xref: /openbmc/linux/arch/sparc/net/bpf_jit_comp_32.c (revision bbecb07f)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/moduleloader.h>
3 #include <linux/workqueue.h>
4 #include <linux/netdevice.h>
5 #include <linux/filter.h>
6 #include <linux/cache.h>
7 #include <linux/if_vlan.h>
8 
9 #include <asm/cacheflush.h>
10 #include <asm/ptrace.h>
11 
12 #include "bpf_jit_32.h"
13 
14 int bpf_jit_enable __read_mostly;
15 
16 static inline bool is_simm13(unsigned int value)
17 {
18 	return value + 0x1000 < 0x2000;
19 }
20 
21 #define SEEN_DATAREF 1 /* might call external helpers */
22 #define SEEN_XREG    2 /* ebx is used */
23 #define SEEN_MEM     4 /* use mem[] for temporary storage */
24 
25 #define S13(X)		((X) & 0x1fff)
26 #define IMMED		0x00002000
27 #define RD(X)		((X) << 25)
28 #define RS1(X)		((X) << 14)
29 #define RS2(X)		((X))
30 #define OP(X)		((X) << 30)
31 #define OP2(X)		((X) << 22)
32 #define OP3(X)		((X) << 19)
33 #define COND(X)		((X) << 25)
34 #define F1(X)		OP(X)
35 #define F2(X, Y)	(OP(X) | OP2(Y))
36 #define F3(X, Y)	(OP(X) | OP3(Y))
37 
38 #define CONDN		COND(0x0)
39 #define CONDE		COND(0x1)
40 #define CONDLE		COND(0x2)
41 #define CONDL		COND(0x3)
42 #define CONDLEU		COND(0x4)
43 #define CONDCS		COND(0x5)
44 #define CONDNEG		COND(0x6)
45 #define CONDVC		COND(0x7)
46 #define CONDA		COND(0x8)
47 #define CONDNE		COND(0x9)
48 #define CONDG		COND(0xa)
49 #define CONDGE		COND(0xb)
50 #define CONDGU		COND(0xc)
51 #define CONDCC		COND(0xd)
52 #define CONDPOS		COND(0xe)
53 #define CONDVS		COND(0xf)
54 
55 #define CONDGEU		CONDCC
56 #define CONDLU		CONDCS
57 
58 #define WDISP22(X)	(((X) >> 2) & 0x3fffff)
59 
60 #define BA		(F2(0, 2) | CONDA)
61 #define BGU		(F2(0, 2) | CONDGU)
62 #define BLEU		(F2(0, 2) | CONDLEU)
63 #define BGEU		(F2(0, 2) | CONDGEU)
64 #define BLU		(F2(0, 2) | CONDLU)
65 #define BE		(F2(0, 2) | CONDE)
66 #define BNE		(F2(0, 2) | CONDNE)
67 
68 #define BE_PTR		BE
69 
70 #define SETHI(K, REG)	\
71 	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
72 #define OR_LO(K, REG)	\
73 	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
74 
75 #define ADD		F3(2, 0x00)
76 #define AND		F3(2, 0x01)
77 #define ANDCC		F3(2, 0x11)
78 #define OR		F3(2, 0x02)
79 #define XOR		F3(2, 0x03)
80 #define SUB		F3(2, 0x04)
81 #define SUBCC		F3(2, 0x14)
82 #define MUL		F3(2, 0x0a)	/* umul */
83 #define DIV		F3(2, 0x0e)	/* udiv */
84 #define SLL		F3(2, 0x25)
85 #define SRL		F3(2, 0x26)
86 #define JMPL		F3(2, 0x38)
87 #define CALL		F1(1)
88 #define BR		F2(0, 0x01)
89 #define RD_Y		F3(2, 0x28)
90 #define WR_Y		F3(2, 0x30)
91 
92 #define LD32		F3(3, 0x00)
93 #define LD8		F3(3, 0x01)
94 #define LD16		F3(3, 0x02)
95 #define LD64		F3(3, 0x0b)
96 #define ST32		F3(3, 0x04)
97 
98 #define LDPTR		LD32
99 #define BASE_STACKFRAME	96
100 
101 #define LD32I		(LD32 | IMMED)
102 #define LD8I		(LD8 | IMMED)
103 #define LD16I		(LD16 | IMMED)
104 #define LD64I		(LD64 | IMMED)
105 #define LDPTRI		(LDPTR | IMMED)
106 #define ST32I		(ST32 | IMMED)
107 
108 #define emit_nop()		\
109 do {				\
110 	*prog++ = SETHI(0, G0);	\
111 } while (0)
112 
113 #define emit_neg()					\
114 do {	/* sub %g0, r_A, r_A */				\
115 	*prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);	\
116 } while (0)
117 
118 #define emit_reg_move(FROM, TO)				\
119 do {	/* or %g0, FROM, TO */				\
120 	*prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);	\
121 } while (0)
122 
123 #define emit_clear(REG)					\
124 do {	/* or %g0, %g0, REG */				\
125 	*prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);	\
126 } while (0)
127 
128 #define emit_set_const(K, REG)					\
129 do {	/* sethi %hi(K), REG */					\
130 	*prog++ = SETHI(K, REG);				\
131 	/* or REG, %lo(K), REG */				\
132 	*prog++ = OR_LO(K, REG);				\
133 } while (0)
134 
135 	/* Emit
136 	 *
137 	 *	OP	r_A, r_X, r_A
138 	 */
139 #define emit_alu_X(OPCODE)					\
140 do {								\
141 	seen |= SEEN_XREG;					\
142 	*prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);	\
143 } while (0)
144 
145 	/* Emit either:
146 	 *
147 	 *	OP	r_A, K, r_A
148 	 *
149 	 * or
150 	 *
151 	 *	sethi	%hi(K), r_TMP
152 	 *	or	r_TMP, %lo(K), r_TMP
153 	 *	OP	r_A, r_TMP, r_A
154 	 *
155 	 * depending upon whether K fits in a signed 13-bit
156 	 * immediate instruction field.  Emit nothing if K
157 	 * is zero.
158 	 */
159 #define emit_alu_K(OPCODE, K)					\
160 do {								\
161 	if (K || OPCODE == AND || OPCODE == MUL) {		\
162 		unsigned int _insn = OPCODE;			\
163 		_insn |= RS1(r_A) | RD(r_A);			\
164 		if (is_simm13(K)) {				\
165 			*prog++ = _insn | IMMED | S13(K);	\
166 		} else {					\
167 			emit_set_const(K, r_TMP);		\
168 			*prog++ = _insn | RS2(r_TMP);		\
169 		}						\
170 	}							\
171 } while (0)
172 
173 #define emit_loadimm(K, DEST)						\
174 do {									\
175 	if (is_simm13(K)) {						\
176 		/* or %g0, K, DEST */					\
177 		*prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);	\
178 	} else {							\
179 		emit_set_const(K, DEST);				\
180 	}								\
181 } while (0)
182 
183 #define emit_loadptr(BASE, STRUCT, FIELD, DEST)				\
184 do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
185 	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *));	\
186 	*prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);		\
187 } while (0)
188 
189 #define emit_load32(BASE, STRUCT, FIELD, DEST)				\
190 do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
191 	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32));	\
192 	*prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);		\
193 } while (0)
194 
195 #define emit_load16(BASE, STRUCT, FIELD, DEST)				\
196 do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
197 	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16));	\
198 	*prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);		\
199 } while (0)
200 
201 #define __emit_load8(BASE, STRUCT, FIELD, DEST)				\
202 do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
203 	*prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);		\
204 } while (0)
205 
206 #define emit_load8(BASE, STRUCT, FIELD, DEST)				\
207 do {	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8));	\
208 	__emit_load8(BASE, STRUCT, FIELD, DEST);			\
209 } while (0)
210 
211 #define BIAS (-4)
212 
213 #define emit_ldmem(OFF, DEST)						\
214 do {	*prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST);	\
215 } while (0)
216 
217 #define emit_stmem(OFF, SRC)						\
218 do {	*prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC);	\
219 } while (0)
220 
221 #ifdef CONFIG_SMP
222 #define emit_load_cpu(REG)						\
223 	emit_load32(G6, struct thread_info, cpu, REG)
224 #else
225 #define emit_load_cpu(REG)	emit_clear(REG)
226 #endif
227 
228 #define emit_skb_loadptr(FIELD, DEST) \
229 	emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
230 #define emit_skb_load32(FIELD, DEST) \
231 	emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
232 #define emit_skb_load16(FIELD, DEST) \
233 	emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
234 #define __emit_skb_load8(FIELD, DEST) \
235 	__emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
236 #define emit_skb_load8(FIELD, DEST) \
237 	emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
238 
239 #define emit_jmpl(BASE, IMM_OFF, LREG) \
240 	*prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
241 
242 #define emit_call(FUNC)					\
243 do {	void *_here = image + addrs[i] - 8;		\
244 	unsigned int _off = (void *)(FUNC) - _here;	\
245 	*prog++ = CALL | (((_off) >> 2) & 0x3fffffff);	\
246 	emit_nop();					\
247 } while (0)
248 
249 #define emit_branch(BR_OPC, DEST)			\
250 do {	unsigned int _here = addrs[i] - 8;		\
251 	*prog++ = BR_OPC | WDISP22((DEST) - _here);	\
252 } while (0)
253 
254 #define emit_branch_off(BR_OPC, OFF)			\
255 do {	*prog++ = BR_OPC | WDISP22(OFF);		\
256 } while (0)
257 
258 #define emit_jump(DEST)		emit_branch(BA, DEST)
259 
260 #define emit_read_y(REG)	*prog++ = RD_Y | RD(REG)
261 #define emit_write_y(REG)	*prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
262 
263 #define emit_cmp(R1, R2) \
264 	*prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
265 
266 #define emit_cmpi(R1, IMM) \
267 	*prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
268 
269 #define emit_btst(R1, R2) \
270 	*prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
271 
272 #define emit_btsti(R1, IMM) \
273 	*prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
274 
275 #define emit_sub(R1, R2, R3) \
276 	*prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
277 
278 #define emit_subi(R1, IMM, R3) \
279 	*prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
280 
281 #define emit_add(R1, R2, R3) \
282 	*prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
283 
284 #define emit_addi(R1, IMM, R3) \
285 	*prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
286 
287 #define emit_and(R1, R2, R3) \
288 	*prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
289 
290 #define emit_andi(R1, IMM, R3) \
291 	*prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
292 
293 #define emit_alloc_stack(SZ) \
294 	*prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
295 
296 #define emit_release_stack(SZ) \
297 	*prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
298 
299 /* A note about branch offset calculations.  The addrs[] array,
300  * indexed by BPF instruction, records the address after all the
301  * sparc instructions emitted for that BPF instruction.
302  *
303  * The most common case is to emit a branch at the end of such
304  * a code sequence.  So this would be two instructions, the
305  * branch and it's delay slot.
306  *
307  * Therefore by default the branch emitters calculate the branch
308  * offset field as:
309  *
310  *	destination - (addrs[i] - 8)
311  *
312  * This "addrs[i] - 8" is the address of the branch itself or
313  * what "." would be in assembler notation.  The "8" part is
314  * how we take into consideration the branch and it's delay
315  * slot mentioned above.
316  *
317  * Sometimes we need to emit a branch earlier in the code
318  * sequence.  And in these situations we adjust "destination"
319  * to accommodate this difference.  For example, if we needed
320  * to emit a branch (and it's delay slot) right before the
321  * final instruction emitted for a BPF opcode, we'd use
322  * "destination + 4" instead of just plain "destination" above.
323  *
324  * This is why you see all of these funny emit_branch() and
325  * emit_jump() calls with adjusted offsets.
326  */
327 
328 void bpf_jit_compile(struct bpf_prog *fp)
329 {
330 	unsigned int cleanup_addr, proglen, oldproglen = 0;
331 	u32 temp[8], *prog, *func, seen = 0, pass;
332 	const struct sock_filter *filter = fp->insns;
333 	int i, flen = fp->len, pc_ret0 = -1;
334 	unsigned int *addrs;
335 	void *image;
336 
337 	if (!bpf_jit_enable)
338 		return;
339 
340 	addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
341 	if (addrs == NULL)
342 		return;
343 
344 	/* Before first pass, make a rough estimation of addrs[]
345 	 * each bpf instruction is translated to less than 64 bytes
346 	 */
347 	for (proglen = 0, i = 0; i < flen; i++) {
348 		proglen += 64;
349 		addrs[i] = proglen;
350 	}
351 	cleanup_addr = proglen; /* epilogue address */
352 	image = NULL;
353 	for (pass = 0; pass < 10; pass++) {
354 		u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
355 
356 		/* no prologue/epilogue for trivial filters (RET something) */
357 		proglen = 0;
358 		prog = temp;
359 
360 		/* Prologue */
361 		if (seen_or_pass0) {
362 			if (seen_or_pass0 & SEEN_MEM) {
363 				unsigned int sz = BASE_STACKFRAME;
364 				sz += BPF_MEMWORDS * sizeof(u32);
365 				emit_alloc_stack(sz);
366 			}
367 
368 			/* Make sure we dont leek kernel memory. */
369 			if (seen_or_pass0 & SEEN_XREG)
370 				emit_clear(r_X);
371 
372 			/* If this filter needs to access skb data,
373 			 * load %o4 and %o5 with:
374 			 *  %o4 = skb->len - skb->data_len
375 			 *  %o5 = skb->data
376 			 * And also back up %o7 into r_saved_O7 so we can
377 			 * invoke the stubs using 'call'.
378 			 */
379 			if (seen_or_pass0 & SEEN_DATAREF) {
380 				emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
381 				emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
382 				emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
383 				emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
384 			}
385 		}
386 		emit_reg_move(O7, r_saved_O7);
387 
388 		/* Make sure we dont leak kernel information to the user. */
389 		if (bpf_needs_clear_a(&filter[0]))
390 			emit_clear(r_A); /* A = 0 */
391 
392 		for (i = 0; i < flen; i++) {
393 			unsigned int K = filter[i].k;
394 			unsigned int t_offset;
395 			unsigned int f_offset;
396 			u32 t_op, f_op;
397 			u16 code = bpf_anc_helper(&filter[i]);
398 			int ilen;
399 
400 			switch (code) {
401 			case BPF_ALU | BPF_ADD | BPF_X:	/* A += X; */
402 				emit_alu_X(ADD);
403 				break;
404 			case BPF_ALU | BPF_ADD | BPF_K:	/* A += K; */
405 				emit_alu_K(ADD, K);
406 				break;
407 			case BPF_ALU | BPF_SUB | BPF_X:	/* A -= X; */
408 				emit_alu_X(SUB);
409 				break;
410 			case BPF_ALU | BPF_SUB | BPF_K:	/* A -= K */
411 				emit_alu_K(SUB, K);
412 				break;
413 			case BPF_ALU | BPF_AND | BPF_X:	/* A &= X */
414 				emit_alu_X(AND);
415 				break;
416 			case BPF_ALU | BPF_AND | BPF_K:	/* A &= K */
417 				emit_alu_K(AND, K);
418 				break;
419 			case BPF_ALU | BPF_OR | BPF_X:	/* A |= X */
420 				emit_alu_X(OR);
421 				break;
422 			case BPF_ALU | BPF_OR | BPF_K:	/* A |= K */
423 				emit_alu_K(OR, K);
424 				break;
425 			case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
426 			case BPF_ALU | BPF_XOR | BPF_X:
427 				emit_alu_X(XOR);
428 				break;
429 			case BPF_ALU | BPF_XOR | BPF_K:	/* A ^= K */
430 				emit_alu_K(XOR, K);
431 				break;
432 			case BPF_ALU | BPF_LSH | BPF_X:	/* A <<= X */
433 				emit_alu_X(SLL);
434 				break;
435 			case BPF_ALU | BPF_LSH | BPF_K:	/* A <<= K */
436 				emit_alu_K(SLL, K);
437 				break;
438 			case BPF_ALU | BPF_RSH | BPF_X:	/* A >>= X */
439 				emit_alu_X(SRL);
440 				break;
441 			case BPF_ALU | BPF_RSH | BPF_K:	/* A >>= K */
442 				emit_alu_K(SRL, K);
443 				break;
444 			case BPF_ALU | BPF_MUL | BPF_X:	/* A *= X; */
445 				emit_alu_X(MUL);
446 				break;
447 			case BPF_ALU | BPF_MUL | BPF_K:	/* A *= K */
448 				emit_alu_K(MUL, K);
449 				break;
450 			case BPF_ALU | BPF_DIV | BPF_K:	/* A /= K with K != 0*/
451 				if (K == 1)
452 					break;
453 				emit_write_y(G0);
454 				/* The Sparc v8 architecture requires
455 				 * three instructions between a %y
456 				 * register write and the first use.
457 				 */
458 				emit_nop();
459 				emit_nop();
460 				emit_nop();
461 				emit_alu_K(DIV, K);
462 				break;
463 			case BPF_ALU | BPF_DIV | BPF_X:	/* A /= X; */
464 				emit_cmpi(r_X, 0);
465 				if (pc_ret0 > 0) {
466 					t_offset = addrs[pc_ret0 - 1];
467 					emit_branch(BE, t_offset + 20);
468 					emit_nop(); /* delay slot */
469 				} else {
470 					emit_branch_off(BNE, 16);
471 					emit_nop();
472 					emit_jump(cleanup_addr + 20);
473 					emit_clear(r_A);
474 				}
475 				emit_write_y(G0);
476 				/* The Sparc v8 architecture requires
477 				 * three instructions between a %y
478 				 * register write and the first use.
479 				 */
480 				emit_nop();
481 				emit_nop();
482 				emit_nop();
483 				emit_alu_X(DIV);
484 				break;
485 			case BPF_ALU | BPF_NEG:
486 				emit_neg();
487 				break;
488 			case BPF_RET | BPF_K:
489 				if (!K) {
490 					if (pc_ret0 == -1)
491 						pc_ret0 = i;
492 					emit_clear(r_A);
493 				} else {
494 					emit_loadimm(K, r_A);
495 				}
496 				/* Fallthrough */
497 			case BPF_RET | BPF_A:
498 				if (seen_or_pass0) {
499 					if (i != flen - 1) {
500 						emit_jump(cleanup_addr);
501 						emit_nop();
502 						break;
503 					}
504 					if (seen_or_pass0 & SEEN_MEM) {
505 						unsigned int sz = BASE_STACKFRAME;
506 						sz += BPF_MEMWORDS * sizeof(u32);
507 						emit_release_stack(sz);
508 					}
509 				}
510 				/* jmpl %r_saved_O7 + 8, %g0 */
511 				emit_jmpl(r_saved_O7, 8, G0);
512 				emit_reg_move(r_A, O0); /* delay slot */
513 				break;
514 			case BPF_MISC | BPF_TAX:
515 				seen |= SEEN_XREG;
516 				emit_reg_move(r_A, r_X);
517 				break;
518 			case BPF_MISC | BPF_TXA:
519 				seen |= SEEN_XREG;
520 				emit_reg_move(r_X, r_A);
521 				break;
522 			case BPF_ANC | SKF_AD_CPU:
523 				emit_load_cpu(r_A);
524 				break;
525 			case BPF_ANC | SKF_AD_PROTOCOL:
526 				emit_skb_load16(protocol, r_A);
527 				break;
528 			case BPF_ANC | SKF_AD_PKTTYPE:
529 				__emit_skb_load8(__pkt_type_offset, r_A);
530 				emit_andi(r_A, PKT_TYPE_MAX, r_A);
531 				emit_alu_K(SRL, 5);
532 				break;
533 			case BPF_ANC | SKF_AD_IFINDEX:
534 				emit_skb_loadptr(dev, r_A);
535 				emit_cmpi(r_A, 0);
536 				emit_branch(BE_PTR, cleanup_addr + 4);
537 				emit_nop();
538 				emit_load32(r_A, struct net_device, ifindex, r_A);
539 				break;
540 			case BPF_ANC | SKF_AD_MARK:
541 				emit_skb_load32(mark, r_A);
542 				break;
543 			case BPF_ANC | SKF_AD_QUEUE:
544 				emit_skb_load16(queue_mapping, r_A);
545 				break;
546 			case BPF_ANC | SKF_AD_HATYPE:
547 				emit_skb_loadptr(dev, r_A);
548 				emit_cmpi(r_A, 0);
549 				emit_branch(BE_PTR, cleanup_addr + 4);
550 				emit_nop();
551 				emit_load16(r_A, struct net_device, type, r_A);
552 				break;
553 			case BPF_ANC | SKF_AD_RXHASH:
554 				emit_skb_load32(hash, r_A);
555 				break;
556 			case BPF_ANC | SKF_AD_VLAN_TAG:
557 			case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
558 				emit_skb_load16(vlan_tci, r_A);
559 				if (code != (BPF_ANC | SKF_AD_VLAN_TAG)) {
560 					emit_alu_K(SRL, 12);
561 					emit_andi(r_A, 1, r_A);
562 				} else {
563 					emit_loadimm(~VLAN_TAG_PRESENT, r_TMP);
564 					emit_and(r_A, r_TMP, r_A);
565 				}
566 				break;
567 			case BPF_LD | BPF_W | BPF_LEN:
568 				emit_skb_load32(len, r_A);
569 				break;
570 			case BPF_LDX | BPF_W | BPF_LEN:
571 				emit_skb_load32(len, r_X);
572 				break;
573 			case BPF_LD | BPF_IMM:
574 				emit_loadimm(K, r_A);
575 				break;
576 			case BPF_LDX | BPF_IMM:
577 				emit_loadimm(K, r_X);
578 				break;
579 			case BPF_LD | BPF_MEM:
580 				seen |= SEEN_MEM;
581 				emit_ldmem(K * 4, r_A);
582 				break;
583 			case BPF_LDX | BPF_MEM:
584 				seen |= SEEN_MEM | SEEN_XREG;
585 				emit_ldmem(K * 4, r_X);
586 				break;
587 			case BPF_ST:
588 				seen |= SEEN_MEM;
589 				emit_stmem(K * 4, r_A);
590 				break;
591 			case BPF_STX:
592 				seen |= SEEN_MEM | SEEN_XREG;
593 				emit_stmem(K * 4, r_X);
594 				break;
595 
596 #define CHOOSE_LOAD_FUNC(K, func) \
597 	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
598 
599 			case BPF_LD | BPF_W | BPF_ABS:
600 				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
601 common_load:			seen |= SEEN_DATAREF;
602 				emit_loadimm(K, r_OFF);
603 				emit_call(func);
604 				break;
605 			case BPF_LD | BPF_H | BPF_ABS:
606 				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
607 				goto common_load;
608 			case BPF_LD | BPF_B | BPF_ABS:
609 				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
610 				goto common_load;
611 			case BPF_LDX | BPF_B | BPF_MSH:
612 				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
613 				goto common_load;
614 			case BPF_LD | BPF_W | BPF_IND:
615 				func = bpf_jit_load_word;
616 common_load_ind:		seen |= SEEN_DATAREF | SEEN_XREG;
617 				if (K) {
618 					if (is_simm13(K)) {
619 						emit_addi(r_X, K, r_OFF);
620 					} else {
621 						emit_loadimm(K, r_TMP);
622 						emit_add(r_X, r_TMP, r_OFF);
623 					}
624 				} else {
625 					emit_reg_move(r_X, r_OFF);
626 				}
627 				emit_call(func);
628 				break;
629 			case BPF_LD | BPF_H | BPF_IND:
630 				func = bpf_jit_load_half;
631 				goto common_load_ind;
632 			case BPF_LD | BPF_B | BPF_IND:
633 				func = bpf_jit_load_byte;
634 				goto common_load_ind;
635 			case BPF_JMP | BPF_JA:
636 				emit_jump(addrs[i + K]);
637 				emit_nop();
638 				break;
639 
640 #define COND_SEL(CODE, TOP, FOP)	\
641 	case CODE:			\
642 		t_op = TOP;		\
643 		f_op = FOP;		\
644 		goto cond_branch
645 
646 			COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
647 			COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
648 			COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
649 			COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
650 			COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
651 			COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
652 			COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
653 			COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
654 
655 cond_branch:			f_offset = addrs[i + filter[i].jf];
656 				t_offset = addrs[i + filter[i].jt];
657 
658 				/* same targets, can avoid doing the test :) */
659 				if (filter[i].jt == filter[i].jf) {
660 					emit_jump(t_offset);
661 					emit_nop();
662 					break;
663 				}
664 
665 				switch (code) {
666 				case BPF_JMP | BPF_JGT | BPF_X:
667 				case BPF_JMP | BPF_JGE | BPF_X:
668 				case BPF_JMP | BPF_JEQ | BPF_X:
669 					seen |= SEEN_XREG;
670 					emit_cmp(r_A, r_X);
671 					break;
672 				case BPF_JMP | BPF_JSET | BPF_X:
673 					seen |= SEEN_XREG;
674 					emit_btst(r_A, r_X);
675 					break;
676 				case BPF_JMP | BPF_JEQ | BPF_K:
677 				case BPF_JMP | BPF_JGT | BPF_K:
678 				case BPF_JMP | BPF_JGE | BPF_K:
679 					if (is_simm13(K)) {
680 						emit_cmpi(r_A, K);
681 					} else {
682 						emit_loadimm(K, r_TMP);
683 						emit_cmp(r_A, r_TMP);
684 					}
685 					break;
686 				case BPF_JMP | BPF_JSET | BPF_K:
687 					if (is_simm13(K)) {
688 						emit_btsti(r_A, K);
689 					} else {
690 						emit_loadimm(K, r_TMP);
691 						emit_btst(r_A, r_TMP);
692 					}
693 					break;
694 				}
695 				if (filter[i].jt != 0) {
696 					if (filter[i].jf)
697 						t_offset += 8;
698 					emit_branch(t_op, t_offset);
699 					emit_nop(); /* delay slot */
700 					if (filter[i].jf) {
701 						emit_jump(f_offset);
702 						emit_nop();
703 					}
704 					break;
705 				}
706 				emit_branch(f_op, f_offset);
707 				emit_nop(); /* delay slot */
708 				break;
709 
710 			default:
711 				/* hmm, too complex filter, give up with jit compiler */
712 				goto out;
713 			}
714 			ilen = (void *) prog - (void *) temp;
715 			if (image) {
716 				if (unlikely(proglen + ilen > oldproglen)) {
717 					pr_err("bpb_jit_compile fatal error\n");
718 					kfree(addrs);
719 					module_memfree(image);
720 					return;
721 				}
722 				memcpy(image + proglen, temp, ilen);
723 			}
724 			proglen += ilen;
725 			addrs[i] = proglen;
726 			prog = temp;
727 		}
728 		/* last bpf instruction is always a RET :
729 		 * use it to give the cleanup instruction(s) addr
730 		 */
731 		cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
732 		if (seen_or_pass0 & SEEN_MEM)
733 			cleanup_addr -= 4; /* add %sp, X, %sp; */
734 
735 		if (image) {
736 			if (proglen != oldproglen)
737 				pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
738 				       proglen, oldproglen);
739 			break;
740 		}
741 		if (proglen == oldproglen) {
742 			image = module_alloc(proglen);
743 			if (!image)
744 				goto out;
745 		}
746 		oldproglen = proglen;
747 	}
748 
749 	if (bpf_jit_enable > 1)
750 		bpf_jit_dump(flen, proglen, pass + 1, image);
751 
752 	if (image) {
753 		fp->bpf_func = (void *)image;
754 		fp->jited = 1;
755 	}
756 out:
757 	kfree(addrs);
758 	return;
759 }
760 
761 void bpf_jit_free(struct bpf_prog *fp)
762 {
763 	if (fp->jited)
764 		module_memfree(fp->bpf_func);
765 
766 	bpf_prog_unlock_free(fp);
767 }
768