xref: /openbmc/linux/arch/sparc/mm/tsb.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* arch/sparc64/mm/tsb.c
3  *
4  * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/preempt.h>
9 #include <linux/slab.h>
10 #include <linux/mm_types.h>
11 #include <linux/pgtable.h>
12 
13 #include <asm/page.h>
14 #include <asm/mmu_context.h>
15 #include <asm/setup.h>
16 #include <asm/tsb.h>
17 #include <asm/tlb.h>
18 #include <asm/oplib.h>
19 
20 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
21 
22 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
23 {
24 	vaddr >>= hash_shift;
25 	return vaddr & (nentries - 1);
26 }
27 
28 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
29 {
30 	return (tag == (vaddr >> 22));
31 }
32 
33 static void flush_tsb_kernel_range_scan(unsigned long start, unsigned long end)
34 {
35 	unsigned long idx;
36 
37 	for (idx = 0; idx < KERNEL_TSB_NENTRIES; idx++) {
38 		struct tsb *ent = &swapper_tsb[idx];
39 		unsigned long match = idx << 13;
40 
41 		match |= (ent->tag << 22);
42 		if (match >= start && match < end)
43 			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
44 	}
45 }
46 
47 /* TSB flushes need only occur on the processor initiating the address
48  * space modification, not on each cpu the address space has run on.
49  * Only the TLB flush needs that treatment.
50  */
51 
52 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
53 {
54 	unsigned long v;
55 
56 	if ((end - start) >> PAGE_SHIFT >= 2 * KERNEL_TSB_NENTRIES)
57 		return flush_tsb_kernel_range_scan(start, end);
58 
59 	for (v = start; v < end; v += PAGE_SIZE) {
60 		unsigned long hash = tsb_hash(v, PAGE_SHIFT,
61 					      KERNEL_TSB_NENTRIES);
62 		struct tsb *ent = &swapper_tsb[hash];
63 
64 		if (tag_compare(ent->tag, v))
65 			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
66 	}
67 }
68 
69 static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
70 				  unsigned long hash_shift,
71 				  unsigned long nentries)
72 {
73 	unsigned long tag, ent, hash;
74 
75 	v &= ~0x1UL;
76 	hash = tsb_hash(v, hash_shift, nentries);
77 	ent = tsb + (hash * sizeof(struct tsb));
78 	tag = (v >> 22UL);
79 
80 	tsb_flush(ent, tag);
81 }
82 
83 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
84 			    unsigned long tsb, unsigned long nentries)
85 {
86 	unsigned long i;
87 
88 	for (i = 0; i < tb->tlb_nr; i++)
89 		__flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
90 }
91 
92 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
93 static void __flush_huge_tsb_one_entry(unsigned long tsb, unsigned long v,
94 				       unsigned long hash_shift,
95 				       unsigned long nentries,
96 				       unsigned int hugepage_shift)
97 {
98 	unsigned int hpage_entries;
99 	unsigned int i;
100 
101 	hpage_entries = 1 << (hugepage_shift - hash_shift);
102 	for (i = 0; i < hpage_entries; i++)
103 		__flush_tsb_one_entry(tsb, v + (i << hash_shift), hash_shift,
104 				      nentries);
105 }
106 
107 static void __flush_huge_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
108 				 unsigned long tsb, unsigned long nentries,
109 				 unsigned int hugepage_shift)
110 {
111 	unsigned long i;
112 
113 	for (i = 0; i < tb->tlb_nr; i++)
114 		__flush_huge_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift,
115 					   nentries, hugepage_shift);
116 }
117 #endif
118 
119 void flush_tsb_user(struct tlb_batch *tb)
120 {
121 	struct mm_struct *mm = tb->mm;
122 	unsigned long nentries, base, flags;
123 
124 	spin_lock_irqsave(&mm->context.lock, flags);
125 
126 	if (tb->hugepage_shift < REAL_HPAGE_SHIFT) {
127 		base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
128 		nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
129 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
130 			base = __pa(base);
131 		if (tb->hugepage_shift == PAGE_SHIFT)
132 			__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
133 #if defined(CONFIG_HUGETLB_PAGE)
134 		else
135 			__flush_huge_tsb_one(tb, PAGE_SHIFT, base, nentries,
136 					     tb->hugepage_shift);
137 #endif
138 	}
139 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
140 	else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
141 		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
142 		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
143 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
144 			base = __pa(base);
145 		__flush_huge_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries,
146 				     tb->hugepage_shift);
147 	}
148 #endif
149 	spin_unlock_irqrestore(&mm->context.lock, flags);
150 }
151 
152 void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr,
153 			 unsigned int hugepage_shift)
154 {
155 	unsigned long nentries, base, flags;
156 
157 	spin_lock_irqsave(&mm->context.lock, flags);
158 
159 	if (hugepage_shift < REAL_HPAGE_SHIFT) {
160 		base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
161 		nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
162 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
163 			base = __pa(base);
164 		if (hugepage_shift == PAGE_SHIFT)
165 			__flush_tsb_one_entry(base, vaddr, PAGE_SHIFT,
166 					      nentries);
167 #if defined(CONFIG_HUGETLB_PAGE)
168 		else
169 			__flush_huge_tsb_one_entry(base, vaddr, PAGE_SHIFT,
170 						   nentries, hugepage_shift);
171 #endif
172 	}
173 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
174 	else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
175 		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
176 		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
177 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
178 			base = __pa(base);
179 		__flush_huge_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT,
180 					   nentries, hugepage_shift);
181 	}
182 #endif
183 	spin_unlock_irqrestore(&mm->context.lock, flags);
184 }
185 
186 #define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_8K
187 #define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_8K
188 
189 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
190 #define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_4MB
191 #define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_4MB
192 #endif
193 
194 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
195 {
196 	unsigned long tsb_reg, base, tsb_paddr;
197 	unsigned long page_sz, tte;
198 
199 	mm->context.tsb_block[tsb_idx].tsb_nentries =
200 		tsb_bytes / sizeof(struct tsb);
201 
202 	switch (tsb_idx) {
203 	case MM_TSB_BASE:
204 		base = TSBMAP_8K_BASE;
205 		break;
206 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
207 	case MM_TSB_HUGE:
208 		base = TSBMAP_4M_BASE;
209 		break;
210 #endif
211 	default:
212 		BUG();
213 	}
214 
215 	tte = pgprot_val(PAGE_KERNEL_LOCKED);
216 	tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
217 	BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
218 
219 	/* Use the smallest page size that can map the whole TSB
220 	 * in one TLB entry.
221 	 */
222 	switch (tsb_bytes) {
223 	case 8192 << 0:
224 		tsb_reg = 0x0UL;
225 #ifdef DCACHE_ALIASING_POSSIBLE
226 		base += (tsb_paddr & 8192);
227 #endif
228 		page_sz = 8192;
229 		break;
230 
231 	case 8192 << 1:
232 		tsb_reg = 0x1UL;
233 		page_sz = 64 * 1024;
234 		break;
235 
236 	case 8192 << 2:
237 		tsb_reg = 0x2UL;
238 		page_sz = 64 * 1024;
239 		break;
240 
241 	case 8192 << 3:
242 		tsb_reg = 0x3UL;
243 		page_sz = 64 * 1024;
244 		break;
245 
246 	case 8192 << 4:
247 		tsb_reg = 0x4UL;
248 		page_sz = 512 * 1024;
249 		break;
250 
251 	case 8192 << 5:
252 		tsb_reg = 0x5UL;
253 		page_sz = 512 * 1024;
254 		break;
255 
256 	case 8192 << 6:
257 		tsb_reg = 0x6UL;
258 		page_sz = 512 * 1024;
259 		break;
260 
261 	case 8192 << 7:
262 		tsb_reg = 0x7UL;
263 		page_sz = 4 * 1024 * 1024;
264 		break;
265 
266 	default:
267 		printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
268 		       current->comm, current->pid, tsb_bytes);
269 		do_exit(SIGSEGV);
270 	}
271 	tte |= pte_sz_bits(page_sz);
272 
273 	if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
274 		/* Physical mapping, no locked TLB entry for TSB.  */
275 		tsb_reg |= tsb_paddr;
276 
277 		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
278 		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
279 		mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
280 	} else {
281 		tsb_reg |= base;
282 		tsb_reg |= (tsb_paddr & (page_sz - 1UL));
283 		tte |= (tsb_paddr & ~(page_sz - 1UL));
284 
285 		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
286 		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
287 		mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
288 	}
289 
290 	/* Setup the Hypervisor TSB descriptor.  */
291 	if (tlb_type == hypervisor) {
292 		struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
293 
294 		switch (tsb_idx) {
295 		case MM_TSB_BASE:
296 			hp->pgsz_idx = HV_PGSZ_IDX_BASE;
297 			break;
298 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
299 		case MM_TSB_HUGE:
300 			hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
301 			break;
302 #endif
303 		default:
304 			BUG();
305 		}
306 		hp->assoc = 1;
307 		hp->num_ttes = tsb_bytes / 16;
308 		hp->ctx_idx = 0;
309 		switch (tsb_idx) {
310 		case MM_TSB_BASE:
311 			hp->pgsz_mask = HV_PGSZ_MASK_BASE;
312 			break;
313 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
314 		case MM_TSB_HUGE:
315 			hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
316 			break;
317 #endif
318 		default:
319 			BUG();
320 		}
321 		hp->tsb_base = tsb_paddr;
322 		hp->resv = 0;
323 	}
324 }
325 
326 struct kmem_cache *pgtable_cache __read_mostly;
327 
328 static struct kmem_cache *tsb_caches[8] __read_mostly;
329 
330 static const char *tsb_cache_names[8] = {
331 	"tsb_8KB",
332 	"tsb_16KB",
333 	"tsb_32KB",
334 	"tsb_64KB",
335 	"tsb_128KB",
336 	"tsb_256KB",
337 	"tsb_512KB",
338 	"tsb_1MB",
339 };
340 
341 void __init pgtable_cache_init(void)
342 {
343 	unsigned long i;
344 
345 	pgtable_cache = kmem_cache_create("pgtable_cache",
346 					  PAGE_SIZE, PAGE_SIZE,
347 					  0,
348 					  _clear_page);
349 	if (!pgtable_cache) {
350 		prom_printf("pgtable_cache_init(): Could not create!\n");
351 		prom_halt();
352 	}
353 
354 	for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
355 		unsigned long size = 8192 << i;
356 		const char *name = tsb_cache_names[i];
357 
358 		tsb_caches[i] = kmem_cache_create(name,
359 						  size, size,
360 						  0, NULL);
361 		if (!tsb_caches[i]) {
362 			prom_printf("Could not create %s cache\n", name);
363 			prom_halt();
364 		}
365 	}
366 }
367 
368 int sysctl_tsb_ratio = -2;
369 
370 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
371 {
372 	unsigned long num_ents = (new_size / sizeof(struct tsb));
373 
374 	if (sysctl_tsb_ratio < 0)
375 		return num_ents - (num_ents >> -sysctl_tsb_ratio);
376 	else
377 		return num_ents + (num_ents >> sysctl_tsb_ratio);
378 }
379 
380 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
381  * do_sparc64_fault() invokes this routine to try and grow it.
382  *
383  * When we reach the maximum TSB size supported, we stick ~0UL into
384  * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
385  * will not trigger any longer.
386  *
387  * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
388  * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
389  * must be 512K aligned.  It also must be physically contiguous, so we
390  * cannot use vmalloc().
391  *
392  * The idea here is to grow the TSB when the RSS of the process approaches
393  * the number of entries that the current TSB can hold at once.  Currently,
394  * we trigger when the RSS hits 3/4 of the TSB capacity.
395  */
396 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
397 {
398 	unsigned long max_tsb_size = 1 * 1024 * 1024;
399 	unsigned long new_size, old_size, flags;
400 	struct tsb *old_tsb, *new_tsb;
401 	unsigned long new_cache_index, old_cache_index;
402 	unsigned long new_rss_limit;
403 	gfp_t gfp_flags;
404 
405 	if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
406 		max_tsb_size = (PAGE_SIZE << MAX_ORDER);
407 
408 	new_cache_index = 0;
409 	for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
410 		new_rss_limit = tsb_size_to_rss_limit(new_size);
411 		if (new_rss_limit > rss)
412 			break;
413 		new_cache_index++;
414 	}
415 
416 	if (new_size == max_tsb_size)
417 		new_rss_limit = ~0UL;
418 
419 retry_tsb_alloc:
420 	gfp_flags = GFP_KERNEL;
421 	if (new_size > (PAGE_SIZE * 2))
422 		gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
423 
424 	new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
425 					gfp_flags, numa_node_id());
426 	if (unlikely(!new_tsb)) {
427 		/* Not being able to fork due to a high-order TSB
428 		 * allocation failure is very bad behavior.  Just back
429 		 * down to a 0-order allocation and force no TSB
430 		 * growing for this address space.
431 		 */
432 		if (mm->context.tsb_block[tsb_index].tsb == NULL &&
433 		    new_cache_index > 0) {
434 			new_cache_index = 0;
435 			new_size = 8192;
436 			new_rss_limit = ~0UL;
437 			goto retry_tsb_alloc;
438 		}
439 
440 		/* If we failed on a TSB grow, we are under serious
441 		 * memory pressure so don't try to grow any more.
442 		 */
443 		if (mm->context.tsb_block[tsb_index].tsb != NULL)
444 			mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
445 		return;
446 	}
447 
448 	/* Mark all tags as invalid.  */
449 	tsb_init(new_tsb, new_size);
450 
451 	/* Ok, we are about to commit the changes.  If we are
452 	 * growing an existing TSB the locking is very tricky,
453 	 * so WATCH OUT!
454 	 *
455 	 * We have to hold mm->context.lock while committing to the
456 	 * new TSB, this synchronizes us with processors in
457 	 * flush_tsb_user() and switch_mm() for this address space.
458 	 *
459 	 * But even with that lock held, processors run asynchronously
460 	 * accessing the old TSB via TLB miss handling.  This is OK
461 	 * because those actions are just propagating state from the
462 	 * Linux page tables into the TSB, page table mappings are not
463 	 * being changed.  If a real fault occurs, the processor will
464 	 * synchronize with us when it hits flush_tsb_user(), this is
465 	 * also true for the case where vmscan is modifying the page
466 	 * tables.  The only thing we need to be careful with is to
467 	 * skip any locked TSB entries during copy_tsb().
468 	 *
469 	 * When we finish committing to the new TSB, we have to drop
470 	 * the lock and ask all other cpus running this address space
471 	 * to run tsb_context_switch() to see the new TSB table.
472 	 */
473 	spin_lock_irqsave(&mm->context.lock, flags);
474 
475 	old_tsb = mm->context.tsb_block[tsb_index].tsb;
476 	old_cache_index =
477 		(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
478 	old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
479 		    sizeof(struct tsb));
480 
481 
482 	/* Handle multiple threads trying to grow the TSB at the same time.
483 	 * One will get in here first, and bump the size and the RSS limit.
484 	 * The others will get in here next and hit this check.
485 	 */
486 	if (unlikely(old_tsb &&
487 		     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
488 		spin_unlock_irqrestore(&mm->context.lock, flags);
489 
490 		kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
491 		return;
492 	}
493 
494 	mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
495 
496 	if (old_tsb) {
497 		extern void copy_tsb(unsigned long old_tsb_base,
498 				     unsigned long old_tsb_size,
499 				     unsigned long new_tsb_base,
500 				     unsigned long new_tsb_size,
501 				     unsigned long page_size_shift);
502 		unsigned long old_tsb_base = (unsigned long) old_tsb;
503 		unsigned long new_tsb_base = (unsigned long) new_tsb;
504 
505 		if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
506 			old_tsb_base = __pa(old_tsb_base);
507 			new_tsb_base = __pa(new_tsb_base);
508 		}
509 		copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size,
510 			tsb_index == MM_TSB_BASE ?
511 			PAGE_SHIFT : REAL_HPAGE_SHIFT);
512 	}
513 
514 	mm->context.tsb_block[tsb_index].tsb = new_tsb;
515 	setup_tsb_params(mm, tsb_index, new_size);
516 
517 	spin_unlock_irqrestore(&mm->context.lock, flags);
518 
519 	/* If old_tsb is NULL, we're being invoked for the first time
520 	 * from init_new_context().
521 	 */
522 	if (old_tsb) {
523 		/* Reload it on the local cpu.  */
524 		tsb_context_switch(mm);
525 
526 		/* Now force other processors to do the same.  */
527 		preempt_disable();
528 		smp_tsb_sync(mm);
529 		preempt_enable();
530 
531 		/* Now it is safe to free the old tsb.  */
532 		kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
533 	}
534 }
535 
536 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
537 {
538 	unsigned long mm_rss = get_mm_rss(mm);
539 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
540 	unsigned long saved_hugetlb_pte_count;
541 	unsigned long saved_thp_pte_count;
542 #endif
543 	unsigned int i;
544 
545 	spin_lock_init(&mm->context.lock);
546 
547 	mm->context.sparc64_ctx_val = 0UL;
548 
549 	mm->context.tag_store = NULL;
550 	spin_lock_init(&mm->context.tag_lock);
551 
552 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
553 	/* We reset them to zero because the fork() page copying
554 	 * will re-increment the counters as the parent PTEs are
555 	 * copied into the child address space.
556 	 */
557 	saved_hugetlb_pte_count = mm->context.hugetlb_pte_count;
558 	saved_thp_pte_count = mm->context.thp_pte_count;
559 	mm->context.hugetlb_pte_count = 0;
560 	mm->context.thp_pte_count = 0;
561 
562 	mm_rss -= saved_thp_pte_count * (HPAGE_SIZE / PAGE_SIZE);
563 #endif
564 
565 	/* copy_mm() copies over the parent's mm_struct before calling
566 	 * us, so we need to zero out the TSB pointer or else tsb_grow()
567 	 * will be confused and think there is an older TSB to free up.
568 	 */
569 	for (i = 0; i < MM_NUM_TSBS; i++)
570 		mm->context.tsb_block[i].tsb = NULL;
571 
572 	/* If this is fork, inherit the parent's TSB size.  We would
573 	 * grow it to that size on the first page fault anyways.
574 	 */
575 	tsb_grow(mm, MM_TSB_BASE, mm_rss);
576 
577 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
578 	if (unlikely(saved_hugetlb_pte_count + saved_thp_pte_count))
579 		tsb_grow(mm, MM_TSB_HUGE,
580 			 (saved_hugetlb_pte_count + saved_thp_pte_count) *
581 			 REAL_HPAGE_PER_HPAGE);
582 #endif
583 
584 	if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
585 		return -ENOMEM;
586 
587 	return 0;
588 }
589 
590 static void tsb_destroy_one(struct tsb_config *tp)
591 {
592 	unsigned long cache_index;
593 
594 	if (!tp->tsb)
595 		return;
596 	cache_index = tp->tsb_reg_val & 0x7UL;
597 	kmem_cache_free(tsb_caches[cache_index], tp->tsb);
598 	tp->tsb = NULL;
599 	tp->tsb_reg_val = 0UL;
600 }
601 
602 void destroy_context(struct mm_struct *mm)
603 {
604 	unsigned long flags, i;
605 
606 	for (i = 0; i < MM_NUM_TSBS; i++)
607 		tsb_destroy_one(&mm->context.tsb_block[i]);
608 
609 	spin_lock_irqsave(&ctx_alloc_lock, flags);
610 
611 	if (CTX_VALID(mm->context)) {
612 		unsigned long nr = CTX_NRBITS(mm->context);
613 		mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
614 	}
615 
616 	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
617 
618 	/* If ADI tag storage was allocated for this task, free it */
619 	if (mm->context.tag_store) {
620 		tag_storage_desc_t *tag_desc;
621 		unsigned long max_desc;
622 		unsigned char *tags;
623 
624 		tag_desc = mm->context.tag_store;
625 		max_desc = PAGE_SIZE/sizeof(tag_storage_desc_t);
626 		for (i = 0; i < max_desc; i++) {
627 			tags = tag_desc->tags;
628 			tag_desc->tags = NULL;
629 			kfree(tags);
630 			tag_desc++;
631 		}
632 		kfree(mm->context.tag_store);
633 		mm->context.tag_store = NULL;
634 	}
635 }
636