emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
863 #define OFFSET2 13
864 	emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
865 	emit_nop(ctx);
866 
867 	emit_alu_K(ADD, tmp, 1, ctx);
868 	off = BPF_TAILCALL_CNT_SP_OFF;
869 	emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
870 
871 	emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
872 	emit_alu(ADD, bpf_array, tmp, ctx);
873 	off = offsetof(struct bpf_array, ptrs);
874 	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
875 
876 	emit_cmpi(tmp, 0, ctx);
877 #define OFFSET3 5
878 	emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
879 	emit_nop(ctx);
880 
881 	off = offsetof(struct bpf_prog, bpf_func);
882 	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
883 
884 	off = BPF_TAILCALL_PROLOGUE_SKIP;
885 	emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
886 	emit_nop(ctx);
887 }
888 
889 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
890 {
891 	const u8 code = insn->code;
892 	const u8 dst = bpf2sparc[insn->dst_reg];
893 	const u8 src = bpf2sparc[insn->src_reg];
894 	const int i = insn - ctx->prog->insnsi;
895 	const s16 off = insn->off;
896 	const s32 imm = insn->imm;
897 
898 	if (insn->src_reg == BPF_REG_FP)
899 		ctx->saw_frame_pointer = true;
900 
901 	switch (code) {
902 	/* dst = src */
903 	case BPF_ALU | BPF_MOV | BPF_X:
904 		emit_alu3_K(SRL, src, 0, dst, ctx);
905 		break;
906 	case BPF_ALU64 | BPF_MOV | BPF_X:
907 		emit_reg_move(src, dst, ctx);
908 		break;
909 	/* dst = dst OP src */
910 	case BPF_ALU | BPF_ADD | BPF_X:
911 	case BPF_ALU64 | BPF_ADD | BPF_X:
912 		emit_alu(ADD, src, dst, ctx);
913 		goto do_alu32_trunc;
914 	case BPF_ALU | BPF_SUB | BPF_X:
915 	case BPF_ALU64 | BPF_SUB | BPF_X:
916 		emit_alu(SUB, src, dst, ctx);
917 		goto do_alu32_trunc;
918 	case BPF_ALU | BPF_AND | BPF_X:
919 	case BPF_ALU64 | BPF_AND | BPF_X:
920 		emit_alu(AND, src, dst, ctx);
921 		goto do_alu32_trunc;
922 	case BPF_ALU | BPF_OR | BPF_X:
923 	case BPF_ALU64 | BPF_OR | BPF_X:
924 		emit_alu(OR, src, dst, ctx);
925 		goto do_alu32_trunc;
926 	case BPF_ALU | BPF_XOR | BPF_X:
927 	case BPF_ALU64 | BPF_XOR | BPF_X:
928 		emit_alu(XOR, src, dst, ctx);
929 		goto do_alu32_trunc;
930 	case BPF_ALU | BPF_MUL | BPF_X:
931 		emit_alu(MUL, src, dst, ctx);
932 		goto do_alu32_trunc;
933 	case BPF_ALU64 | BPF_MUL | BPF_X:
934 		emit_alu(MULX, src, dst, ctx);
935 		break;
936 	case BPF_ALU | BPF_DIV | BPF_X:
937 		emit_write_y(G0, ctx);
938 		emit_alu(DIV, src, dst, ctx);
939 		break;
940 	case BPF_ALU64 | BPF_DIV | BPF_X:
941 		emit_alu(UDIVX, src, dst, ctx);
942 		break;
943 	case BPF_ALU | BPF_MOD | BPF_X: {
944 		const u8 tmp = bpf2sparc[TMP_REG_1];
945 
946 		ctx->tmp_1_used = true;
947 
948 		emit_write_y(G0, ctx);
949 		emit_alu3(DIV, dst, src, tmp, ctx);
950 		emit_alu3(MULX, tmp, src, tmp, ctx);
951 		emit_alu3(SUB, dst, tmp, dst, ctx);
952 		goto do_alu32_trunc;
953 	}
954 	case BPF_ALU64 | BPF_MOD | BPF_X: {
955 		const u8 tmp = bpf2sparc[TMP_REG_1];
956 
957 		ctx->tmp_1_used = true;
958 
959 		emit_alu3(UDIVX, dst, src, tmp, ctx);
960 		emit_alu3(MULX, tmp, src, tmp, ctx);
961 		emit_alu3(SUB, dst, tmp, dst, ctx);
962 		break;
963 	}
964 	case BPF_ALU | BPF_LSH | BPF_X:
965 		emit_alu(SLL, src, dst, ctx);
966 		goto do_alu32_trunc;
967 	case BPF_ALU64 | BPF_LSH | BPF_X:
968 		emit_alu(SLLX, src, dst, ctx);
969 		break;
970 	case BPF_ALU | BPF_RSH | BPF_X:
971 		emit_alu(SRL, src, dst, ctx);
972 		break;
973 	case BPF_ALU64 | BPF_RSH | BPF_X:
974 		emit_alu(SRLX, src, dst, ctx);
975 		break;
976 	case BPF_ALU | BPF_ARSH | BPF_X:
977 		emit_alu(SRA, src, dst, ctx);
978 		goto do_alu32_trunc;
979 	case BPF_ALU64 | BPF_ARSH | BPF_X:
980 		emit_alu(SRAX, src, dst, ctx);
981 		break;
982 
983 	/* dst = -dst */
984 	case BPF_ALU | BPF_NEG:
985 	case BPF_ALU64 | BPF_NEG:
986 		emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
987 		goto do_alu32_trunc;
988 
989 	case BPF_ALU | BPF_END | BPF_FROM_BE:
990 		switch (imm) {
991 		case 16:
992 			emit_alu_K(SLL, dst, 16, ctx);
993 			emit_alu_K(SRL, dst, 16, ctx);
994 			break;
995 		case 32:
996 			emit_alu_K(SRL, dst, 0, ctx);
997 			break;
998 		case 64:
999 			/* nop */
1000 			break;
1001 
1002 		}
1003 		break;
1004 
1005 	/* dst = BSWAP##imm(dst) */
1006 	case BPF_ALU | BPF_END | BPF_FROM_LE: {
1007 		const u8 tmp = bpf2sparc[TMP_REG_1];
1008 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1009 
1010 		ctx->tmp_1_used = true;
1011 		switch (imm) {
1012 		case 16:
1013 			emit_alu3_K(AND, dst, 0xff, tmp, ctx);
1014 			emit_alu3_K(SRL, dst, 8, dst, ctx);
1015 			emit_alu3_K(AND, dst, 0xff, dst, ctx);
1016 			emit_alu3_K(SLL, tmp, 8, tmp, ctx);
1017 			emit_alu(OR, tmp, dst, ctx);
1018 			break;
1019 
1020 		case 32:
1021 			ctx->tmp_2_used = true;
1022 			emit_alu3_K(SRL, dst, 24, tmp, ctx);	/* tmp  = dst >> 24 */
1023 			emit_alu3_K(SRL, dst, 16, tmp2, ctx);	/* tmp2 = dst >> 16 */
1024 			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1025 			emit_alu3_K(SLL, tmp2, 8, tmp2, ctx);	/* tmp2 = tmp2 << 8 */
1026 			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
1027 			emit_alu3_K(SRL, dst, 8, tmp2, ctx);	/* tmp2 = dst >> 8 */
1028 			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1029 			emit_alu3_K(SLL, tmp2, 16, tmp2, ctx);	/* tmp2 = tmp2 << 16 */
1030 			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
1031 			emit_alu3_K(AND, dst, 0xff, dst, ctx);	/* dst	= dst & 0xff */
1032 			emit_alu3_K(SLL, dst, 24, dst, ctx);	/* dst  = dst << 24 */
1033 			emit_alu(OR, tmp, dst, ctx);		/* dst  = dst | tmp */
1034 			break;
1035 
1036 		case 64:
1037 			emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
1038 			emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1039 			emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1040 			break;
1041 		}
1042 		break;
1043 	}
1044 	/* dst = imm */
1045 	case BPF_ALU | BPF_MOV | BPF_K:
1046 		emit_loadimm32(imm, dst, ctx);
1047 		break;
1048 	case BPF_ALU64 | BPF_MOV | BPF_K:
1049 		emit_loadimm_sext(imm, dst, ctx);
1050 		break;
1051 	/* dst = dst OP imm */
1052 	case BPF_ALU | BPF_ADD | BPF_K:
1053 	case BPF_ALU64 | BPF_ADD | BPF_K:
1054 		emit_alu_K(ADD, dst, imm, ctx);
1055 		goto do_alu32_trunc;
1056 	case BPF_ALU | BPF_SUB | BPF_K:
1057 	case BPF_ALU64 | BPF_SUB | BPF_K:
1058 		emit_alu_K(SUB, dst, imm, ctx);
1059 		goto do_alu32_trunc;
1060 	case BPF_ALU | BPF_AND | BPF_K:
1061 	case BPF_ALU64 | BPF_AND | BPF_K:
1062 		emit_alu_K(AND, dst, imm, ctx);
1063 		goto do_alu32_trunc;
1064 	case BPF_ALU | BPF_OR | BPF_K:
1065 	case BPF_ALU64 | BPF_OR | BPF_K:
1066 		emit_alu_K(OR, dst, imm, ctx);
1067 		goto do_alu32_trunc;
1068 	case BPF_ALU | BPF_XOR | BPF_K:
1069 	case BPF_ALU64 | BPF_XOR | BPF_K:
1070 		emit_alu_K(XOR, dst, imm, ctx);
1071 		goto do_alu32_trunc;
1072 	case BPF_ALU | BPF_MUL | BPF_K:
1073 		emit_alu_K(MUL, dst, imm, ctx);
1074 		goto do_alu32_trunc;
1075 	case BPF_ALU64 | BPF_MUL | BPF_K:
1076 		emit_alu_K(MULX, dst, imm, ctx);
1077 		break;
1078 	case BPF_ALU | BPF_DIV | BPF_K:
1079 		if (imm == 0)
1080 			return -EINVAL;
1081 
1082 		emit_write_y(G0, ctx);
1083 		emit_alu_K(DIV, dst, imm, ctx);
1084 		goto do_alu32_trunc;
1085 	case BPF_ALU64 | BPF_DIV | BPF_K:
1086 		if (imm == 0)
1087 			return -EINVAL;
1088 
1089 		emit_alu_K(UDIVX, dst, imm, ctx);
1090 		break;
1091 	case BPF_ALU64 | BPF_MOD | BPF_K:
1092 	case BPF_ALU | BPF_MOD | BPF_K: {
1093 		const u8 tmp = bpf2sparc[TMP_REG_2];
1094 		unsigned int div;
1095 
1096 		if (imm == 0)
1097 			return -EINVAL;
1098 
1099 		div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
1100 
1101 		ctx->tmp_2_used = true;
1102 
1103 		if (BPF_CLASS(code) != BPF_ALU64)
1104 			emit_write_y(G0, ctx);
1105 		if (is_simm13(imm)) {
1106 			emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
1107 			emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
1108 			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1109 		} else {
1110 			const u8 tmp1 = bpf2sparc[TMP_REG_1];
1111 
1112 			ctx->tmp_1_used = true;
1113 
1114 			emit_set_const_sext(imm, tmp1, ctx);
1115 			emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
1116 			emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
1117 			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1118 		}
1119 		goto do_alu32_trunc;
1120 	}
1121 	case BPF_ALU | BPF_LSH | BPF_K:
1122 		emit_alu_K(SLL, dst, imm, ctx);
1123 		goto do_alu32_trunc;
1124 	case BPF_ALU64 | BPF_LSH | BPF_K:
1125 		emit_alu_K(SLLX, dst, imm, ctx);
1126 		break;
1127 	case BPF_ALU | BPF_RSH | BPF_K:
1128 		emit_alu_K(SRL, dst, imm, ctx);
1129 		break;
1130 	case BPF_ALU64 | BPF_RSH | BPF_K:
1131 		emit_alu_K(SRLX, dst, imm, ctx);
1132 		break;
1133 	case BPF_ALU | BPF_ARSH | BPF_K:
1134 		emit_alu_K(SRA, dst, imm, ctx);
1135 		goto do_alu32_trunc;
1136 	case BPF_ALU64 | BPF_ARSH | BPF_K:
1137 		emit_alu_K(SRAX, dst, imm, ctx);
1138 		break;
1139 
1140 	do_alu32_trunc:
1141 		if (BPF_CLASS(code) == BPF_ALU)
1142 			emit_alu_K(SRL, dst, 0, ctx);
1143 		break;
1144 
1145 	/* JUMP off */
1146 	case BPF_JMP | BPF_JA:
1147 		emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
1148 		emit_nop(ctx);
1149 		break;
1150 	/* IF (dst COND src) JUMP off */
1151 	case BPF_JMP | BPF_JEQ | BPF_X:
1152 	case BPF_JMP | BPF_JGT | BPF_X:
1153 	case BPF_JMP | BPF_JLT | BPF_X:
1154 	case BPF_JMP | BPF_JGE | BPF_X:
1155 	case BPF_JMP | BPF_JLE | BPF_X:
1156 	case BPF_JMP | BPF_JNE | BPF_X:
1157 	case BPF_JMP | BPF_JSGT | BPF_X:
1158 	case BPF_JMP | BPF_JSLT | BPF_X:
1159 	case BPF_JMP | BPF_JSGE | BPF_X:
1160 	case BPF_JMP | BPF_JSLE | BPF_X:
1161 	case BPF_JMP | BPF_JSET | BPF_X: {
1162 		int err;
1163 
1164 		err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
1165 		if (err)
1166 			return err;
1167 		break;
1168 	}
1169 	/* IF (dst COND imm) JUMP off */
1170 	case BPF_JMP | BPF_JEQ | BPF_K:
1171 	case BPF_JMP | BPF_JGT | BPF_K:
1172 	case BPF_JMP | BPF_JLT | BPF_K:
1173 	case BPF_JMP | BPF_JGE | BPF_K:
1174 	case BPF_JMP | BPF_JLE | BPF_K:
1175 	case BPF_JMP | BPF_JNE | BPF_K:
1176 	case BPF_JMP | BPF_JSGT | BPF_K:
1177 	case BPF_JMP | BPF_JSLT | BPF_K:
1178 	case BPF_JMP | BPF_JSGE | BPF_K:
1179 	case BPF_JMP | BPF_JSLE | BPF_K:
1180 	case BPF_JMP | BPF_JSET | BPF_K: {
1181 		int err;
1182 
1183 		err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
1184 		if (err)
1185 			return err;
1186 		break;
1187 	}
1188 
1189 	/* function call */
1190 	case BPF_JMP | BPF_CALL:
1191 	{
1192 		u8 *func = ((u8 *)__bpf_call_base) + imm;
1193 
1194 		ctx->saw_call = true;
1195 
1196 		emit_call((u32 *)func, ctx);
1197 		emit_nop(ctx);
1198 
1199 		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
1200 		break;
1201 	}
1202 
1203 	/* tail call */
1204 	case BPF_JMP | BPF_TAIL_CALL:
1205 		emit_tail_call(ctx);
1206 		break;
1207 
1208 	/* function return */
1209 	case BPF_JMP | BPF_EXIT:
1210 		/* Optimization: when last instruction is EXIT,
1211 		   simply fallthrough to epilogue. */
1212 		if (i == ctx->prog->len - 1)
1213 			break;
1214 		emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
1215 		emit_nop(ctx);
1216 		break;
1217 
1218 	/* dst = imm64 */
1219 	case BPF_LD | BPF_IMM | BPF_DW:
1220 	{
1221 		const struct bpf_insn insn1 = insn[1];
1222 		u64 imm64;
1223 
1224 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
1225 		emit_loadimm64(imm64, dst, ctx);
1226 
1227 		return 1;
1228 	}
1229 
1230 	/* LDX: dst = *(size *)(src + off) */
1231 	case BPF_LDX | BPF_MEM | BPF_W:
1232 	case BPF_LDX | BPF_MEM | BPF_H:
1233 	case BPF_LDX | BPF_MEM | BPF_B:
1234 	case BPF_LDX | BPF_MEM | BPF_DW: {
1235 		const u8 tmp = bpf2sparc[TMP_REG_1];
1236 		u32 opcode = 0, rs2;
1237 
1238 		ctx->tmp_1_used = true;
1239 		switch (BPF_SIZE(code)) {
1240 		case BPF_W:
1241 			opcode = LD32;
1242 			break;
1243 		case BPF_H:
1244 			opcode = LD16;
1245 			break;
1246 		case BPF_B:
1247 			opcode = LD8;
1248 			break;
1249 		case BPF_DW:
1250 			opcode = LD64;
1251 			break;
1252 		}
1253 
1254 		if (is_simm13(off)) {
1255 			opcode |= IMMED;
1256 			rs2 = S13(off);
1257 		} else {
1258 			emit_loadimm(off, tmp, ctx);
1259 			rs2 = RS2(tmp);
1260 		}
1261 		emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
1262 		break;
1263 	}
1264 	/* ST: *(size *)(dst + off) = imm */
1265 	case BPF_ST | BPF_MEM | BPF_W:
1266 	case BPF_ST | BPF_MEM | BPF_H:
1267 	case BPF_ST | BPF_MEM | BPF_B:
1268 	case BPF_ST | BPF_MEM | BPF_DW: {
1269 		const u8 tmp = bpf2sparc[TMP_REG_1];
1270 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1271 		u32 opcode = 0, rs2;
1272 
1273 		ctx->tmp_2_used = true;
1274 		emit_loadimm(imm, tmp2, ctx);
1275 
1276 		switch (BPF_SIZE(code)) {
1277 		case BPF_W:
1278 			opcode = ST32;
1279 			break;
1280 		case BPF_H:
1281 			opcode = ST16;
1282 			break;
1283 		case BPF_B:
1284 			opcode = ST8;
1285 			break;
1286 		case BPF_DW:
1287 			opcode = ST64;
1288 			break;
1289 		}
1290 
1291 		if (is_simm13(off)) {
1292 			opcode |= IMMED;
1293 			rs2 = S13(off);
1294 		} else {
1295 			ctx->tmp_1_used = true;
1296 			emit_loadimm(off, tmp, ctx);
1297 			rs2 = RS2(tmp);
1298 		}
1299 		emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
1300 		break;
1301 	}
1302 
1303 	/* STX: *(size *)(dst + off) = src */
1304 	case BPF_STX | BPF_MEM | BPF_W:
1305 	case BPF_STX | BPF_MEM | BPF_H:
1306 	case BPF_STX | BPF_MEM | BPF_B:
1307 	case BPF_STX | BPF_MEM | BPF_DW: {
1308 		const u8 tmp = bpf2sparc[TMP_REG_1];
1309 		u32 opcode = 0, rs2;
1310 
1311 		switch (BPF_SIZE(code)) {
1312 		case BPF_W:
1313 			opcode = ST32;
1314 			break;
1315 		case BPF_H:
1316 			opcode = ST16;
1317 			break;
1318 		case BPF_B:
1319 			opcode = ST8;
1320 			break;
1321 		case BPF_DW:
1322 			opcode = ST64;
1323 			break;
1324 		}
1325 		if (is_simm13(off)) {
1326 			opcode |= IMMED;
1327 			rs2 = S13(off);
1328 		} else {
1329 			ctx->tmp_1_used = true;
1330 			emit_loadimm(off, tmp, ctx);
1331 			rs2 = RS2(tmp);
1332 		}
1333 		emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
1334 		break;
1335 	}
1336 
1337 	/* STX XADD: lock *(u32 *)(dst + off) += src */
1338 	case BPF_STX | BPF_XADD | BPF_W: {
1339 		const u8 tmp = bpf2sparc[TMP_REG_1];
1340 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1341 		const u8 tmp3 = bpf2sparc[TMP_REG_3];
1342 
1343 		ctx->tmp_1_used = true;
1344 		ctx->tmp_2_used = true;
1345 		ctx->tmp_3_used = true;
1346 		emit_loadimm(off, tmp, ctx);
1347 		emit_alu3(ADD, dst, tmp, tmp, ctx);
1348 
1349 		emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1350 		emit_alu3(ADD, tmp2, src, tmp3, ctx);
1351 		emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1352 		emit_cmp(tmp2, tmp3, ctx);
1353 		emit_branch(BNE, 4, 0, ctx);
1354 		emit_nop(ctx);
1355 		break;
1356 	}
1357 	/* STX XADD: lock *(u64 *)(dst + off) += src */
1358 	case BPF_STX | BPF_XADD | BPF_DW: {
1359 		const u8 tmp = bpf2sparc[TMP_REG_1];
1360 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1361 		const u8 tmp3 = bpf2sparc[TMP_REG_3];
1362 
1363 		ctx->tmp_1_used = true;
1364 		ctx->tmp_2_used = true;
1365 		ctx->tmp_3_used = true;
1366 		emit_loadimm(off, tmp, ctx);
1367 		emit_alu3(ADD, dst, tmp, tmp, ctx);
1368 
1369 		emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1370 		emit_alu3(ADD, tmp2, src, tmp3, ctx);
1371 		emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1372 		emit_cmp(tmp2, tmp3, ctx);
1373 		emit_branch(BNE, 4, 0, ctx);
1374 		emit_nop(ctx);
1375 		break;
1376 	}
1377 
1378 	default:
1379 		pr_err_once("unknown opcode %02x\n", code);
1380 		return -EINVAL;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 static int build_body(struct jit_ctx *ctx)
1387 {
1388 	const struct bpf_prog *prog = ctx->prog;
1389 	int i;
1390 
1391 	for (i = 0; i < prog->len; i++) {
1392 		const struct bpf_insn *insn = &prog->insnsi[i];
1393 		int ret;
1394 
1395 		ret = build_insn(insn, ctx);
1396 
1397 		if (ret > 0) {
1398 			i++;
1399 			ctx->offset[i] = ctx->idx;
1400 			continue;
1401 		}
1402 		ctx->offset[i] = ctx->idx;
1403 		if (ret)
1404 			return ret;
1405 	}
1406 	return 0;
1407 }
1408 
1409 static void jit_fill_hole(void *area, unsigned int size)
1410 {
1411 	u32 *ptr;
1412 	/* We are guaranteed to have aligned memory. */
1413 	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
1414 		*ptr++ = 0x91d02005; /* ta 5 */
1415 }
1416 
1417 struct sparc64_jit_data {
1418 	struct bpf_binary_header *header;
1419 	u8 *image;
1420 	struct jit_ctx ctx;
1421 };
1422 
1423 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1424 {
1425 	struct bpf_prog *tmp, *orig_prog = prog;
1426 	struct sparc64_jit_data *jit_data;
1427 	struct bpf_binary_header *header;
1428 	bool tmp_blinded = false;
1429 	bool extra_pass = false;
1430 	struct jit_ctx ctx;
1431 	u32 image_size;
1432 	u8 *image_ptr;
1433 	int pass;
1434 
1435 	if (!prog->jit_requested)
1436 		return orig_prog;
1437 
1438 	tmp = bpf_jit_blind_constants(prog);
1439 	/* If blinding was requested and we failed during blinding,
1440 	 * we must fall back to the interpreter.
1441 	 */
1442 	if (IS_ERR(tmp))
1443 		return orig_prog;
1444 	if (tmp != prog) {
1445 		tmp_blinded = true;
1446 		prog = tmp;
1447 	}
1448 
1449 	jit_data = prog->aux->jit_data;
1450 	if (!jit_data) {
1451 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1452 		if (!jit_data) {
1453 			prog = orig_prog;
1454 			goto out;
1455 		}
1456 		prog->aux->jit_data = jit_data;
1457 	}
1458 	if (jit_data->ctx.offset) {
1459 		ctx = jit_data->ctx;
1460 		image_ptr = jit_data->image;
1461 		header = jit_data->header;
1462 		extra_pass = true;
1463 		image_size = sizeof(u32) * ctx.idx;
1464 		goto skip_init_ctx;
1465 	}
1466 
1467 	memset(&ctx, 0, sizeof(ctx));
1468 	ctx.prog = prog;
1469 
1470 	ctx.offset = kcalloc(prog->len, sizeof(unsigned int), GFP_KERNEL);
1471 	if (ctx.offset == NULL) {
1472 		prog = orig_prog;
1473 		goto out_off;
1474 	}
1475 
1476 	/* Fake pass to detect features used, and get an accurate assessment
1477 	 * of what the final image size will be.
1478 	 */
1479 	if (build_body(&ctx)) {
1480 		prog = orig_prog;
1481 		goto out_off;
1482 	}
1483 	build_prologue(&ctx);
1484 	build_epilogue(&ctx);
1485 
1486 	/* Now we know the actual image size. */
1487 	image_size = sizeof(u32) * ctx.idx;
1488 	header = bpf_jit_binary_alloc(image_size, &image_ptr,
1489 				      sizeof(u32), jit_fill_hole);
1490 	if (header == NULL) {
1491 		prog = orig_prog;
1492 		goto out_off;
1493 	}
1494 
1495 	ctx.image = (u32 *)image_ptr;
1496 skip_init_ctx:
1497 	for (pass = 1; pass < 3; pass++) {
1498 		ctx.idx = 0;
1499 
1500 		build_prologue(&ctx);
1501 
1502 		if (build_body(&ctx)) {
1503 			bpf_jit_binary_free(header);
1504 			prog = orig_prog;
1505 			goto out_off;
1506 		}
1507 
1508 		build_epilogue(&ctx);
1509 
1510 		if (bpf_jit_enable > 1)
1511 			pr_info("Pass %d: shrink = %d, seen = [%c%c%c%c%c%c]\n", pass,
1512 				image_size - (ctx.idx * 4),
1513 				ctx.tmp_1_used ? '1' : ' ',
1514 				ctx.tmp_2_used ? '2' : ' ',
1515 				ctx.tmp_3_used ? '3' : ' ',
1516 				ctx.saw_frame_pointer ? 'F' : ' ',
1517 				ctx.saw_call ? 'C' : ' ',
1518 				ctx.saw_tail_call ? 'T' : ' ');
1519 	}
1520 
1521 	if (bpf_jit_enable > 1)
1522 		bpf_jit_dump(prog->len, image_size, pass, ctx.image);
1523 
1524 	bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));
1525 
1526 	if (!prog->is_func || extra_pass) {
1527 		bpf_jit_binary_lock_ro(header);
1528 	} else {
1529 		jit_data->ctx = ctx;
1530 		jit_data->image = image_ptr;
1531 		jit_data->header = header;
1532 	}
1533 
1534 	prog->bpf_func = (void *)ctx.image;
1535 	prog->jited = 1;
1536 	prog->jited_len = image_size;
1537 
1538 	if (!prog->is_func || extra_pass) {
1539 out_off:
1540 		kfree(ctx.offset);
1541 		kfree(jit_data);
1542 		prog->aux->jit_data = NULL;
1543 	}
1544 out:
1545 	if (tmp_blinded)
1546 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1547 					   tmp : orig_prog);
1548 	return prog;
1549 }
1550