xref: /openbmc/linux/arch/sparc/mm/tsb.c (revision b6dcefde)
1 /* arch/sparc64/mm/tsb.c
2  *
3  * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <asm/system.h>
9 #include <asm/page.h>
10 #include <asm/tlbflush.h>
11 #include <asm/tlb.h>
12 #include <asm/mmu_context.h>
13 #include <asm/pgtable.h>
14 #include <asm/tsb.h>
15 #include <asm/oplib.h>
16 
17 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
18 
19 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
20 {
21 	vaddr >>= hash_shift;
22 	return vaddr & (nentries - 1);
23 }
24 
25 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
26 {
27 	return (tag == (vaddr >> 22));
28 }
29 
30 /* TSB flushes need only occur on the processor initiating the address
31  * space modification, not on each cpu the address space has run on.
32  * Only the TLB flush needs that treatment.
33  */
34 
35 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
36 {
37 	unsigned long v;
38 
39 	for (v = start; v < end; v += PAGE_SIZE) {
40 		unsigned long hash = tsb_hash(v, PAGE_SHIFT,
41 					      KERNEL_TSB_NENTRIES);
42 		struct tsb *ent = &swapper_tsb[hash];
43 
44 		if (tag_compare(ent->tag, v))
45 			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
46 	}
47 }
48 
49 static void __flush_tsb_one(struct mmu_gather *mp, unsigned long hash_shift, unsigned long tsb, unsigned long nentries)
50 {
51 	unsigned long i;
52 
53 	for (i = 0; i < mp->tlb_nr; i++) {
54 		unsigned long v = mp->vaddrs[i];
55 		unsigned long tag, ent, hash;
56 
57 		v &= ~0x1UL;
58 
59 		hash = tsb_hash(v, hash_shift, nentries);
60 		ent = tsb + (hash * sizeof(struct tsb));
61 		tag = (v >> 22UL);
62 
63 		tsb_flush(ent, tag);
64 	}
65 }
66 
67 void flush_tsb_user(struct mmu_gather *mp)
68 {
69 	struct mm_struct *mm = mp->mm;
70 	unsigned long nentries, base, flags;
71 
72 	spin_lock_irqsave(&mm->context.lock, flags);
73 
74 	base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
75 	nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
76 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
77 		base = __pa(base);
78 	__flush_tsb_one(mp, PAGE_SHIFT, base, nentries);
79 
80 #ifdef CONFIG_HUGETLB_PAGE
81 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
82 		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
83 		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
84 		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
85 			base = __pa(base);
86 		__flush_tsb_one(mp, HPAGE_SHIFT, base, nentries);
87 	}
88 #endif
89 	spin_unlock_irqrestore(&mm->context.lock, flags);
90 }
91 
92 #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
93 #define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_8K
94 #define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_8K
95 #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
96 #define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_64K
97 #define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_64K
98 #else
99 #error Broken base page size setting...
100 #endif
101 
102 #ifdef CONFIG_HUGETLB_PAGE
103 #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
104 #define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_64K
105 #define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_64K
106 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
107 #define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_512K
108 #define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_512K
109 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
110 #define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_4MB
111 #define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_4MB
112 #else
113 #error Broken huge page size setting...
114 #endif
115 #endif
116 
117 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
118 {
119 	unsigned long tsb_reg, base, tsb_paddr;
120 	unsigned long page_sz, tte;
121 
122 	mm->context.tsb_block[tsb_idx].tsb_nentries =
123 		tsb_bytes / sizeof(struct tsb);
124 
125 	base = TSBMAP_BASE;
126 	tte = pgprot_val(PAGE_KERNEL_LOCKED);
127 	tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
128 	BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
129 
130 	/* Use the smallest page size that can map the whole TSB
131 	 * in one TLB entry.
132 	 */
133 	switch (tsb_bytes) {
134 	case 8192 << 0:
135 		tsb_reg = 0x0UL;
136 #ifdef DCACHE_ALIASING_POSSIBLE
137 		base += (tsb_paddr & 8192);
138 #endif
139 		page_sz = 8192;
140 		break;
141 
142 	case 8192 << 1:
143 		tsb_reg = 0x1UL;
144 		page_sz = 64 * 1024;
145 		break;
146 
147 	case 8192 << 2:
148 		tsb_reg = 0x2UL;
149 		page_sz = 64 * 1024;
150 		break;
151 
152 	case 8192 << 3:
153 		tsb_reg = 0x3UL;
154 		page_sz = 64 * 1024;
155 		break;
156 
157 	case 8192 << 4:
158 		tsb_reg = 0x4UL;
159 		page_sz = 512 * 1024;
160 		break;
161 
162 	case 8192 << 5:
163 		tsb_reg = 0x5UL;
164 		page_sz = 512 * 1024;
165 		break;
166 
167 	case 8192 << 6:
168 		tsb_reg = 0x6UL;
169 		page_sz = 512 * 1024;
170 		break;
171 
172 	case 8192 << 7:
173 		tsb_reg = 0x7UL;
174 		page_sz = 4 * 1024 * 1024;
175 		break;
176 
177 	default:
178 		printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
179 		       current->comm, current->pid, tsb_bytes);
180 		do_exit(SIGSEGV);
181 	};
182 	tte |= pte_sz_bits(page_sz);
183 
184 	if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
185 		/* Physical mapping, no locked TLB entry for TSB.  */
186 		tsb_reg |= tsb_paddr;
187 
188 		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
189 		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
190 		mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
191 	} else {
192 		tsb_reg |= base;
193 		tsb_reg |= (tsb_paddr & (page_sz - 1UL));
194 		tte |= (tsb_paddr & ~(page_sz - 1UL));
195 
196 		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
197 		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
198 		mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
199 	}
200 
201 	/* Setup the Hypervisor TSB descriptor.  */
202 	if (tlb_type == hypervisor) {
203 		struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
204 
205 		switch (tsb_idx) {
206 		case MM_TSB_BASE:
207 			hp->pgsz_idx = HV_PGSZ_IDX_BASE;
208 			break;
209 #ifdef CONFIG_HUGETLB_PAGE
210 		case MM_TSB_HUGE:
211 			hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
212 			break;
213 #endif
214 		default:
215 			BUG();
216 		};
217 		hp->assoc = 1;
218 		hp->num_ttes = tsb_bytes / 16;
219 		hp->ctx_idx = 0;
220 		switch (tsb_idx) {
221 		case MM_TSB_BASE:
222 			hp->pgsz_mask = HV_PGSZ_MASK_BASE;
223 			break;
224 #ifdef CONFIG_HUGETLB_PAGE
225 		case MM_TSB_HUGE:
226 			hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
227 			break;
228 #endif
229 		default:
230 			BUG();
231 		};
232 		hp->tsb_base = tsb_paddr;
233 		hp->resv = 0;
234 	}
235 }
236 
237 static struct kmem_cache *tsb_caches[8] __read_mostly;
238 
239 static const char *tsb_cache_names[8] = {
240 	"tsb_8KB",
241 	"tsb_16KB",
242 	"tsb_32KB",
243 	"tsb_64KB",
244 	"tsb_128KB",
245 	"tsb_256KB",
246 	"tsb_512KB",
247 	"tsb_1MB",
248 };
249 
250 void __init pgtable_cache_init(void)
251 {
252 	unsigned long i;
253 
254 	for (i = 0; i < 8; i++) {
255 		unsigned long size = 8192 << i;
256 		const char *name = tsb_cache_names[i];
257 
258 		tsb_caches[i] = kmem_cache_create(name,
259 						  size, size,
260 						  0, NULL);
261 		if (!tsb_caches[i]) {
262 			prom_printf("Could not create %s cache\n", name);
263 			prom_halt();
264 		}
265 	}
266 }
267 
268 int sysctl_tsb_ratio = -2;
269 
270 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
271 {
272 	unsigned long num_ents = (new_size / sizeof(struct tsb));
273 
274 	if (sysctl_tsb_ratio < 0)
275 		return num_ents - (num_ents >> -sysctl_tsb_ratio);
276 	else
277 		return num_ents + (num_ents >> sysctl_tsb_ratio);
278 }
279 
280 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
281  * do_sparc64_fault() invokes this routine to try and grow it.
282  *
283  * When we reach the maximum TSB size supported, we stick ~0UL into
284  * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
285  * will not trigger any longer.
286  *
287  * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
288  * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
289  * must be 512K aligned.  It also must be physically contiguous, so we
290  * cannot use vmalloc().
291  *
292  * The idea here is to grow the TSB when the RSS of the process approaches
293  * the number of entries that the current TSB can hold at once.  Currently,
294  * we trigger when the RSS hits 3/4 of the TSB capacity.
295  */
296 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
297 {
298 	unsigned long max_tsb_size = 1 * 1024 * 1024;
299 	unsigned long new_size, old_size, flags;
300 	struct tsb *old_tsb, *new_tsb;
301 	unsigned long new_cache_index, old_cache_index;
302 	unsigned long new_rss_limit;
303 	gfp_t gfp_flags;
304 
305 	if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
306 		max_tsb_size = (PAGE_SIZE << MAX_ORDER);
307 
308 	new_cache_index = 0;
309 	for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
310 		new_rss_limit = tsb_size_to_rss_limit(new_size);
311 		if (new_rss_limit > rss)
312 			break;
313 		new_cache_index++;
314 	}
315 
316 	if (new_size == max_tsb_size)
317 		new_rss_limit = ~0UL;
318 
319 retry_tsb_alloc:
320 	gfp_flags = GFP_KERNEL;
321 	if (new_size > (PAGE_SIZE * 2))
322 		gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
323 
324 	new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
325 					gfp_flags, numa_node_id());
326 	if (unlikely(!new_tsb)) {
327 		/* Not being able to fork due to a high-order TSB
328 		 * allocation failure is very bad behavior.  Just back
329 		 * down to a 0-order allocation and force no TSB
330 		 * growing for this address space.
331 		 */
332 		if (mm->context.tsb_block[tsb_index].tsb == NULL &&
333 		    new_cache_index > 0) {
334 			new_cache_index = 0;
335 			new_size = 8192;
336 			new_rss_limit = ~0UL;
337 			goto retry_tsb_alloc;
338 		}
339 
340 		/* If we failed on a TSB grow, we are under serious
341 		 * memory pressure so don't try to grow any more.
342 		 */
343 		if (mm->context.tsb_block[tsb_index].tsb != NULL)
344 			mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
345 		return;
346 	}
347 
348 	/* Mark all tags as invalid.  */
349 	tsb_init(new_tsb, new_size);
350 
351 	/* Ok, we are about to commit the changes.  If we are
352 	 * growing an existing TSB the locking is very tricky,
353 	 * so WATCH OUT!
354 	 *
355 	 * We have to hold mm->context.lock while committing to the
356 	 * new TSB, this synchronizes us with processors in
357 	 * flush_tsb_user() and switch_mm() for this address space.
358 	 *
359 	 * But even with that lock held, processors run asynchronously
360 	 * accessing the old TSB via TLB miss handling.  This is OK
361 	 * because those actions are just propagating state from the
362 	 * Linux page tables into the TSB, page table mappings are not
363 	 * being changed.  If a real fault occurs, the processor will
364 	 * synchronize with us when it hits flush_tsb_user(), this is
365 	 * also true for the case where vmscan is modifying the page
366 	 * tables.  The only thing we need to be careful with is to
367 	 * skip any locked TSB entries during copy_tsb().
368 	 *
369 	 * When we finish committing to the new TSB, we have to drop
370 	 * the lock and ask all other cpus running this address space
371 	 * to run tsb_context_switch() to see the new TSB table.
372 	 */
373 	spin_lock_irqsave(&mm->context.lock, flags);
374 
375 	old_tsb = mm->context.tsb_block[tsb_index].tsb;
376 	old_cache_index =
377 		(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
378 	old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
379 		    sizeof(struct tsb));
380 
381 
382 	/* Handle multiple threads trying to grow the TSB at the same time.
383 	 * One will get in here first, and bump the size and the RSS limit.
384 	 * The others will get in here next and hit this check.
385 	 */
386 	if (unlikely(old_tsb &&
387 		     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
388 		spin_unlock_irqrestore(&mm->context.lock, flags);
389 
390 		kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
391 		return;
392 	}
393 
394 	mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
395 
396 	if (old_tsb) {
397 		extern void copy_tsb(unsigned long old_tsb_base,
398 				     unsigned long old_tsb_size,
399 				     unsigned long new_tsb_base,
400 				     unsigned long new_tsb_size);
401 		unsigned long old_tsb_base = (unsigned long) old_tsb;
402 		unsigned long new_tsb_base = (unsigned long) new_tsb;
403 
404 		if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
405 			old_tsb_base = __pa(old_tsb_base);
406 			new_tsb_base = __pa(new_tsb_base);
407 		}
408 		copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
409 	}
410 
411 	mm->context.tsb_block[tsb_index].tsb = new_tsb;
412 	setup_tsb_params(mm, tsb_index, new_size);
413 
414 	spin_unlock_irqrestore(&mm->context.lock, flags);
415 
416 	/* If old_tsb is NULL, we're being invoked for the first time
417 	 * from init_new_context().
418 	 */
419 	if (old_tsb) {
420 		/* Reload it on the local cpu.  */
421 		tsb_context_switch(mm);
422 
423 		/* Now force other processors to do the same.  */
424 		preempt_disable();
425 		smp_tsb_sync(mm);
426 		preempt_enable();
427 
428 		/* Now it is safe to free the old tsb.  */
429 		kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
430 	}
431 }
432 
433 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
434 {
435 #ifdef CONFIG_HUGETLB_PAGE
436 	unsigned long huge_pte_count;
437 #endif
438 	unsigned int i;
439 
440 	spin_lock_init(&mm->context.lock);
441 
442 	mm->context.sparc64_ctx_val = 0UL;
443 
444 #ifdef CONFIG_HUGETLB_PAGE
445 	/* We reset it to zero because the fork() page copying
446 	 * will re-increment the counters as the parent PTEs are
447 	 * copied into the child address space.
448 	 */
449 	huge_pte_count = mm->context.huge_pte_count;
450 	mm->context.huge_pte_count = 0;
451 #endif
452 
453 	/* copy_mm() copies over the parent's mm_struct before calling
454 	 * us, so we need to zero out the TSB pointer or else tsb_grow()
455 	 * will be confused and think there is an older TSB to free up.
456 	 */
457 	for (i = 0; i < MM_NUM_TSBS; i++)
458 		mm->context.tsb_block[i].tsb = NULL;
459 
460 	/* If this is fork, inherit the parent's TSB size.  We would
461 	 * grow it to that size on the first page fault anyways.
462 	 */
463 	tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
464 
465 #ifdef CONFIG_HUGETLB_PAGE
466 	if (unlikely(huge_pte_count))
467 		tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
468 #endif
469 
470 	if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
471 		return -ENOMEM;
472 
473 	return 0;
474 }
475 
476 static void tsb_destroy_one(struct tsb_config *tp)
477 {
478 	unsigned long cache_index;
479 
480 	if (!tp->tsb)
481 		return;
482 	cache_index = tp->tsb_reg_val & 0x7UL;
483 	kmem_cache_free(tsb_caches[cache_index], tp->tsb);
484 	tp->tsb = NULL;
485 	tp->tsb_reg_val = 0UL;
486 }
487 
488 void destroy_context(struct mm_struct *mm)
489 {
490 	unsigned long flags, i;
491 
492 	for (i = 0; i < MM_NUM_TSBS; i++)
493 		tsb_destroy_one(&mm->context.tsb_block[i]);
494 
495 	spin_lock_irqsave(&ctx_alloc_lock, flags);
496 
497 	if (CTX_VALID(mm->context)) {
498 		unsigned long nr = CTX_NRBITS(mm->context);
499 		mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
500 	}
501 
502 	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
503 }
504