xref: /openbmc/linux/arch/sparc/mm/tsb.c (revision d78c317f)
1 /* arch/sparc64/mm/tsb.c
2  *
3  * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <asm/system.h>
10 #include <asm/page.h>
11 #include <asm/tlbflush.h>
12 #include <asm/tlb.h>
13 #include <asm/mmu_context.h>
14 #include <asm/pgtable.h>
15 #include <asm/tsb.h>
16 #include <asm/oplib.h>
17 
18 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
19 
20 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
21 {
22 	vaddr >>= hash_shift;
23 	return vaddr & (nentries - 1);
24 }
25 
26 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
27 {
28 	return (tag == (vaddr >> 22));
29 }
30 
31 /* TSB flushes need only occur on the processor initiating the address
32  * space modification, not on each cpu the address space has run on.
33  * Only the TLB flush needs that treatment.
34  */
35 
36 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
37 {
38 	unsigned long v;
39 
40 	for (v = start; v < end; v += PAGE_SIZE) {
41 		unsigned long hash = tsb_hash(v, PAGE_SHIFT,
42 					      KERNEL_TSB_NENTRIES);
43 		struct tsb *ent = &swapper_tsb[hash];
44 
45 		if (tag_compare(ent->tag, v))
46 			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
47 	}
48 }
49 
50 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
51 			    unsigned long tsb, unsigned long nentries)
52 {
53 	unsigned long i;
54 
55 	for (i = 0; i < tb->tlb_nr; i++) {
56 		unsigned long v = tb->vaddrs[i];
57 		unsigned long tag, ent, hash;
58 
59 		v &= ~0x1UL;
60 
61 		hash = tsb_hash(v, hash_shift, nentries);
62 		ent = tsb + (hash * sizeof(struct tsb));
63 		tag = (v >> 22UL);
64 
65 		tsb_flush(ent, tag);
66 	}
67 }
68 
69 void flush_tsb_user(struct tlb_batch *tb)
70 {
71 	struct mm_struct *mm = tb->mm;
72 	unsigned long nentries, base, flags;
73 
74 	spin_lock_irqsave(&mm->context.lock, flags);
75 
76 	base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
77 	nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
78 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
79 		base = __pa(base);
80 	__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
81 
82 #ifdef CONFIG_HUGETLB_PAGE
83 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
84 		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
85 		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
86 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
87 			base = __pa(base);
88 		__flush_tsb_one(tb, HPAGE_SHIFT, base, nentries);
89 	}
90 #endif
91 	spin_unlock_irqrestore(&mm->context.lock, flags);
92 }
93 
94 #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
95 #define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_8K
96 #define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_8K
97 #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
98 #define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_64K
99 #define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_64K
100 #else
101 #error Broken base page size setting...
102 #endif
103 
104 #ifdef CONFIG_HUGETLB_PAGE
105 #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
106 #define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_64K
107 #define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_64K
108 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
109 #define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_512K
110 #define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_512K
111 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
112 #define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_4MB
113 #define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_4MB
114 #else
115 #error Broken huge page size setting...
116 #endif
117 #endif
118 
119 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
120 {
121 	unsigned long tsb_reg, base, tsb_paddr;
122 	unsigned long page_sz, tte;
123 
124 	mm->context.tsb_block[tsb_idx].tsb_nentries =
125 		tsb_bytes / sizeof(struct tsb);
126 
127 	base = TSBMAP_BASE;
128 	tte = pgprot_val(PAGE_KERNEL_LOCKED);
129 	tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
130 	BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
131 
132 	/* Use the smallest page size that can map the whole TSB
133 	 * in one TLB entry.
134 	 */
135 	switch (tsb_bytes) {
136 	case 8192 << 0:
137 		tsb_reg = 0x0UL;
138 #ifdef DCACHE_ALIASING_POSSIBLE
139 		base += (tsb_paddr & 8192);
140 #endif
141 		page_sz = 8192;
142 		break;
143 
144 	case 8192 << 1:
145 		tsb_reg = 0x1UL;
146 		page_sz = 64 * 1024;
147 		break;
148 
149 	case 8192 << 2:
150 		tsb_reg = 0x2UL;
151 		page_sz = 64 * 1024;
152 		break;
153 
154 	case 8192 << 3:
155 		tsb_reg = 0x3UL;
156 		page_sz = 64 * 1024;
157 		break;
158 
159 	case 8192 << 4:
160 		tsb_reg = 0x4UL;
161 		page_sz = 512 * 1024;
162 		break;
163 
164 	case 8192 << 5:
165 		tsb_reg = 0x5UL;
166 		page_sz = 512 * 1024;
167 		break;
168 
169 	case 8192 << 6:
170 		tsb_reg = 0x6UL;
171 		page_sz = 512 * 1024;
172 		break;
173 
174 	case 8192 << 7:
175 		tsb_reg = 0x7UL;
176 		page_sz = 4 * 1024 * 1024;
177 		break;
178 
179 	default:
180 		printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
181 		       current->comm, current->pid, tsb_bytes);
182 		do_exit(SIGSEGV);
183 	}
184 	tte |= pte_sz_bits(page_sz);
185 
186 	if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
187 		/* Physical mapping, no locked TLB entry for TSB.  */
188 		tsb_reg |= tsb_paddr;
189 
190 		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
191 		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
192 		mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
193 	} else {
194 		tsb_reg |= base;
195 		tsb_reg |= (tsb_paddr & (page_sz - 1UL));
196 		tte |= (tsb_paddr & ~(page_sz - 1UL));
197 
198 		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
199 		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
200 		mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
201 	}
202 
203 	/* Setup the Hypervisor TSB descriptor.  */
204 	if (tlb_type == hypervisor) {
205 		struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
206 
207 		switch (tsb_idx) {
208 		case MM_TSB_BASE:
209 			hp->pgsz_idx = HV_PGSZ_IDX_BASE;
210 			break;
211 #ifdef CONFIG_HUGETLB_PAGE
212 		case MM_TSB_HUGE:
213 			hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
214 			break;
215 #endif
216 		default:
217 			BUG();
218 		}
219 		hp->assoc = 1;
220 		hp->num_ttes = tsb_bytes / 16;
221 		hp->ctx_idx = 0;
222 		switch (tsb_idx) {
223 		case MM_TSB_BASE:
224 			hp->pgsz_mask = HV_PGSZ_MASK_BASE;
225 			break;
226 #ifdef CONFIG_HUGETLB_PAGE
227 		case MM_TSB_HUGE:
228 			hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
229 			break;
230 #endif
231 		default:
232 			BUG();
233 		}
234 		hp->tsb_base = tsb_paddr;
235 		hp->resv = 0;
236 	}
237 }
238 
239 struct kmem_cache *pgtable_cache __read_mostly;
240 
241 static struct kmem_cache *tsb_caches[8] __read_mostly;
242 
243 static const char *tsb_cache_names[8] = {
244 	"tsb_8KB",
245 	"tsb_16KB",
246 	"tsb_32KB",
247 	"tsb_64KB",
248 	"tsb_128KB",
249 	"tsb_256KB",
250 	"tsb_512KB",
251 	"tsb_1MB",
252 };
253 
254 void __init pgtable_cache_init(void)
255 {
256 	unsigned long i;
257 
258 	pgtable_cache = kmem_cache_create("pgtable_cache",
259 					  PAGE_SIZE, PAGE_SIZE,
260 					  0,
261 					  _clear_page);
262 	if (!pgtable_cache) {
263 		prom_printf("pgtable_cache_init(): Could not create!\n");
264 		prom_halt();
265 	}
266 
267 	for (i = 0; i < 8; i++) {
268 		unsigned long size = 8192 << i;
269 		const char *name = tsb_cache_names[i];
270 
271 		tsb_caches[i] = kmem_cache_create(name,
272 						  size, size,
273 						  0, NULL);
274 		if (!tsb_caches[i]) {
275 			prom_printf("Could not create %s cache\n", name);
276 			prom_halt();
277 		}
278 	}
279 }
280 
281 int sysctl_tsb_ratio = -2;
282 
283 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
284 {
285 	unsigned long num_ents = (new_size / sizeof(struct tsb));
286 
287 	if (sysctl_tsb_ratio < 0)
288 		return num_ents - (num_ents >> -sysctl_tsb_ratio);
289 	else
290 		return num_ents + (num_ents >> sysctl_tsb_ratio);
291 }
292 
293 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
294  * do_sparc64_fault() invokes this routine to try and grow it.
295  *
296  * When we reach the maximum TSB size supported, we stick ~0UL into
297  * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
298  * will not trigger any longer.
299  *
300  * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
301  * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
302  * must be 512K aligned.  It also must be physically contiguous, so we
303  * cannot use vmalloc().
304  *
305  * The idea here is to grow the TSB when the RSS of the process approaches
306  * the number of entries that the current TSB can hold at once.  Currently,
307  * we trigger when the RSS hits 3/4 of the TSB capacity.
308  */
309 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
310 {
311 	unsigned long max_tsb_size = 1 * 1024 * 1024;
312 	unsigned long new_size, old_size, flags;
313 	struct tsb *old_tsb, *new_tsb;
314 	unsigned long new_cache_index, old_cache_index;
315 	unsigned long new_rss_limit;
316 	gfp_t gfp_flags;
317 
318 	if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
319 		max_tsb_size = (PAGE_SIZE << MAX_ORDER);
320 
321 	new_cache_index = 0;
322 	for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
323 		new_rss_limit = tsb_size_to_rss_limit(new_size);
324 		if (new_rss_limit > rss)
325 			break;
326 		new_cache_index++;
327 	}
328 
329 	if (new_size == max_tsb_size)
330 		new_rss_limit = ~0UL;
331 
332 retry_tsb_alloc:
333 	gfp_flags = GFP_KERNEL;
334 	if (new_size > (PAGE_SIZE * 2))
335 		gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
336 
337 	new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
338 					gfp_flags, numa_node_id());
339 	if (unlikely(!new_tsb)) {
340 		/* Not being able to fork due to a high-order TSB
341 		 * allocation failure is very bad behavior.  Just back
342 		 * down to a 0-order allocation and force no TSB
343 		 * growing for this address space.
344 		 */
345 		if (mm->context.tsb_block[tsb_index].tsb == NULL &&
346 		    new_cache_index > 0) {
347 			new_cache_index = 0;
348 			new_size = 8192;
349 			new_rss_limit = ~0UL;
350 			goto retry_tsb_alloc;
351 		}
352 
353 		/* If we failed on a TSB grow, we are under serious
354 		 * memory pressure so don't try to grow any more.
355 		 */
356 		if (mm->context.tsb_block[tsb_index].tsb != NULL)
357 			mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
358 		return;
359 	}
360 
361 	/* Mark all tags as invalid.  */
362 	tsb_init(new_tsb, new_size);
363 
364 	/* Ok, we are about to commit the changes.  If we are
365 	 * growing an existing TSB the locking is very tricky,
366 	 * so WATCH OUT!
367 	 *
368 	 * We have to hold mm->context.lock while committing to the
369 	 * new TSB, this synchronizes us with processors in
370 	 * flush_tsb_user() and switch_mm() for this address space.
371 	 *
372 	 * But even with that lock held, processors run asynchronously
373 	 * accessing the old TSB via TLB miss handling.  This is OK
374 	 * because those actions are just propagating state from the
375 	 * Linux page tables into the TSB, page table mappings are not
376 	 * being changed.  If a real fault occurs, the processor will
377 	 * synchronize with us when it hits flush_tsb_user(), this is
378 	 * also true for the case where vmscan is modifying the page
379 	 * tables.  The only thing we need to be careful with is to
380 	 * skip any locked TSB entries during copy_tsb().
381 	 *
382 	 * When we finish committing to the new TSB, we have to drop
383 	 * the lock and ask all other cpus running this address space
384 	 * to run tsb_context_switch() to see the new TSB table.
385 	 */
386 	spin_lock_irqsave(&mm->context.lock, flags);
387 
388 	old_tsb = mm->context.tsb_block[tsb_index].tsb;
389 	old_cache_index =
390 		(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
391 	old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
392 		    sizeof(struct tsb));
393 
394 
395 	/* Handle multiple threads trying to grow the TSB at the same time.
396 	 * One will get in here first, and bump the size and the RSS limit.
397 	 * The others will get in here next and hit this check.
398 	 */
399 	if (unlikely(old_tsb &&
400 		     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
401 		spin_unlock_irqrestore(&mm->context.lock, flags);
402 
403 		kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
404 		return;
405 	}
406 
407 	mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
408 
409 	if (old_tsb) {
410 		extern void copy_tsb(unsigned long old_tsb_base,
411 				     unsigned long old_tsb_size,
412 				     unsigned long new_tsb_base,
413 				     unsigned long new_tsb_size);
414 		unsigned long old_tsb_base = (unsigned long) old_tsb;
415 		unsigned long new_tsb_base = (unsigned long) new_tsb;
416 
417 		if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
418 			old_tsb_base = __pa(old_tsb_base);
419 			new_tsb_base = __pa(new_tsb_base);
420 		}
421 		copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
422 	}
423 
424 	mm->context.tsb_block[tsb_index].tsb = new_tsb;
425 	setup_tsb_params(mm, tsb_index, new_size);
426 
427 	spin_unlock_irqrestore(&mm->context.lock, flags);
428 
429 	/* If old_tsb is NULL, we're being invoked for the first time
430 	 * from init_new_context().
431 	 */
432 	if (old_tsb) {
433 		/* Reload it on the local cpu.  */
434 		tsb_context_switch(mm);
435 
436 		/* Now force other processors to do the same.  */
437 		preempt_disable();
438 		smp_tsb_sync(mm);
439 		preempt_enable();
440 
441 		/* Now it is safe to free the old tsb.  */
442 		kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
443 	}
444 }
445 
446 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
447 {
448 #ifdef CONFIG_HUGETLB_PAGE
449 	unsigned long huge_pte_count;
450 #endif
451 	unsigned int i;
452 
453 	spin_lock_init(&mm->context.lock);
454 
455 	mm->context.sparc64_ctx_val = 0UL;
456 
457 #ifdef CONFIG_HUGETLB_PAGE
458 	/* We reset it to zero because the fork() page copying
459 	 * will re-increment the counters as the parent PTEs are
460 	 * copied into the child address space.
461 	 */
462 	huge_pte_count = mm->context.huge_pte_count;
463 	mm->context.huge_pte_count = 0;
464 #endif
465 
466 	/* copy_mm() copies over the parent's mm_struct before calling
467 	 * us, so we need to zero out the TSB pointer or else tsb_grow()
468 	 * will be confused and think there is an older TSB to free up.
469 	 */
470 	for (i = 0; i < MM_NUM_TSBS; i++)
471 		mm->context.tsb_block[i].tsb = NULL;
472 
473 	/* If this is fork, inherit the parent's TSB size.  We would
474 	 * grow it to that size on the first page fault anyways.
475 	 */
476 	tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
477 
478 #ifdef CONFIG_HUGETLB_PAGE
479 	if (unlikely(huge_pte_count))
480 		tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
481 #endif
482 
483 	if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
484 		return -ENOMEM;
485 
486 	return 0;
487 }
488 
489 static void tsb_destroy_one(struct tsb_config *tp)
490 {
491 	unsigned long cache_index;
492 
493 	if (!tp->tsb)
494 		return;
495 	cache_index = tp->tsb_reg_val & 0x7UL;
496 	kmem_cache_free(tsb_caches[cache_index], tp->tsb);
497 	tp->tsb = NULL;
498 	tp->tsb_reg_val = 0UL;
499 }
500 
501 void destroy_context(struct mm_struct *mm)
502 {
503 	unsigned long flags, i;
504 
505 	for (i = 0; i < MM_NUM_TSBS; i++)
506 		tsb_destroy_one(&mm->context.tsb_block[i]);
507 
508 	spin_lock_irqsave(&ctx_alloc_lock, flags);
509 
510 	if (CTX_VALID(mm->context)) {
511 		unsigned long nr = CTX_NRBITS(mm->context);
512 		mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
513 	}
514 
515 	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
516 }
517