1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/moduleloader.h> 3 #include <linux/workqueue.h> 4 #include <linux/netdevice.h> 5 #include <linux/filter.h> 6 #include <linux/cache.h> 7 #include <linux/if_vlan.h> 8 9 #include <asm/cacheflush.h> 10 #include <asm/ptrace.h> 11 12 #include "bpf_jit_32.h" 13 14 static inline bool is_simm13(unsigned int value) 15 { 16 return value + 0x1000 < 0x2000; 17 } 18 19 #define SEEN_DATAREF 1 /* might call external helpers */ 20 #define SEEN_XREG 2 /* ebx is used */ 21 #define SEEN_MEM 4 /* use mem[] for temporary storage */ 22 23 #define S13(X) ((X) & 0x1fff) 24 #define IMMED 0x00002000 25 #define RD(X) ((X) << 25) 26 #define RS1(X) ((X) << 14) 27 #define RS2(X) ((X)) 28 #define OP(X) ((X) << 30) 29 #define OP2(X) ((X) << 22) 30 #define OP3(X) ((X) << 19) 31 #define COND(X) ((X) << 25) 32 #define F1(X) OP(X) 33 #define F2(X, Y) (OP(X) | OP2(Y)) 34 #define F3(X, Y) (OP(X) | OP3(Y)) 35 36 #define CONDN COND(0x0) 37 #define CONDE COND(0x1) 38 #define CONDLE COND(0x2) 39 #define CONDL COND(0x3) 40 #define CONDLEU COND(0x4) 41 #define CONDCS COND(0x5) 42 #define CONDNEG COND(0x6) 43 #define CONDVC COND(0x7) 44 #define CONDA COND(0x8) 45 #define CONDNE COND(0x9) 46 #define CONDG COND(0xa) 47 #define CONDGE COND(0xb) 48 #define CONDGU COND(0xc) 49 #define CONDCC COND(0xd) 50 #define CONDPOS COND(0xe) 51 #define CONDVS COND(0xf) 52 53 #define CONDGEU CONDCC 54 #define CONDLU CONDCS 55 56 #define WDISP22(X) (((X) >> 2) & 0x3fffff) 57 58 #define BA (F2(0, 2) | CONDA) 59 #define BGU (F2(0, 2) | CONDGU) 60 #define BLEU (F2(0, 2) | CONDLEU) 61 #define BGEU (F2(0, 2) | CONDGEU) 62 #define BLU (F2(0, 2) | CONDLU) 63 #define BE (F2(0, 2) | CONDE) 64 #define BNE (F2(0, 2) | CONDNE) 65 66 #define BE_PTR BE 67 68 #define SETHI(K, REG) \ 69 (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff)) 70 #define OR_LO(K, REG) \ 71 (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG)) 72 73 #define ADD F3(2, 0x00) 74 #define AND F3(2, 0x01) 75 #define ANDCC F3(2, 0x11) 76 #define OR F3(2, 0x02) 77 #define XOR F3(2, 0x03) 78 #define SUB F3(2, 0x04) 79 #define SUBCC F3(2, 0x14) 80 #define MUL F3(2, 0x0a) /* umul */ 81 #define DIV F3(2, 0x0e) /* udiv */ 82 #define SLL F3(2, 0x25) 83 #define SRL F3(2, 0x26) 84 #define JMPL F3(2, 0x38) 85 #define CALL F1(1) 86 #define BR F2(0, 0x01) 87 #define RD_Y F3(2, 0x28) 88 #define WR_Y F3(2, 0x30) 89 90 #define LD32 F3(3, 0x00) 91 #define LD8 F3(3, 0x01) 92 #define LD16 F3(3, 0x02) 93 #define LD64 F3(3, 0x0b) 94 #define ST32 F3(3, 0x04) 95 96 #define LDPTR LD32 97 #define BASE_STACKFRAME 96 98 99 #define LD32I (LD32 | IMMED) 100 #define LD8I (LD8 | IMMED) 101 #define LD16I (LD16 | IMMED) 102 #define LD64I (LD64 | IMMED) 103 #define LDPTRI (LDPTR | IMMED) 104 #define ST32I (ST32 | IMMED) 105 106 #define emit_nop() \ 107 do { \ 108 *prog++ = SETHI(0, G0); \ 109 } while (0) 110 111 #define emit_neg() \ 112 do { /* sub %g0, r_A, r_A */ \ 113 *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \ 114 } while (0) 115 116 #define emit_reg_move(FROM, TO) \ 117 do { /* or %g0, FROM, TO */ \ 118 *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \ 119 } while (0) 120 121 #define emit_clear(REG) \ 122 do { /* or %g0, %g0, REG */ \ 123 *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \ 124 } while (0) 125 126 #define emit_set_const(K, REG) \ 127 do { /* sethi %hi(K), REG */ \ 128 *prog++ = SETHI(K, REG); \ 129 /* or REG, %lo(K), REG */ \ 130 *prog++ = OR_LO(K, REG); \ 131 } while (0) 132 133 /* Emit 134 * 135 * OP r_A, r_X, r_A 136 */ 137 #define emit_alu_X(OPCODE) \ 138 do { \ 139 seen |= SEEN_XREG; \ 140 *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \ 141 } while (0) 142 143 /* Emit either: 144 * 145 * OP r_A, K, r_A 146 * 147 * or 148 * 149 * sethi %hi(K), r_TMP 150 * or r_TMP, %lo(K), r_TMP 151 * OP r_A, r_TMP, r_A 152 * 153 * depending upon whether K fits in a signed 13-bit 154 * immediate instruction field. Emit nothing if K 155 * is zero. 156 */ 157 #define emit_alu_K(OPCODE, K) \ 158 do { \ 159 if (K || OPCODE == AND || OPCODE == MUL) { \ 160 unsigned int _insn = OPCODE; \ 161 _insn |= RS1(r_A) | RD(r_A); \ 162 if (is_simm13(K)) { \ 163 *prog++ = _insn | IMMED | S13(K); \ 164 } else { \ 165 emit_set_const(K, r_TMP); \ 166 *prog++ = _insn | RS2(r_TMP); \ 167 } \ 168 } \ 169 } while (0) 170 171 #define emit_loadimm(K, DEST) \ 172 do { \ 173 if (is_simm13(K)) { \ 174 /* or %g0, K, DEST */ \ 175 *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \ 176 } else { \ 177 emit_set_const(K, DEST); \ 178 } \ 179 } while (0) 180 181 #define emit_loadptr(BASE, STRUCT, FIELD, DEST) \ 182 do { unsigned int _off = offsetof(STRUCT, FIELD); \ 183 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *)); \ 184 *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \ 185 } while (0) 186 187 #define emit_load32(BASE, STRUCT, FIELD, DEST) \ 188 do { unsigned int _off = offsetof(STRUCT, FIELD); \ 189 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32)); \ 190 *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \ 191 } while (0) 192 193 #define emit_load16(BASE, STRUCT, FIELD, DEST) \ 194 do { unsigned int _off = offsetof(STRUCT, FIELD); \ 195 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16)); \ 196 *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \ 197 } while (0) 198 199 #define __emit_load8(BASE, STRUCT, FIELD, DEST) \ 200 do { unsigned int _off = offsetof(STRUCT, FIELD); \ 201 *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \ 202 } while (0) 203 204 #define emit_load8(BASE, STRUCT, FIELD, DEST) \ 205 do { BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8)); \ 206 __emit_load8(BASE, STRUCT, FIELD, DEST); \ 207 } while (0) 208 209 #define BIAS (-4) 210 211 #define emit_ldmem(OFF, DEST) \ 212 do { *prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST); \ 213 } while (0) 214 215 #define emit_stmem(OFF, SRC) \ 216 do { *prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC); \ 217 } while (0) 218 219 #ifdef CONFIG_SMP 220 #define emit_load_cpu(REG) \ 221 emit_load32(G6, struct thread_info, cpu, REG) 222 #else 223 #define emit_load_cpu(REG) emit_clear(REG) 224 #endif 225 226 #define emit_skb_loadptr(FIELD, DEST) \ 227 emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST) 228 #define emit_skb_load32(FIELD, DEST) \ 229 emit_load32(r_SKB, struct sk_buff, FIELD, DEST) 230 #define emit_skb_load16(FIELD, DEST) \ 231 emit_load16(r_SKB, struct sk_buff, FIELD, DEST) 232 #define __emit_skb_load8(FIELD, DEST) \ 233 __emit_load8(r_SKB, struct sk_buff, FIELD, DEST) 234 #define emit_skb_load8(FIELD, DEST) \ 235 emit_load8(r_SKB, struct sk_buff, FIELD, DEST) 236 237 #define emit_jmpl(BASE, IMM_OFF, LREG) \ 238 *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG)) 239 240 #define emit_call(FUNC) \ 241 do { void *_here = image + addrs[i] - 8; \ 242 unsigned int _off = (void *)(FUNC) - _here; \ 243 *prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \ 244 emit_nop(); \ 245 } while (0) 246 247 #define emit_branch(BR_OPC, DEST) \ 248 do { unsigned int _here = addrs[i] - 8; \ 249 *prog++ = BR_OPC | WDISP22((DEST) - _here); \ 250 } while (0) 251 252 #define emit_branch_off(BR_OPC, OFF) \ 253 do { *prog++ = BR_OPC | WDISP22(OFF); \ 254 } while (0) 255 256 #define emit_jump(DEST) emit_branch(BA, DEST) 257 258 #define emit_read_y(REG) *prog++ = RD_Y | RD(REG) 259 #define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0) 260 261 #define emit_cmp(R1, R2) \ 262 *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0)) 263 264 #define emit_cmpi(R1, IMM) \ 265 *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0)); 266 267 #define emit_btst(R1, R2) \ 268 *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0)) 269 270 #define emit_btsti(R1, IMM) \ 271 *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0)); 272 273 #define emit_sub(R1, R2, R3) \ 274 *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3)) 275 276 #define emit_subi(R1, IMM, R3) \ 277 *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3)) 278 279 #define emit_add(R1, R2, R3) \ 280 *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3)) 281 282 #define emit_addi(R1, IMM, R3) \ 283 *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3)) 284 285 #define emit_and(R1, R2, R3) \ 286 *prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3)) 287 288 #define emit_andi(R1, IMM, R3) \ 289 *prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3)) 290 291 #define emit_alloc_stack(SZ) \ 292 *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP)) 293 294 #define emit_release_stack(SZ) \ 295 *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP)) 296 297 /* A note about branch offset calculations. The addrs[] array, 298 * indexed by BPF instruction, records the address after all the 299 * sparc instructions emitted for that BPF instruction. 300 * 301 * The most common case is to emit a branch at the end of such 302 * a code sequence. So this would be two instructions, the 303 * branch and it's delay slot. 304 * 305 * Therefore by default the branch emitters calculate the branch 306 * offset field as: 307 * 308 * destination - (addrs[i] - 8) 309 * 310 * This "addrs[i] - 8" is the address of the branch itself or 311 * what "." would be in assembler notation. The "8" part is 312 * how we take into consideration the branch and it's delay 313 * slot mentioned above. 314 * 315 * Sometimes we need to emit a branch earlier in the code 316 * sequence. And in these situations we adjust "destination" 317 * to accommodate this difference. For example, if we needed 318 * to emit a branch (and it's delay slot) right before the 319 * final instruction emitted for a BPF opcode, we'd use 320 * "destination + 4" instead of just plain "destination" above. 321 * 322 * This is why you see all of these funny emit_branch() and 323 * emit_jump() calls with adjusted offsets. 324 */ 325 326 void bpf_jit_compile(struct bpf_prog *fp) 327 { 328 unsigned int cleanup_addr, proglen, oldproglen = 0; 329 u32 temp[8], *prog, *func, seen = 0, pass; 330 const struct sock_filter *filter = fp->insns; 331 int i, flen = fp->len, pc_ret0 = -1; 332 unsigned int *addrs; 333 void *image; 334 335 if (!bpf_jit_enable) 336 return; 337 338 addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL); 339 if (addrs == NULL) 340 return; 341 342 /* Before first pass, make a rough estimation of addrs[] 343 * each bpf instruction is translated to less than 64 bytes 344 */ 345 for (proglen = 0, i = 0; i < flen; i++) { 346 proglen += 64; 347 addrs[i] = proglen; 348 } 349 cleanup_addr = proglen; /* epilogue address */ 350 image = NULL; 351 for (pass = 0; pass < 10; pass++) { 352 u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen; 353 354 /* no prologue/epilogue for trivial filters (RET something) */ 355 proglen = 0; 356 prog = temp; 357 358 /* Prologue */ 359 if (seen_or_pass0) { 360 if (seen_or_pass0 & SEEN_MEM) { 361 unsigned int sz = BASE_STACKFRAME; 362 sz += BPF_MEMWORDS * sizeof(u32); 363 emit_alloc_stack(sz); 364 } 365 366 /* Make sure we dont leek kernel memory. */ 367 if (seen_or_pass0 & SEEN_XREG) 368 emit_clear(r_X); 369 370 /* If this filter needs to access skb data, 371 * load %o4 and %o5 with: 372 * %o4 = skb->len - skb->data_len 373 * %o5 = skb->data 374 * And also back up %o7 into r_saved_O7 so we can 375 * invoke the stubs using 'call'. 376 */ 377 if (seen_or_pass0 & SEEN_DATAREF) { 378 emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN); 379 emit_load32(r_SKB, struct sk_buff, data_len, r_TMP); 380 emit_sub(r_HEADLEN, r_TMP, r_HEADLEN); 381 emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA); 382 } 383 } 384 emit_reg_move(O7, r_saved_O7); 385 386 /* Make sure we dont leak kernel information to the user. */ 387 if (bpf_needs_clear_a(&filter[0])) 388 emit_clear(r_A); /* A = 0 */ 389 390 for (i = 0; i < flen; i++) { 391 unsigned int K = filter[i].k; 392 unsigned int t_offset; 393 unsigned int f_offset; 394 u32 t_op, f_op; 395 u16 code = bpf_anc_helper(&filter[i]); 396 int ilen; 397 398 switch (code) { 399 case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */ 400 emit_alu_X(ADD); 401 break; 402 case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */ 403 emit_alu_K(ADD, K); 404 break; 405 case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */ 406 emit_alu_X(SUB); 407 break; 408 case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */ 409 emit_alu_K(SUB, K); 410 break; 411 case BPF_ALU | BPF_AND | BPF_X: /* A &= X */ 412 emit_alu_X(AND); 413 break; 414 case BPF_ALU | BPF_AND | BPF_K: /* A &= K */ 415 emit_alu_K(AND, K); 416 break; 417 case BPF_ALU | BPF_OR | BPF_X: /* A |= X */ 418 emit_alu_X(OR); 419 break; 420 case BPF_ALU | BPF_OR | BPF_K: /* A |= K */ 421 emit_alu_K(OR, K); 422 break; 423 case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */ 424 case BPF_ALU | BPF_XOR | BPF_X: 425 emit_alu_X(XOR); 426 break; 427 case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */ 428 emit_alu_K(XOR, K); 429 break; 430 case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X */ 431 emit_alu_X(SLL); 432 break; 433 case BPF_ALU | BPF_LSH | BPF_K: /* A <<= K */ 434 emit_alu_K(SLL, K); 435 break; 436 case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X */ 437 emit_alu_X(SRL); 438 break; 439 case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K */ 440 emit_alu_K(SRL, K); 441 break; 442 case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */ 443 emit_alu_X(MUL); 444 break; 445 case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */ 446 emit_alu_K(MUL, K); 447 break; 448 case BPF_ALU | BPF_DIV | BPF_K: /* A /= K with K != 0*/ 449 if (K == 1) 450 break; 451 emit_write_y(G0); 452 /* The Sparc v8 architecture requires 453 * three instructions between a %y 454 * register write and the first use. 455 */ 456 emit_nop(); 457 emit_nop(); 458 emit_nop(); 459 emit_alu_K(DIV, K); 460 break; 461 case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */ 462 emit_cmpi(r_X, 0); 463 if (pc_ret0 > 0) { 464 t_offset = addrs[pc_ret0 - 1]; 465 emit_branch(BE, t_offset + 20); 466 emit_nop(); /* delay slot */ 467 } else { 468 emit_branch_off(BNE, 16); 469 emit_nop(); 470 emit_jump(cleanup_addr + 20); 471 emit_clear(r_A); 472 } 473 emit_write_y(G0); 474 /* The Sparc v8 architecture requires 475 * three instructions between a %y 476 * register write and the first use. 477 */ 478 emit_nop(); 479 emit_nop(); 480 emit_nop(); 481 emit_alu_X(DIV); 482 break; 483 case BPF_ALU | BPF_NEG: 484 emit_neg(); 485 break; 486 case BPF_RET | BPF_K: 487 if (!K) { 488 if (pc_ret0 == -1) 489 pc_ret0 = i; 490 emit_clear(r_A); 491 } else { 492 emit_loadimm(K, r_A); 493 } 494 /* Fallthrough */ 495 case BPF_RET | BPF_A: 496 if (seen_or_pass0) { 497 if (i != flen - 1) { 498 emit_jump(cleanup_addr); 499 emit_nop(); 500 break; 501 } 502 if (seen_or_pass0 & SEEN_MEM) { 503 unsigned int sz = BASE_STACKFRAME; 504 sz += BPF_MEMWORDS * sizeof(u32); 505 emit_release_stack(sz); 506 } 507 } 508 /* jmpl %r_saved_O7 + 8, %g0 */ 509 emit_jmpl(r_saved_O7, 8, G0); 510 emit_reg_move(r_A, O0); /* delay slot */ 511 break; 512 case BPF_MISC | BPF_TAX: 513 seen |= SEEN_XREG; 514 emit_reg_move(r_A, r_X); 515 break; 516 case BPF_MISC | BPF_TXA: 517 seen |= SEEN_XREG; 518 emit_reg_move(r_X, r_A); 519 break; 520 case BPF_ANC | SKF_AD_CPU: 521 emit_load_cpu(r_A); 522 break; 523 case BPF_ANC | SKF_AD_PROTOCOL: 524 emit_skb_load16(protocol, r_A); 525 break; 526 case BPF_ANC | SKF_AD_PKTTYPE: 527 __emit_skb_load8(__pkt_type_offset, r_A); 528 emit_andi(r_A, PKT_TYPE_MAX, r_A); 529 emit_alu_K(SRL, 5); 530 break; 531 case BPF_ANC | SKF_AD_IFINDEX: 532 emit_skb_loadptr(dev, r_A); 533 emit_cmpi(r_A, 0); 534 emit_branch(BE_PTR, cleanup_addr + 4); 535 emit_nop(); 536 emit_load32(r_A, struct net_device, ifindex, r_A); 537 break; 538 case BPF_ANC | SKF_AD_MARK: 539 emit_skb_load32(mark, r_A); 540 break; 541 case BPF_ANC | SKF_AD_QUEUE: 542 emit_skb_load16(queue_mapping, r_A); 543 break; 544 case BPF_ANC | SKF_AD_HATYPE: 545 emit_skb_loadptr(dev, r_A); 546 emit_cmpi(r_A, 0); 547 emit_branch(BE_PTR, cleanup_addr + 4); 548 emit_nop(); 549 emit_load16(r_A, struct net_device, type, r_A); 550 break; 551 case BPF_ANC | SKF_AD_RXHASH: 552 emit_skb_load32(hash, r_A); 553 break; 554 case BPF_ANC | SKF_AD_VLAN_TAG: 555 case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT: 556 emit_skb_load16(vlan_tci, r_A); 557 if (code != (BPF_ANC | SKF_AD_VLAN_TAG)) { 558 emit_alu_K(SRL, 12); 559 emit_andi(r_A, 1, r_A); 560 } else { 561 emit_loadimm(~VLAN_TAG_PRESENT, r_TMP); 562 emit_and(r_A, r_TMP, r_A); 563 } 564 break; 565 case BPF_LD | BPF_W | BPF_LEN: 566 emit_skb_load32(len, r_A); 567 break; 568 case BPF_LDX | BPF_W | BPF_LEN: 569 emit_skb_load32(len, r_X); 570 break; 571 case BPF_LD | BPF_IMM: 572 emit_loadimm(K, r_A); 573 break; 574 case BPF_LDX | BPF_IMM: 575 emit_loadimm(K, r_X); 576 break; 577 case BPF_LD | BPF_MEM: 578 seen |= SEEN_MEM; 579 emit_ldmem(K * 4, r_A); 580 break; 581 case BPF_LDX | BPF_MEM: 582 seen |= SEEN_MEM | SEEN_XREG; 583 emit_ldmem(K * 4, r_X); 584 break; 585 case BPF_ST: 586 seen |= SEEN_MEM; 587 emit_stmem(K * 4, r_A); 588 break; 589 case BPF_STX: 590 seen |= SEEN_MEM | SEEN_XREG; 591 emit_stmem(K * 4, r_X); 592 break; 593 594 #define CHOOSE_LOAD_FUNC(K, func) \ 595 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset) 596 597 case BPF_LD | BPF_W | BPF_ABS: 598 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word); 599 common_load: seen |= SEEN_DATAREF; 600 emit_loadimm(K, r_OFF); 601 emit_call(func); 602 break; 603 case BPF_LD | BPF_H | BPF_ABS: 604 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half); 605 goto common_load; 606 case BPF_LD | BPF_B | BPF_ABS: 607 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte); 608 goto common_load; 609 case BPF_LDX | BPF_B | BPF_MSH: 610 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh); 611 goto common_load; 612 case BPF_LD | BPF_W | BPF_IND: 613 func = bpf_jit_load_word; 614 common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG; 615 if (K) { 616 if (is_simm13(K)) { 617 emit_addi(r_X, K, r_OFF); 618 } else { 619 emit_loadimm(K, r_TMP); 620 emit_add(r_X, r_TMP, r_OFF); 621 } 622 } else { 623 emit_reg_move(r_X, r_OFF); 624 } 625 emit_call(func); 626 break; 627 case BPF_LD | BPF_H | BPF_IND: 628 func = bpf_jit_load_half; 629 goto common_load_ind; 630 case BPF_LD | BPF_B | BPF_IND: 631 func = bpf_jit_load_byte; 632 goto common_load_ind; 633 case BPF_JMP | BPF_JA: 634 emit_jump(addrs[i + K]); 635 emit_nop(); 636 break; 637 638 #define COND_SEL(CODE, TOP, FOP) \ 639 case CODE: \ 640 t_op = TOP; \ 641 f_op = FOP; \ 642 goto cond_branch 643 644 COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU); 645 COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU); 646 COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE); 647 COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE); 648 COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU); 649 COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU); 650 COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE); 651 COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE); 652 653 cond_branch: f_offset = addrs[i + filter[i].jf]; 654 t_offset = addrs[i + filter[i].jt]; 655 656 /* same targets, can avoid doing the test :) */ 657 if (filter[i].jt == filter[i].jf) { 658 emit_jump(t_offset); 659 emit_nop(); 660 break; 661 } 662 663 switch (code) { 664 case BPF_JMP | BPF_JGT | BPF_X: 665 case BPF_JMP | BPF_JGE | BPF_X: 666 case BPF_JMP | BPF_JEQ | BPF_X: 667 seen |= SEEN_XREG; 668 emit_cmp(r_A, r_X); 669 break; 670 case BPF_JMP | BPF_JSET | BPF_X: 671 seen |= SEEN_XREG; 672 emit_btst(r_A, r_X); 673 break; 674 case BPF_JMP | BPF_JEQ | BPF_K: 675 case BPF_JMP | BPF_JGT | BPF_K: 676 case BPF_JMP | BPF_JGE | BPF_K: 677 if (is_simm13(K)) { 678 emit_cmpi(r_A, K); 679 } else { 680 emit_loadimm(K, r_TMP); 681 emit_cmp(r_A, r_TMP); 682 } 683 break; 684 case BPF_JMP | BPF_JSET | BPF_K: 685 if (is_simm13(K)) { 686 emit_btsti(r_A, K); 687 } else { 688 emit_loadimm(K, r_TMP); 689 emit_btst(r_A, r_TMP); 690 } 691 break; 692 } 693 if (filter[i].jt != 0) { 694 if (filter[i].jf) 695 t_offset += 8; 696 emit_branch(t_op, t_offset); 697 emit_nop(); /* delay slot */ 698 if (filter[i].jf) { 699 emit_jump(f_offset); 700 emit_nop(); 701 } 702 break; 703 } 704 emit_branch(f_op, f_offset); 705 emit_nop(); /* delay slot */ 706 break; 707 708 default: 709 /* hmm, too complex filter, give up with jit compiler */ 710 goto out; 711 } 712 ilen = (void *) prog - (void *) temp; 713 if (image) { 714 if (unlikely(proglen + ilen > oldproglen)) { 715 pr_err("bpb_jit_compile fatal error\n"); 716 kfree(addrs); 717 module_memfree(image); 718 return; 719 } 720 memcpy(image + proglen, temp, ilen); 721 } 722 proglen += ilen; 723 addrs[i] = proglen; 724 prog = temp; 725 } 726 /* last bpf instruction is always a RET : 727 * use it to give the cleanup instruction(s) addr 728 */ 729 cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */ 730 if (seen_or_pass0 & SEEN_MEM) 731 cleanup_addr -= 4; /* add %sp, X, %sp; */ 732 733 if (image) { 734 if (proglen != oldproglen) 735 pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n", 736 proglen, oldproglen); 737 break; 738 } 739 if (proglen == oldproglen) { 740 image = module_alloc(proglen); 741 if (!image) 742 goto out; 743 } 744 oldproglen = proglen; 745 } 746 747 if (bpf_jit_enable > 1) 748 bpf_jit_dump(flen, proglen, pass + 1, image); 749 750 if (image) { 751 fp->bpf_func = (void *)image; 752 fp->jited = 1; 753 } 754 out: 755 kfree(addrs); 756 return; 757 } 758 759 void bpf_jit_free(struct bpf_prog *fp) 760 { 761 if (fp->jited) 762 module_memfree(fp->bpf_func); 763 764 bpf_prog_unlock_free(fp); 765 } 766