xref: /openbmc/linux/arch/sparc/mm/tsb.c (revision fcc8487d)
1 /* arch/sparc64/mm/tsb.c
2  *
3  * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <linux/mm_types.h>
10 
11 #include <asm/page.h>
12 #include <asm/pgtable.h>
13 #include <asm/mmu_context.h>
14 #include <asm/setup.h>
15 #include <asm/tsb.h>
16 #include <asm/tlb.h>
17 #include <asm/oplib.h>
18 
19 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
20 
21 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
22 {
23 	vaddr >>= hash_shift;
24 	return vaddr & (nentries - 1);
25 }
26 
27 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
28 {
29 	return (tag == (vaddr >> 22));
30 }
31 
32 static void flush_tsb_kernel_range_scan(unsigned long start, unsigned long end)
33 {
34 	unsigned long idx;
35 
36 	for (idx = 0; idx < KERNEL_TSB_NENTRIES; idx++) {
37 		struct tsb *ent = &swapper_tsb[idx];
38 		unsigned long match = idx << 13;
39 
40 		match |= (ent->tag << 22);
41 		if (match >= start && match < end)
42 			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
43 	}
44 }
45 
46 /* TSB flushes need only occur on the processor initiating the address
47  * space modification, not on each cpu the address space has run on.
48  * Only the TLB flush needs that treatment.
49  */
50 
51 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
52 {
53 	unsigned long v;
54 
55 	if ((end - start) >> PAGE_SHIFT >= 2 * KERNEL_TSB_NENTRIES)
56 		return flush_tsb_kernel_range_scan(start, end);
57 
58 	for (v = start; v < end; v += PAGE_SIZE) {
59 		unsigned long hash = tsb_hash(v, PAGE_SHIFT,
60 					      KERNEL_TSB_NENTRIES);
61 		struct tsb *ent = &swapper_tsb[hash];
62 
63 		if (tag_compare(ent->tag, v))
64 			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
65 	}
66 }
67 
68 static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
69 				  unsigned long hash_shift,
70 				  unsigned long nentries)
71 {
72 	unsigned long tag, ent, hash;
73 
74 	v &= ~0x1UL;
75 	hash = tsb_hash(v, hash_shift, nentries);
76 	ent = tsb + (hash * sizeof(struct tsb));
77 	tag = (v >> 22UL);
78 
79 	tsb_flush(ent, tag);
80 }
81 
82 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
83 			    unsigned long tsb, unsigned long nentries)
84 {
85 	unsigned long i;
86 
87 	for (i = 0; i < tb->tlb_nr; i++)
88 		__flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
89 }
90 
91 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
92 static void __flush_huge_tsb_one_entry(unsigned long tsb, unsigned long v,
93 				       unsigned long hash_shift,
94 				       unsigned long nentries,
95 				       unsigned int hugepage_shift)
96 {
97 	unsigned int hpage_entries;
98 	unsigned int i;
99 
100 	hpage_entries = 1 << (hugepage_shift - hash_shift);
101 	for (i = 0; i < hpage_entries; i++)
102 		__flush_tsb_one_entry(tsb, v + (i << hash_shift), hash_shift,
103 				      nentries);
104 }
105 
106 static void __flush_huge_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
107 				 unsigned long tsb, unsigned long nentries,
108 				 unsigned int hugepage_shift)
109 {
110 	unsigned long i;
111 
112 	for (i = 0; i < tb->tlb_nr; i++)
113 		__flush_huge_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift,
114 					   nentries, hugepage_shift);
115 }
116 #endif
117 
118 void flush_tsb_user(struct tlb_batch *tb)
119 {
120 	struct mm_struct *mm = tb->mm;
121 	unsigned long nentries, base, flags;
122 
123 	spin_lock_irqsave(&mm->context.lock, flags);
124 
125 	if (tb->hugepage_shift < REAL_HPAGE_SHIFT) {
126 		base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
127 		nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
128 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
129 			base = __pa(base);
130 		if (tb->hugepage_shift == PAGE_SHIFT)
131 			__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
132 #if defined(CONFIG_HUGETLB_PAGE)
133 		else
134 			__flush_huge_tsb_one(tb, PAGE_SHIFT, base, nentries,
135 					     tb->hugepage_shift);
136 #endif
137 	}
138 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
139 	else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
140 		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
141 		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
142 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
143 			base = __pa(base);
144 		__flush_huge_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries,
145 				     tb->hugepage_shift);
146 	}
147 #endif
148 	spin_unlock_irqrestore(&mm->context.lock, flags);
149 }
150 
151 void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr,
152 			 unsigned int hugepage_shift)
153 {
154 	unsigned long nentries, base, flags;
155 
156 	spin_lock_irqsave(&mm->context.lock, flags);
157 
158 	if (hugepage_shift < REAL_HPAGE_SHIFT) {
159 		base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
160 		nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
161 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
162 			base = __pa(base);
163 		if (hugepage_shift == PAGE_SHIFT)
164 			__flush_tsb_one_entry(base, vaddr, PAGE_SHIFT,
165 					      nentries);
166 #if defined(CONFIG_HUGETLB_PAGE)
167 		else
168 			__flush_huge_tsb_one_entry(base, vaddr, PAGE_SHIFT,
169 						   nentries, hugepage_shift);
170 #endif
171 	}
172 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
173 	else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
174 		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
175 		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
176 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
177 			base = __pa(base);
178 		__flush_huge_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT,
179 					   nentries, hugepage_shift);
180 	}
181 #endif
182 	spin_unlock_irqrestore(&mm->context.lock, flags);
183 }
184 
185 #define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_8K
186 #define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_8K
187 
188 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
189 #define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_4MB
190 #define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_4MB
191 #endif
192 
193 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
194 {
195 	unsigned long tsb_reg, base, tsb_paddr;
196 	unsigned long page_sz, tte;
197 
198 	mm->context.tsb_block[tsb_idx].tsb_nentries =
199 		tsb_bytes / sizeof(struct tsb);
200 
201 	switch (tsb_idx) {
202 	case MM_TSB_BASE:
203 		base = TSBMAP_8K_BASE;
204 		break;
205 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
206 	case MM_TSB_HUGE:
207 		base = TSBMAP_4M_BASE;
208 		break;
209 #endif
210 	default:
211 		BUG();
212 	}
213 
214 	tte = pgprot_val(PAGE_KERNEL_LOCKED);
215 	tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
216 	BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
217 
218 	/* Use the smallest page size that can map the whole TSB
219 	 * in one TLB entry.
220 	 */
221 	switch (tsb_bytes) {
222 	case 8192 << 0:
223 		tsb_reg = 0x0UL;
224 #ifdef DCACHE_ALIASING_POSSIBLE
225 		base += (tsb_paddr & 8192);
226 #endif
227 		page_sz = 8192;
228 		break;
229 
230 	case 8192 << 1:
231 		tsb_reg = 0x1UL;
232 		page_sz = 64 * 1024;
233 		break;
234 
235 	case 8192 << 2:
236 		tsb_reg = 0x2UL;
237 		page_sz = 64 * 1024;
238 		break;
239 
240 	case 8192 << 3:
241 		tsb_reg = 0x3UL;
242 		page_sz = 64 * 1024;
243 		break;
244 
245 	case 8192 << 4:
246 		tsb_reg = 0x4UL;
247 		page_sz = 512 * 1024;
248 		break;
249 
250 	case 8192 << 5:
251 		tsb_reg = 0x5UL;
252 		page_sz = 512 * 1024;
253 		break;
254 
255 	case 8192 << 6:
256 		tsb_reg = 0x6UL;
257 		page_sz = 512 * 1024;
258 		break;
259 
260 	case 8192 << 7:
261 		tsb_reg = 0x7UL;
262 		page_sz = 4 * 1024 * 1024;
263 		break;
264 
265 	default:
266 		printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
267 		       current->comm, current->pid, tsb_bytes);
268 		do_exit(SIGSEGV);
269 	}
270 	tte |= pte_sz_bits(page_sz);
271 
272 	if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
273 		/* Physical mapping, no locked TLB entry for TSB.  */
274 		tsb_reg |= tsb_paddr;
275 
276 		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
277 		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
278 		mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
279 	} else {
280 		tsb_reg |= base;
281 		tsb_reg |= (tsb_paddr & (page_sz - 1UL));
282 		tte |= (tsb_paddr & ~(page_sz - 1UL));
283 
284 		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
285 		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
286 		mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
287 	}
288 
289 	/* Setup the Hypervisor TSB descriptor.  */
290 	if (tlb_type == hypervisor) {
291 		struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
292 
293 		switch (tsb_idx) {
294 		case MM_TSB_BASE:
295 			hp->pgsz_idx = HV_PGSZ_IDX_BASE;
296 			break;
297 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
298 		case MM_TSB_HUGE:
299 			hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
300 			break;
301 #endif
302 		default:
303 			BUG();
304 		}
305 		hp->assoc = 1;
306 		hp->num_ttes = tsb_bytes / 16;
307 		hp->ctx_idx = 0;
308 		switch (tsb_idx) {
309 		case MM_TSB_BASE:
310 			hp->pgsz_mask = HV_PGSZ_MASK_BASE;
311 			break;
312 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
313 		case MM_TSB_HUGE:
314 			hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
315 			break;
316 #endif
317 		default:
318 			BUG();
319 		}
320 		hp->tsb_base = tsb_paddr;
321 		hp->resv = 0;
322 	}
323 }
324 
325 struct kmem_cache *pgtable_cache __read_mostly;
326 
327 static struct kmem_cache *tsb_caches[8] __read_mostly;
328 
329 static const char *tsb_cache_names[8] = {
330 	"tsb_8KB",
331 	"tsb_16KB",
332 	"tsb_32KB",
333 	"tsb_64KB",
334 	"tsb_128KB",
335 	"tsb_256KB",
336 	"tsb_512KB",
337 	"tsb_1MB",
338 };
339 
340 void __init pgtable_cache_init(void)
341 {
342 	unsigned long i;
343 
344 	pgtable_cache = kmem_cache_create("pgtable_cache",
345 					  PAGE_SIZE, PAGE_SIZE,
346 					  0,
347 					  _clear_page);
348 	if (!pgtable_cache) {
349 		prom_printf("pgtable_cache_init(): Could not create!\n");
350 		prom_halt();
351 	}
352 
353 	for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
354 		unsigned long size = 8192 << i;
355 		const char *name = tsb_cache_names[i];
356 
357 		tsb_caches[i] = kmem_cache_create(name,
358 						  size, size,
359 						  0, NULL);
360 		if (!tsb_caches[i]) {
361 			prom_printf("Could not create %s cache\n", name);
362 			prom_halt();
363 		}
364 	}
365 }
366 
367 int sysctl_tsb_ratio = -2;
368 
369 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
370 {
371 	unsigned long num_ents = (new_size / sizeof(struct tsb));
372 
373 	if (sysctl_tsb_ratio < 0)
374 		return num_ents - (num_ents >> -sysctl_tsb_ratio);
375 	else
376 		return num_ents + (num_ents >> sysctl_tsb_ratio);
377 }
378 
379 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
380  * do_sparc64_fault() invokes this routine to try and grow it.
381  *
382  * When we reach the maximum TSB size supported, we stick ~0UL into
383  * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
384  * will not trigger any longer.
385  *
386  * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
387  * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
388  * must be 512K aligned.  It also must be physically contiguous, so we
389  * cannot use vmalloc().
390  *
391  * The idea here is to grow the TSB when the RSS of the process approaches
392  * the number of entries that the current TSB can hold at once.  Currently,
393  * we trigger when the RSS hits 3/4 of the TSB capacity.
394  */
395 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
396 {
397 	unsigned long max_tsb_size = 1 * 1024 * 1024;
398 	unsigned long new_size, old_size, flags;
399 	struct tsb *old_tsb, *new_tsb;
400 	unsigned long new_cache_index, old_cache_index;
401 	unsigned long new_rss_limit;
402 	gfp_t gfp_flags;
403 
404 	if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
405 		max_tsb_size = (PAGE_SIZE << MAX_ORDER);
406 
407 	new_cache_index = 0;
408 	for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
409 		new_rss_limit = tsb_size_to_rss_limit(new_size);
410 		if (new_rss_limit > rss)
411 			break;
412 		new_cache_index++;
413 	}
414 
415 	if (new_size == max_tsb_size)
416 		new_rss_limit = ~0UL;
417 
418 retry_tsb_alloc:
419 	gfp_flags = GFP_KERNEL;
420 	if (new_size > (PAGE_SIZE * 2))
421 		gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
422 
423 	new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
424 					gfp_flags, numa_node_id());
425 	if (unlikely(!new_tsb)) {
426 		/* Not being able to fork due to a high-order TSB
427 		 * allocation failure is very bad behavior.  Just back
428 		 * down to a 0-order allocation and force no TSB
429 		 * growing for this address space.
430 		 */
431 		if (mm->context.tsb_block[tsb_index].tsb == NULL &&
432 		    new_cache_index > 0) {
433 			new_cache_index = 0;
434 			new_size = 8192;
435 			new_rss_limit = ~0UL;
436 			goto retry_tsb_alloc;
437 		}
438 
439 		/* If we failed on a TSB grow, we are under serious
440 		 * memory pressure so don't try to grow any more.
441 		 */
442 		if (mm->context.tsb_block[tsb_index].tsb != NULL)
443 			mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
444 		return;
445 	}
446 
447 	/* Mark all tags as invalid.  */
448 	tsb_init(new_tsb, new_size);
449 
450 	/* Ok, we are about to commit the changes.  If we are
451 	 * growing an existing TSB the locking is very tricky,
452 	 * so WATCH OUT!
453 	 *
454 	 * We have to hold mm->context.lock while committing to the
455 	 * new TSB, this synchronizes us with processors in
456 	 * flush_tsb_user() and switch_mm() for this address space.
457 	 *
458 	 * But even with that lock held, processors run asynchronously
459 	 * accessing the old TSB via TLB miss handling.  This is OK
460 	 * because those actions are just propagating state from the
461 	 * Linux page tables into the TSB, page table mappings are not
462 	 * being changed.  If a real fault occurs, the processor will
463 	 * synchronize with us when it hits flush_tsb_user(), this is
464 	 * also true for the case where vmscan is modifying the page
465 	 * tables.  The only thing we need to be careful with is to
466 	 * skip any locked TSB entries during copy_tsb().
467 	 *
468 	 * When we finish committing to the new TSB, we have to drop
469 	 * the lock and ask all other cpus running this address space
470 	 * to run tsb_context_switch() to see the new TSB table.
471 	 */
472 	spin_lock_irqsave(&mm->context.lock, flags);
473 
474 	old_tsb = mm->context.tsb_block[tsb_index].tsb;
475 	old_cache_index =
476 		(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
477 	old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
478 		    sizeof(struct tsb));
479 
480 
481 	/* Handle multiple threads trying to grow the TSB at the same time.
482 	 * One will get in here first, and bump the size and the RSS limit.
483 	 * The others will get in here next and hit this check.
484 	 */
485 	if (unlikely(old_tsb &&
486 		     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
487 		spin_unlock_irqrestore(&mm->context.lock, flags);
488 
489 		kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
490 		return;
491 	}
492 
493 	mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
494 
495 	if (old_tsb) {
496 		extern void copy_tsb(unsigned long old_tsb_base,
497 				     unsigned long old_tsb_size,
498 				     unsigned long new_tsb_base,
499 				     unsigned long new_tsb_size);
500 		unsigned long old_tsb_base = (unsigned long) old_tsb;
501 		unsigned long new_tsb_base = (unsigned long) new_tsb;
502 
503 		if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
504 			old_tsb_base = __pa(old_tsb_base);
505 			new_tsb_base = __pa(new_tsb_base);
506 		}
507 		copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
508 	}
509 
510 	mm->context.tsb_block[tsb_index].tsb = new_tsb;
511 	setup_tsb_params(mm, tsb_index, new_size);
512 
513 	spin_unlock_irqrestore(&mm->context.lock, flags);
514 
515 	/* If old_tsb is NULL, we're being invoked for the first time
516 	 * from init_new_context().
517 	 */
518 	if (old_tsb) {
519 		/* Reload it on the local cpu.  */
520 		tsb_context_switch(mm);
521 
522 		/* Now force other processors to do the same.  */
523 		preempt_disable();
524 		smp_tsb_sync(mm);
525 		preempt_enable();
526 
527 		/* Now it is safe to free the old tsb.  */
528 		kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
529 	}
530 }
531 
532 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
533 {
534 	unsigned long mm_rss = get_mm_rss(mm);
535 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
536 	unsigned long saved_hugetlb_pte_count;
537 	unsigned long saved_thp_pte_count;
538 #endif
539 	unsigned int i;
540 
541 	spin_lock_init(&mm->context.lock);
542 
543 	mm->context.sparc64_ctx_val = 0UL;
544 
545 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
546 	/* We reset them to zero because the fork() page copying
547 	 * will re-increment the counters as the parent PTEs are
548 	 * copied into the child address space.
549 	 */
550 	saved_hugetlb_pte_count = mm->context.hugetlb_pte_count;
551 	saved_thp_pte_count = mm->context.thp_pte_count;
552 	mm->context.hugetlb_pte_count = 0;
553 	mm->context.thp_pte_count = 0;
554 
555 	mm_rss -= saved_thp_pte_count * (HPAGE_SIZE / PAGE_SIZE);
556 #endif
557 
558 	/* copy_mm() copies over the parent's mm_struct before calling
559 	 * us, so we need to zero out the TSB pointer or else tsb_grow()
560 	 * will be confused and think there is an older TSB to free up.
561 	 */
562 	for (i = 0; i < MM_NUM_TSBS; i++)
563 		mm->context.tsb_block[i].tsb = NULL;
564 
565 	/* If this is fork, inherit the parent's TSB size.  We would
566 	 * grow it to that size on the first page fault anyways.
567 	 */
568 	tsb_grow(mm, MM_TSB_BASE, mm_rss);
569 
570 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
571 	if (unlikely(saved_hugetlb_pte_count + saved_thp_pte_count))
572 		tsb_grow(mm, MM_TSB_HUGE,
573 			 (saved_hugetlb_pte_count + saved_thp_pte_count) *
574 			 REAL_HPAGE_PER_HPAGE);
575 #endif
576 
577 	if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
578 		return -ENOMEM;
579 
580 	return 0;
581 }
582 
583 static void tsb_destroy_one(struct tsb_config *tp)
584 {
585 	unsigned long cache_index;
586 
587 	if (!tp->tsb)
588 		return;
589 	cache_index = tp->tsb_reg_val & 0x7UL;
590 	kmem_cache_free(tsb_caches[cache_index], tp->tsb);
591 	tp->tsb = NULL;
592 	tp->tsb_reg_val = 0UL;
593 }
594 
595 void destroy_context(struct mm_struct *mm)
596 {
597 	unsigned long flags, i;
598 
599 	for (i = 0; i < MM_NUM_TSBS; i++)
600 		tsb_destroy_one(&mm->context.tsb_block[i]);
601 
602 	spin_lock_irqsave(&ctx_alloc_lock, flags);
603 
604 	if (CTX_VALID(mm->context)) {
605 		unsigned long nr = CTX_NRBITS(mm->context);
606 		mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
607 	}
608 
609 	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
610 }
611